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Algebra instruction has traditionally been postponed until adolescence because of 
historical reasons (algebra emerged relatively recently), assumptions about psycho- 
logical development ("developmental constraints" and "developmental readiness"), 
and data documenting the difficulties that adolescents have with algebra. Here we 
provide evidence that young students, aged 9-10 years, can make use of algebraic ideas 
and representations typically absent from the early mathematics curriculum and 
thought to be beyond students' reach. The data come from a 30-month longitudinal 
classroom study of four classrooms in a public school in Massachusetts, with students 
between Grades 2-4. The data help clarify the conditions under which young students 
can integrate algebraic concepts and representations into their thinking. It is hoped 
that the present findings, along with those emerging from other research groups, will 
provide a research basis for integrating algebra into early mathematics education. 

Key words: Algebra; Children's strategies; Developmental readiness; Early algebra; 
Functions; Mathematics K-12 

INTRODUCTION 

Increasing numbers of mathematics educators, policymakers, and researchers 
believe that algebra should become part of the elementary education curriculum. 
The National Council of Teachers of Mathematics [NCTM] (2000) and a special 
commission of the RAND Corporation (2003) have welcomed the integration of 
algebra into the early mathematics curricula. These endorsements do not diminish 
the need for research; quite the contrary, they highlight the need for a solid research 
base for guiding the mathematics education community along this new venture. This 
article will present partial findings from an investigation of eight- to ten-year-old 
students' algebraic reasoning during a 2 1/2 year classroom intervention study. We 

This work was supported by grant #9909591 from the National Science 
Foundation to the project "Bringing Out the Algebraic Character of Arithmetic." 
We thank Pat Thompson and Judah Schwartz for their contribution as consultants 
to the project and Anne Goodrow and Susanna Lara-Roth for help in data collec- 
tion. Preliminary analyses of the present data appeared in Carraher, Schliemann, 
and Brizuela (2001) and in Carraher, Brizuela, and Earnest (2001). 
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88 Arithmetic and Algebra in Mathematics Education 

undertook this investigation in the hopes of finding evidence that young students 
can learn mathematical concepts and representations often thought to lie beyond 
their reach. 

Our approach to early algebra has been guided by the views that generalizing 
lies at the heart of algebraic reasoning, arithmetical operations can be viewed as 
functions, and algebraic notation can lend support to mathematical reasoning even 
among young students. We focus on algebra as a generalized arithmetic of 
numbers and quantities in which the concept of function assumes a major role 
(Carraher, Schliemann, & Schwartz, in press). We view the introduction of 
algebra in elementary school as a move from particular numbers and measures 
toward relations among sets of numbers and measures, especially functional 
relations. 

Functions have deservedly received increasing emphasis in middle and high 
school theorization, research, and curricula (e.g., Dubinsky & Harel, 1992; Schwartz 
& Yerushalmy, 1992; Yerushalmy & Schwartz, 1993). We propose that giving func- 
tions a major role in the elementary mathematics curriculum will help facilitate the 
integration of algebra into the existing curriculum. Key to our proposal is the 
notion that addition, subtraction, multiplication, and division operations can be 
treated from the start as functions. This is consistent with Quine's (1987) view that 
"a function is an operator, or operation" (p. 72). 

The idea is not to simply ascribe algebraic meaning to existing early mathematics 
activities, that is, to regard them as already algebraic. Existing content needs to be 
subtly transformed in order to bring out its algebraic character. To some extent, this 
transformation requires algebraic symbolism. Even in early grades, algebraic nota- 
tion can play a supportive role in learning mathematics. Symbolic notation, number 
lines, function tables, and graphs are powerful tools that students can use to under- 
stand and express functional relationships across a wide variety of problem contexts. 
In this article, we will focus on third graders' work with number lines and algebraic 
expressions as they solve problems in the domain of additive structures. We provide 
evidence that young students can make use of algebraic ideas and representations 
that are typically omitted from the early mathematics curriculum and thought to be 
beyond their reach. Because we believe that functions offer a prime opportunity for 
integrating algebra into existing curricular content, we also attempt to clarify what 
we mean by treating operators as functions. 

Before we present the results of our intervention study, we will review selected 
mathematical and psychological ideas relevant to the suggestion that algebra has 
an important role in the present-day early mathematics curriculum. 

EARLY ALGEBRA FROM MATHEMATICAL AND 
COGNITIVE PERSPECTIVES 

Discussions about early algebra tend to focus on the nature of mathematics and 
students' learning and cognitive development. We will review background issues 
along these two lines. 
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On the Nature ofMathematics: Are Arithmetic and Algebra Distinct Domains? 

The fact that algebra emerged historically after, and as a generalization of, arith- 
metic suggests to many people that algebra ought to follow arithmetic in the 
curriculum. However obvious this claim may seem, we believe there are good 
reasons for thinking otherwise. Assume for the moment that arithmetic and algebra 
are distinct topics. For example, let us assume that arithmetic deals with operations 
involving particular numbers, whereas algebra deals with generalized numbers, 
variables, and functions. Such a distinction allows for a tidy ordering of topics in 
the curriculum. In elementary school, teachers can focus upon number facts, compu- 
tational fluency, and word problems involving particular values. Only later are 
letters used to stand for any number or for sets of numbers. It is not surprising that 
such a sharp demarcation leads to considerable tension along the frontier of arith- 
metic and algebra. It is precisely for this reason that many mathematics educators 
(e.g., Filloy & Rojano, 1989; Herscovics & Kieran, 1980; Kieran 1985; Rojano, 1996; 
Sutherland & Rojano, 1993) have drawn so much attention to the supposed transi- 
tion between arithmetic and algebra--a transition thought to occur during a period 
in which arithmetic is "ending" and algebra is "beginning." Transitional or "preal- 
gebra" approaches attempt to ameliorate the strains imposed by a rigid separation 
of arithmetic and algebra. However, "bridging or transitional proposals" are predi- 
cated on an impoverished view of elementary mathematics-impoverished in their 
postponement of mathematical generalization until the onset of algebra instruction. 
Students evidence difficulties in understanding algebra in their first algebra course. 
But there is reason to believe that their difficulties are rooted in missed opportuni- 
ties and notions originated in their early mathematics instruction that must later be 
"undone," such as the view that the equals sign means "yields" (e.g., Kieran, 1981). 

Consider, for example, the opportunity to introduce the concept of function in 
the context of addition. The expression "+3" can represent not only an operation 
for acting on a particular number but also a relationship among a set of input values 
and a set of output values. One can represent the operation of adding through stan- 
dard function notation, such asf(x) = x + 3, or mapping notation, such as x - x + 3. 
Adding 3 is thus tantamount to x + 3, a function of x. Accordingly, the objects of 
arithmetic can then be thought of as both particular (if n = 5, then n + 3 = 5 + 3 = 8) 
and general (n + 3 represents a mapping of Z onto Z). If their general nature is high- 
lighted, word stories need not be merely about working with particular quantities 
but with sets of possible values and hence about variation and covariation. 
Arithmetic comprises number facts but also the general statements of which the facts 
are instances. 

We are suggesting that arithmetic has an inherently algebraic character in that it 
concerns general cases and structures that can be succinctly captured in algebraic 
notation. We would argue that the algebraic meaning of arithmetical operations is 
not optional "icing on the cake" but rather an essential ingredient. In this sense, we 
believe that algebraic concepts and notation need to be regarded as integral to 
elementary mathematics. 
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We are not the first to suggest that algebra be viewed as an integral part of the 
early mathematics curriculum. Davis (1985, 1989) argued that algebra should 
begin in Grade 2 or 3. Vergnaud (1988) proposed that instruction in algebra or preal- 
gebra start at the elementary school level to better prepare students to deal with the 
epistemological issues involved in the transition from arithmetic to algebra; his theo- 
rizing about conceptual fields provided the rationale for a mathematics education 
where concepts are treated as intimately interwoven instead of separate. Schoenfeld 
(1995), in the final report of the Algebra Initiative Colloquium Working Groups 
(LaCampagne, 1995), proposes that instead of appearing in isolated courses in 
middle or high school, algebra should pervade the curriculum. Mason (1996) has 
forcefully argued for a focus on generalization at the elementary school level. Lins 
and Gimenez (1997) noted that current mathematics curricula from K-12 provide 
a limited view of arithmetic. Kaput (1998) proposed algebraic reasoning across all 
grades as an integrating strand across the curriculum and the key for adding coher- 
ence, depth, and power to school mathematics, eliminating the late, abrupt, isolated, 
and superficial high school algebra courses. Similar arguments have been devel- 
oped by Booth (1988), Brown and Coles (2001), Crawford (2001), Henry (2001), 
and Warren (2001). In keeping with researchers' and educators' calls, the NCTM, 
through The Algebra Working Group (NCTM, 1997) and the NCTM Standards 
(2000), propose that activities that will potentially nurture children's algebraic 
reasoning should start in the very first years of schooling. 

But do young students have the capacity for learning algebraic concepts? Let us 
look at what research tells us about learning and cognitive development as it relates 
to the learning of algebra. This brief review will set the stage for the presentation 
and analysis of our own data. 

On the Nature of Students' Learning and Cognitive Development: 
Claims About Developmental Constraints 

When students experience pronounced difficulties in learning algebra (see, for 
example, Booth, 1984; Da Rocha Falcio, 1993; Filloy & Rojano, 1989; Kieran, 
1981, 1989; Kuchemann, 1981; Resnick, Cauzinille-Marmeche, & Mathieu, 1987; 
Sfard & Linchevsky, 1994; Steinberg, Sleeman, & Ktorza, 1990; Vergnaud, 1985; 
Vergnaud, Cortes, & Favre-Artigue, 1988; and Wagner, 1981), one naturally 
wonders whether this is due to developmental constraints or whether the students 
have simply not achieved the necessary preparation. (Developmental constraints 
are impediments to learning that are supposedly tied to insufficiently developed 
mental structures, schemes, and general information-processing mechanisms. They 
are termed "developmental" to imply that they are intimately tied to gradually 
emerging structures that serve a wide variety of functions in mental life.) 

Developmental constraints refer to presumed restrictions in students' current 
cognitive competence (i.e., "Until students have reached a certain developmental 
level they presumably cannot understand certain things nor will they be able to do 
so in the near future"), not simply their performance (i.e., "they did not use the prop- 
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erty"). They are associated with the expressions "(developmental) readiness" and 
"appropriateness." Algebra has sometimes been thought to be "developmentally 
inappropriate" for young learners, lying well beyond their current capabilities. 

Attributions of developmental constraints have been made by Collis (1975), Filloy 
and Rojano (1989), Herscovics and Linchevski (1994), Kuchemann (1981), and 
MacGregor (2001), among others. Filloy and Rojano (1989) proposed that arith- 
metical thinking evolves very slowly from concrete processes into more abstract, 
algebraic thinking and that there is a "cut-point separating one kind of thought from 
the other" (p. 19). They refer to this cut as "a break in the development of opera- 
tions on the unknown" (p. 19). Along the same lines, Herscovics and Linchevski 
(1994) proposed the existence of a cognitive gap between arithmetic and algebra, 
characterized as "the students' inability to operate spontaneously with or on the 
unknown" (p. 59). Although they recognized that young children routinely solve 
problems containing unknowns (e.g., "5 + ? = 8"), they argued that students solve 
such problems without having to represent and operate on the unknowns; instead, 
they simply use counting procedures or the inverse operation to produce a result. 
Although some (e.g., Sfard & Linchevski, 1994) have considered use of the inverse 
operation as evidence of early algebraic thinking, others have considered this 
procedure as merely prealgebraic (e.g., Boulton-Lewis et al., 1997). 

Historical Support for the Idea of Developmental Constraints 

Parallels between historical developments and the learning trajectories of students 
have provided some support to the notion that students' difficulties with algebra 
reflect developmental constraints. For example, researchers have used Harper's 
(1987) insightful analysis of the historical evolution of algebra-through rhetor- 
ical, syncopated, and symbolic stages-to frame the evolution of student algebraic 
competence. Sfard (1995) and Sfard and Linchevski (1994) have found connections 
between historical and individual developments in mathematics in their theory of 
reification, which attempts to clarify the psychological processes underlying the 
development of mathematical understanding, including algebra. Likewise, Filloy 
and Rojano (1989) provided historical evidence for their idea of a "cut-point" 
separating arithmetic from algebra and argued that something analogous to this 
occurs in present-day mathematics education at the level of individual thought. 

Re-examining Assumptions About Young Students' Capabilities 

Faced with historical analysis and empirical evidence, it would be easy to 
conclude that students face a long, difficult journey to algebra. However, history 
can be misleading. Negative numbers were the subject of heated debate among 
professional mathematicians less than 2 centuries ago, yet they are standard fare in 
curricula designed for today's preadolescent and adolescent students. This is not 
to deny that negative numbers are challenging for many students. In fact, many of 
the obstacles that students face may indeed be similar to those faced by earlier math- 
ematicians. However, when new mathematical and scientific knowledge have been 

This content downloaded from 137.123.124.4 on Wed, 5 Mar 2014 16:04:53 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


92 Arithmetic and Algebra in Mathematics Education 

systematized and worked into the corpus of existing knowledge, it may become 
surprisingly approachable. 

Historical developments in mathematics are important for understanding the 
dilemmas and difficulties students may encounter. But deciding whether certain 
ideas and methods from algebra are within the grasp of young students requires 
empirical studies with young students who have had access to activities and chal- 
lenges that involve algebraic reasoning and algebraic representation. As Booth 
(1988) has suggested, students' difficulties with algebra may result from the limited 
ways that they were taught about arithmetic and elementary mathematics. 

The classroom studies by Davydov's team (see Bodanskii, 1969/1991; Davydov, 
1969/1991) show that Russian children who received instruction in algebraic repre- 
sentation of verbal problems from Grades 1 to 4 performed better than their control 
peers throughout later school years and showed better results in algebraic problem 
solving when compared to sixth and seventh graders in traditional programs of 5 
years of arithmetic followed by algebra instruction from Grade 6. Other promising 
results concerning work on equations come from interview studies in Brazil. Brito 
Lima and da Rocha Falcio (1997) found that first- to sixth-grade Brazilian children 
can develop written representations for algebraic problems and, with help from the 
interviewer, solve linear equation problems using different solution strategies. 
Lins Lessa (1995) found that after only one instructional session, fifth-grade 
students (11- to 12-year-olds) could solve verbal problems or situations presented 
on a balance scale that corresponded to equations, such as x + y + 70 = 2x + y + 20 
or 2x + 2y + 50 = 4x + 2y + 10. She also showed that the children's solutions 
in a posttest were based on the development of written equations and, in more 
than 60% of the cases, the solutions were based on the use of syntactical algebraic 
rules for solving equations. In our own work, we have found that even 7-year-olds 
can handle the basic logic underlying additive transformations in equations 
(Schliemann, Carraher, & Brizuela, in press; Schliemann, Carraher, Brizuela, & 
Jones, 1998). 

Evidence that elementary school children in U.S. classrooms can reason alge- 
braically has been building up over the years as a result of reform in mathematics 
education that led to the introduction of discussions on generalization of number 
patterns in elementary school. Carpenter and Franke (2001) and Carpenter and Levi 
(2000) showed that fairly young children who participated in classroom activities 
that explore mathematical relations can understand, for instance, that "a + b - b = a" 
for any numbers a and b. Schifter (1999) described compelling examples of implicit 
algebraic reasoning and generalizations by elementary school children in classrooms 
where reasoning about mathematical relations is the focus of instruction. Blanton 
and Kaput (2000) further showed third graders making robust generalizations as 
they discuss operations on even and odd numbers and consider them as placeholders 
or as variables. 

Another set of studies examined young children's generalizations and their 
understanding of variables and functions. Davis (1971-1972) and his colleagues 
in the Madison Project developed a series of classroom activities that could be used 
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to introduce, among other things, concepts and notation for variables, Cartesian coor- 
dinates, and functions in elementary and middle school. These tasks were success- 
fully piloted in Grades 5 to 9 and, as Davis stressed, many of the activities are appro- 
priate for children from Grade 2 onward. In a previous classroom intervention study, 
we have found that, given the proper challenges, third graders can engage in alge- 
braic reasoning and work with function tables, using algebra notation to represent 
functional relations (Brizuela, 2004; Brizuela & Lara-Roth, 2001; Brizuela, 
Carraher, & Schliemann, 2000; Carraher, Brizuela, & Schliemann, 2000; Carraher, 
Schliemann, & Brizuela, 2000; Schliemann, Carraher, & Brizuela, 2001, in press; 
Schliemann, Goodrow, & Lara-Roth, 2001). Evidence of algebraic reasoning has 
been found even among first and second graders who participated in Early Algebra 
activities inspired by Davydov's (1975/1991) work (Dougherty, 2003; Smith, 
2000). More recently, we found (Brizuela & Schliemann, 2004) that fourth graders 
(9- to 10-year-olds) who participated in our Early Algebra activities can use alge- 
braic notation to solve problems of an algebraic nature. 

Why Research in Early Algebra Is Still Needed 

It may seem that the major issues of Early Algebra Education were settled when 
Davydov's team of researchers showed success in introducing algebra to young 
learners (Davydov, 1969/1991). We regard their work as groundbreaking, but view 
it as opening rather than closing the field of early algebra. It highlighted many of 
the means by which algebraic concepts could be made accessible and meaningful 
to young children, but there is still much to do. Although the Soviet work gives a 
straightforward look at early algebra from the teachers' perspective, it is vitally 
important to understand how students make sense of the issues. What are their ques- 
tions? What sorts of conflicts and multiple interpretations do they generate? How 
do their initially iconic drawings eventually evolve into schematic diagrams and 
notation? What sorts of intermediary understandings do children produce? 

In addition, the Davydov team has tended to downplay the potential of arithmetic 
as a basis for algebraic knowledge. At times, they even argue that arithmetic be intro- 
duced into the curriculum after algebra. The authors do make a good case for using 
unmeasured quantities in order to encourage students to reflect upon quantitative 
relations and to make it difficult for them to bypass such reflection by resorting 
directly to computations. However, it is difficult to conceive of children developing 
strong intuitions about number lines, for example, without ever having used metrics 
and without having a rudimentary grasp of addition and subtraction facts. 

Finally, we need to have a better understanding of how functions can be intro- 
duced in arithmetical contexts. As we noted elsewhere (Carraher, Schliemann, & 
Brizuela, 2000), one of the best-kept secrets of early mathematics education is that 
addition is a function, or at least can be viewed as a function. Of course one can go 
a long way without considering addition a function, and this is what the traditional 
curriculum does. Tables of numbers can be thought of as function tables 
(Schliemann, Carraher, & Brizuela, 2001). But since children can fill out tables 
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correctly without making explicit the functional dependence of the dependent vari- 
able on the independent variable(s), they may merely be extending patterns. There 
needs to be an additional step of making explicit the functional dependence under- 
lying such patterns. This demands that students make generalizations in language, 
algebraic notation, or other representations such as graphs and diagrams. 

We tried to deal with the issues above in a 30-month longitudinal study with chil- 
dren between 8 and 10 years of age (middle of second to end of fourth grade). We 
developed and examined the results of a series of activities aimed at bringing out 
the algebraic character of arithmetic (see Brizuela & Schliemann, 2004; Carraher, 
Brizuela, & Earnest, 2001; Carraher, Schliemann, & Schwartz, in press; Schliemann 
& Carraher, 2002; Schliemann, Carraher, Brizuela, Earnest, et al., 2003; Schliemann, 
Goodrow, et al., 2001). In this article, we describe the outcomes of two of the lessons 
we implemented in third grade. Our aim is to exemplify how young children, as they 
learn addition and subtraction, can be encouraged to integrate algebraic concepts 
and representations into their thinking. 

Students are often introduced to algebra through first-order equations of the form 
ax + b = cx + d (or a variant such as ax + b = d). Unfortunately, this introduces far 
too many new issues at once and further encourages students to view variables as 
having a single value. These problems can be largely avoided by giving students 
the opportunity to work extensively with functions before encountering equations. 
In our approach, they first encounter "additive offset" functions, a subclass of linear 
functions of the form x + b. Because the constant of proportionality is 1, issues of 
proportional growth are temporarily suppressed in order to highlight the additive 
constant aspect of linear functions. This has certain distinct advantages. Children's 
initial intuitions about order, change, and equality first arise in additive situations. 
And, as we will show, as children work with the number line and with a variable 
number line, they can come to effectively deal with variables and functional covari- 
ation to approach problems involving additive relations. Additionally, first-order 
equations can be finally introduced as a special condition in which two functions 
have been constrained to be equal. 

THE CLASSROOM STUDY 

Young Children Doing "Algebrafied Arithmetic" 

The present data come from a longitudinal study with 69 students, in four class- 
rooms, as they learned about algebraic relations and notation, from Grade 2 to 4. 
Students were from a multiethnic community (75% Latino) in the Greater Boston 
area. From the beginning of their second semester in second grade to the end of their 
fourth grade, we implemented and analyzed weekly activities in their classrooms. 
Each semester, students participated in six to eight activities, each activity lasting 
for about 90 minutes. They worked with variables, functions, algebraic notation, 
function tables, graphs, and equations. The algebraic activities related to addition, 
subtraction, multiplication, division, fractions, ratio, proportion, and negative 
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numbers. All the activities were videotaped. Here we provide a general overview 
of lessons employed during Grade 3. Our sequence of activities does not constitute 
a fully developed Early Algebra curriculum and is included mainly to provide a 
context for the subsequent analysis. 

During the first term of their third grade, when the children were eight and nine 
years of age, we held eight 90-minute weekly meetings in each of four classes, 
working with additive structure problems and representations. We will first provide 
a broad description of how the students were introduced to number lines from Lesson 
3 to Lesson 6. We will then describe in more detail the activities we developed in 
Lesson 7 and Lesson 8 in one of the classrooms. The instructors, David and 
B~rbara, are coauthors in the present article. The lessons generally did not begin 
with a polished mathematical representation or with a problem supporting merely 
one correct response. Children were instead presented with an open-ended problem 
involving indeterminate quantities. After holding an initial discussion about the situ- 
ation, we asked students to express their ideas in writing. We then discussed their 
representations and introduced conventional representations; the conventions we 
chose to introduce had connections both to the problem we were working with and 
to the students' own representations. 

Introducing Number Lines 

By the time our students had reached Lesson 7 and 8 in the fall semester, they 
had already spent several hours working with number lines. 

Lesson 3 

Their first encounter took place in Lesson 3 when we strung twine across the room 
to which large, easily readable numbers were attached at regular intervals; this phys- 
ical number line offered their first look at negative numbers (it ranged from -10 to 
+20 over approximately 10 meters). It also allowed us to carry out discussions about 
how changes in measured and counted quantities-age, distance, money, candies, 
and temperature-as well as pure numbers mapped onto number line representa- 
tions. For such activities, children represented diverse values by locating themselves 
at various positions along the physical number line. They learned, with pleasure 
often bordering on glee, to interpret displacements on the number cord-line in terms 
of their growing older, getting warmer or colder, earning and spending money 
(which several referred to as "wasting money," perhaps from the ambiguous 
Spanish verb, gastar'). The context served to support vigorous discussions about 
the relationships among physical quantities and the order of numbers. Considerations 
about debt were crucial to clarifying what negative numbers mean and for helping 
the students realize, for example, the difference between having $0 and having -$2 
despite the fact that one's pockets were probably empty in either case. 

1 A large percentage of the students in the classes we teach come from immigrant Spanish-speaking 
homes. 
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In one class, David raised various questions about the number line ("How many 
numbers are there on the line? Do the numbers only begin at -10 and proceed to 
+20 or are there more? How far can the number line go?"). Students at first 
suggested that the only numbers on the line were those for which there were printed 
labels (-10 through +20). David asked whether those were all the numbers that 
existed. A student suggested that there were "50 numbers," adding "You can only 
go as far as the wall." David suggested that the students ignore the wall; the impor- 
tant thing was to make sure that all the numbers were included. From that moment, 
the students began to suggest locations to which the number line would extend: 
across the playground, to other regions of the country, and eventually outer space 
itself. Each time that students mentioned a new location, David asked whether all 
the numbers were now accounted for. Eventually several students suggested that 
the number line went "to infinity," and explained that it "kept going on and on." 

Lesson 4 

A week later, David asked the students to explain what the number line was that 
they had been discussing. In one classroom, a child mentioned having to behave 
"like ghosts" when using the number line, because one penetrated walls to reach 
the desired numbers. Another child referred to the number line as "a time machine": 
it allowed him to proceed backward and forward in time when he treated the 
numbers as referring to his age. One student objected, arguing that people cannot 
go backward in time, to which another responded, "You can in your imagination." 

In a subsequent lesson, we moved from the number line made of twine to diagrams 
on paper and projected onto a screen from an overhead projector. We introduced 
arrows linking points on the number line to represent changes in values. When several 
arrows were connected on the number line, students learned that they could simplify 
the information by shortcuts that went from the tail of the first arrow to the head of 
the last arrow. They also learned to express such shortcuts or simplifications through 
notation: for example, "+7 - 10" could be represented as "-3," since each expres- 
sion had the same effect. They could show the similarities and differences between 
the two by making trips along the number line, in front of the class or on paper. The 
large-scale number line, projected or strung in front of the whole class, allowed 
students and teacher to discuss mathematical operations in a forum where students 
who were momentarily not talking could nonetheless follow the reasoning of the 
participants. This helped students deal with a range of issues, including the immensely 
important one of distinguishing between numbers as points and numbers as inter- 
vals. Operands could be treated as points or as intervals (from 0 to the endpoint), 
but operations such as "+6" referred to the number of unit spaces between positions 
and not to the number of fence posts or markers, so to speak, lying between numbers. 

Lesson 6 

In Lesson 6, the fourth session in which we dealt with number lines, we intro- 
duced a "variable number line" as a means of talking about operations on unknowns 
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(see Figure 1). "N minus 4" could be treated as the result of displacement of four 
spaces leftward from N, regardless of what number N stood for. With an overhead 
projector, we sometimes employed two number lines: the variable number line and 
a standard number line with an origin at 0. By placing one line over the other (they 
shared the same metric), students could determine the value of N; it was the 
integer aligned with N. They also gradually realized they could infer the values 
of, say, N + 3 from seeing that N + 7 sat above 4 on the regular number line. The 
connections to algebraic equations should be obvious to the reader. 

N-3 N-2 N-1 N N+1 N+2 N+3 N+4 N+5 

Figure 1. The N-number line. 

Working With Unknown Quantities 

Lesson 7 

Figure 2 shows the problem we presented to students in Lesson 7. The problem 
did not specify the amounts of money that Mary and John have in their piggy banks 
at the beginning of the story; it merely stated that they have equal amounts. In the 
subsequent parts of the problem, the students learned about changes that occurred 
in the amounts. In the final part, the students learned how much Mary had in her 
piggy bank on Thursday. From this information, the students ultimately determined 
how much the protagonists had at the beginning and how much they had on each 

Mary and John each have a piggy bank. 
On Sunday, they both had the same amount in their piggy banks. 
On Monday, their Grandmother comes to visit them and gives $3 to each of 
them. 
On Tuesday, they go together to the bookstore. Mary spends $3 on Harry 
Potter's new book. John spends $5 on a 2001 calendar with dog pictures on 
it. 
On Wednesday, John washes his neighbor's car and makes $4. Mary also 
made $4 babysitting. They run to put their money in their piggy banks. 
On Thursday, Mary opens her piggy bank and finds that she has $9. 

Figure 2. The Piggy Bank problem. 
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day in the story. We initially displayed the problem as a whole (except for the line 
on what happened on Thursday) so that the students could understand that it 
consisted of a number of parts. Then we covered up all days excepting Sunday. 

Representing an Unknown Amount 

After reading what happened each day, students worked alone or in pairs, trying 
to represent on paper what was described in the problem. During this time, members 
of the research team asked individual children to explain what they were doing and 
questioned them in ways that encouraged them to develop more adequate repre- 
sentations. In what follows we attempt to describe, on the basis of what was 
depicted in the videotapes and in the children's written work, the content of the class- 
room discussion that followed and children's insights and achievements as they 
attempted to represent and solve the various steps of the problem. 

Sunday: After Kimberley read the Sunday part for the whole class, B irbara, the 
researcher running this class, asked students if they knew how much money each 
of the characters in the story had. The children stated in unison, "No," and did not 
appear to be bothered by that. A few uttered "N," and Talik stated, "N, it's for 
anything." Other children shouted "any number" and "anything." 

When Birbara asked the children what they are going to show on their answer 
sheets for this first step in the problem, Filipe said, "You could make [sic] some 
money in them, but it has to be the same amount." Birbara reminded him that we 
do not know what the amount is, and he then suggested that he could write N to 
represent the unknown amount. Jeffrey immediately said that that is what he was 
going to do. The children started writing in their handouts, which contained infor- 
mation only about Sunday and a copy of the N-number line. Birbara reminded the 
students that they could use the N-number line (a number line with N at the origin 
and a metric of one unit) on their paper if they wanted. She also drew a copy of the 
N-number line on the board. 

The students worked for about 3 minutes, drawing piggy banks and representing 
the amounts in each of them. Four children attributed specific values for Mary and 
John on Sunday. Five represented the amount as N, usually inside a drawing of a 
piggy bank. Two children placed a question mark inside or next to each piggy bank. 
And five children drew piggy banks with no indication of what each would contain. 

Jennifer, one of the students who used N to represent the initial amount in each 
bank (see Figure 3), drew two piggy banks, labeling one for Mary, the other for John, 
and wrote next to them a large N after the statement "Don't know?" In a one-on- 
one interaction with Jennifer, David (present but not serving as instructor in the class) 
points to the N on her handout and asked: 
David: So, what does it say over here? 
Jennifer: N. 
David: Why did you write that down? 
Jennifer: Because you don't know. You don't know how much amount they have. 
David: So, does N... What does that mean to you? 
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Figure 3. Jennifer's initial representation for the problem. 

Jennifer: N means any number. 
David: Do they each have N, or do they have N together? 
Jennifer: [Does not respond.] 
David: How much does Mary have? 
Jennifer: N. 
David: And how about John? 
Jennifer: N. 
David: Is that the same N or do they have different Ns? 
Jennifer: They're the same, because it said on Sunday that they had the same amount 

of money. 
David: And so, if we say that John has N, is it that they have, like, $10 each? 
Jennifer: No. 
David: Why not? 
Jennifer: Because we don't know how much they have. 

From the very beginning of this class, the children themselves proposed to use N 
to represent an unknown quantity. We had introduced the convention before in other 
contexts, but now it was making its way into their own repertoire of representational 
tools. Several children appear to be comfortable with the notation for an unknown 
as well as with the idea that they can work with quantities that may remain unknown. 

Talking About Changes in Unknown Amounts 

Monday: When the children read the statement about what happened on Monday, 
that is, that each child received $3 from their grandmother, they inferred that Mary 
and John would continue to have the same amount of money as each other, and that 
they both would have $3 more than the day before: 
A child: Now they have three more than the amount that they had. 
Bdrbara: Do you think that John and Mary still have the same amount of money? 
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Children: Yeah! 
Bdrbara: How do you know? 
Talik: Because before they had the same amount of money, plus three, they both 

had three more, so it's the same amount. 
David: The same amount as before or the same amount as each other? 
Talik: The same amount as each other. Before, it was the same amount. 
David: And do they have the same amount on Monday as they had on Sunday? 
Talik: No. 
Another child: You don't know! 
Bdrbara: What is the difference between the amount they had on Sunday and the 

amount they had on Monday? 
Children: They got three more. 
Talik: Yeah. They have three more. They could have a hundred dollars; Grandma 

comes and gives them three more dollars, so it's a hundred and three. 

Bfirbara next asked the children to propose a way to show the amounts of money 
in the piggy banks on Monday. Nathan was the first to propose that on Monday they 
would each have Nplus 3, explaining, "Because we don't know how much money 
they had on Sunday, and they got plus, and they got three more dollars on Monday." 
Talik proposed to draw a picture showing Grandma giving money to the children. 
Filipe represented the amount of money on Monday as "? + 3." Jeffrey said that he 
wrote "three more" because their Grandmother gave them three more dollars. The 
drawings in Figure 4 are Jeffrey's spontaneous depictions of N + 3. In each case, 
the 3 units are individually distinguished atop a quantity, N, of unspecified amount. 

James proposed and wrote on his paper that on Sunday each would have "N + 2" 
and therefore on Monday they would have N+ 5. It is not clear to us why he chose 
N + 2 as a starting point. Carolina wrote N + 3. Jennifer wrote N + 3 in a vertical 
arrangement with an explanation underneath: "3 more for each." Talik wrote 
N+ 3= N+ 3. Carolina, Adriana, and Andy wrote N+ 3 inside or next to each piggy 

Figure 4. Jeffrey's representations for what happened on Sunday and on Monday. 
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bank under the heading Monday. Jeffrey wrote N + 3 for Monday and explained 
that that is because their Grandma gave them 3 dollars more. But when David asks 
him how much they had on Sunday, Jeffrey answered, "Zero." Max, sitting next to 
him, then says, "You don't know." Jimmy, who first represented the amounts on 
Sunday as question marks, wrote N + 3, with connections to Mary and John's 
schematic representation of piggy banks, and explained, "Because when the 
Grandmother came to visit them they had like, N. And then she gave Mary and John 
$3. That's why I say [pointing to N+ 3 on paper] Nplus three." 

B6rbara commented on Filipe's use of question marks, and he and other children 
acknowledged that N is another way to show the question marks. She then told the 
class that some of the children proposed specific values for the amounts in the piggy 
banks on Sunday. Speaking against this approach, Filipe stated that "nobody knows 
[how much they have]" and James said that these other children "are wrong" to assign 
specific values. Jennifer clarified that it could be one of the suggested amounts. 

At this point, several children seemed comfortable with the notation for an 
unknown and with the idea that they could work with quantities that might remain 
unknown. Their written work showed that, by the end of the class, 11 of the 16 chil- 
dren had adopted N + 3 for the amounts each would have on Monday. Only one of 
the children continued to use specific amounts in his worksheet, and four produced 
drawings that could not be interpreted or written work that included Nbut in incor- 
rect ways such as N + 3 = N. 

Operating on Unknowns With Multiple Representations 

Tuesday: When they considered what happened on Tuesday, some of the chil- 
dren appeared puzzled and uncomfortable as they wondered whether there would 
be enough money in the piggy banks to allow for the purchases. A student suggested 
that the protagonists in the story probably had $10. Others assumed that there must 
be at least $5 in their piggy banks by the end of Monday, otherwise John could not 
have bought a $5 calendar. 

Birbara recalled for the class what happened on Sunday and Monday. The chil- 
dren agreed that on Monday each of the children had the same amounts. She then 
asked these questions: 
Bdrbara: Adriana, what happens on Tuesday? 
Adriana: On Tuesday, they had different amounts of money. 
Bdrbara: Why do they have different amounts of money? 
Adriana: Because they spent, Mary spent $3, and John spent $5. 
Bdrbara: So, who spent more money? 
Adriana: John. 
Bdrbara: So, on Tuesday, who has more money on Tuesday? 
Adriana and 
other children: Mary. 

Jennifer described what happened from Sunday to Tuesday and concluded that, 
on Tuesday, Mary ended up with the same amount of money that she had on 
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Sunday, "because she spends her $3." At this point, B~irbara encouraged the chil- 
dren to use the N-number line to represent what has been going on from Sunday 
to Tuesday. Always dialoguing with the children and getting their input, she drew 
arrows going from N to N + 3 and then back to N again to show the changes in 
Mary's amounts. She showed the same thing with algebraic notation, narrating 
the changes from Sunday to Tuesday, step by step, and getting the children's 
input while she wrote N + 3 - 3. She then wrote a bracket under +3 - 3 and a 0 
below it. She commented that +3 - 3 is the same as 0, and extended the notation 
to N + 3 - 3 = N + 0 = N. Jennifer then explained how the $3 spent cancel out 
the $3 given by the Grandmother: "Because you added three, right, and then she 
took, she spent those three and she has the number she started with." 

Birbara then led the children through John's transactions on the N-number line, 
drawing arrows from N to N + 3, then N- 2, for each step of her drawing. During 
this process she used algebraic script to register the states and transformations, and 
with the students' input kept track of the states and transformations, eventually 
writing N + 3 - 5 to express John's amount at the end of Tuesday. Some children 
suggested that this amount is equal to "N minus 2," an inference that B~rbara regis- 
tered as N+ 3 - 5 = N- 2. 

Birbara asked Jennifer to approach the number line and show the difference 
between John and Mary's amounts on Tuesday. Jennifer at first pointed vaguely to 
the interval between N- 2 and N. When Bsarbara asked her to show exactly where 
the difference starts and ends, Jennifer correctly pointed to N- 2 and to N as the 
endpoints of the segment. David asked Jennifer how much one would have to give 
John so that he had the same amount of money as he had on Sunday. Jennifer 
answered that we would have to give $2 to John and explains, showing on the 
number line, that if he is at N- 2 and we add 2, he goes back to N. Birbara repre- 
sented what Jennifer has said as N- 2 + 2 = N. Jennifer took the marker from 
Biirbara's hand, drew brackets around the expression "-2 + 2," and wrote 0 under 
it. B~irbara asked why "-2 + 2" equals 0 and, together with Jennifer, went through 
the steps corresponding to N- 2 + 2 on the N-number line showing how N- 2 + 2 
ends up at N. Talik showed how this works when N has the value of 150. Barbara 
used Talik' s example of N = 150 to show how one ends up at value N on the number 
line. 

Nathan's drawing in Figure 5 depicts Sunday (top), Monday (bottom left), and 
Tuesday (bottom right). For Tuesday, he first drew iconic representations of the 
calendar and the book next to the values $5 and $3, respectively, the icons and dollar 
values connected by an equals sign. During his discussion with an in-class inter- 
viewer, he wrote the two equations N + 3 - 5 = N- 2 and N+ 3 - 3 = N, using the 
N-number line as support for his decisions. Later, when he learned that N was equal 
to 5 (after receiving the information in the problem about Thursday), he wrote 8 
next to N + 3 on the Monday section of his worksheet. 

Wednesday: Filipe read the Wednesday step of the problem. Birbara asked 
whether Mary and John will end up with the same amount as on Monday. James 
said, "No," and Adriana then explained that Mary will have N + 4 and John will 
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Figure 5. Nathan's representation of the problem. 

have N+ 2. Birbara drew an N-number line and asked Adriana to tell the story using 
the line. Adriana represented the changes for John and for Mary on the N-number 
line, much as she would on a regular number line. Bairbara wrote N + 4 = N+ 4 and 
then N- 2 + 4 = N + 2. Talik volunteered to explain this. He said that if you take 
2 from the 4, it will equal 2. To clarify where the 2 comes from, Birbara represented 
the following operations on a regular number line: -2 + 4 = 2. 

Birbara then asked if anyone could show why N+ 3 - 3 + 4 equals N+ 4. Talik 
volunteered to do so, crossed out the subexpression +3 - 3, and said, "We don't 
need that anymore." Jennifer stated that this is the same as 0. This is a significant 
moment, because we had not introduced the procedure of striking out the sum of 
a number and its additive inverse (although we had used brackets to simplify sums). 
Talik' s striking instead of bracketing shows his understanding that a number and 
its bracketed inverse yield 0. Birbara proposed to write out an equation conveying 
what happened to John's amounts throughout the week. The students helped her 
go through each of the steps in the story and build the equation N + 3 - 5 + 4 = 
N+ 2. But they did not initially agree upon the expression for the right-hand side 
of the equation. Barbara helped them visualize the operations on the N-number line. 
She asked Jennifer to show how the equation could be simplified. While Jennifer 
pondered, Birbara pointed out that this problem was harder than the former and 
asked her to start out with +3 - 5; Jennifer answered, "Minus two." Then they 
bracketed the second part at -2 + 4, and Jennifer, counting on her fingers, said it 
is +2 and wrote. Talik came up to the front and explained, "N is anything, plus 3, 
minus 5, is minus 2; N minus 2 plus 4, equals [while counting on his fingers] 
N plus 2." Talik then tried to group the numbers differently, first adding 3 and 4 
and then taking away 5. Birbara showed that when grouping +3 + 4, one arrives 
at +7. Next, +7 - 5 results in +2. Hence, the answer is 2, regardless of the order 
of the operations. 
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Discovering a Particular Value and Instantiating Other Values 

Thursday: When Amir read the Thursday part of the problem, where it stated that 
Mary ended with $9, several children suggested out loud that N has to be 5. So 
Bairbara asked the children, "How much does John have in his piggy bank [at the 
end of Thursday]?" Some students claimed that John (whose amount was repre- 
sented by N+ 2) has "two more," apparently meaning "two more than N." Jennifer, 
James, and other children said that he has 7. Some of the students apparently deter- 
mined this by adding 5 + 2. Others determined it from Mary's final amount (9): 
Because N + 2 (John's amount) is 2 less than N+ 4 (Mary's amount), John would 
have to have 2 less than Mary (known to have 9). Birbara concluded the lesson by 
working with the students in filling out a 2 x 4 table displaying the amounts that 
Mary and John had across the 4 days. Some students suggested expressions with 
unknown values; others suggested using the actual values, as inferred after the infor- 
mation about Thursday's events had been disclosed. 

A New Context: Differences Between Heights 

Lesson 8 

The following week, in Lesson 8 we asked the same group of students to work 
on the problem shown in Figure 6 (see Carraher, Schliemann, & Brizuela, 2000, 
in press, for a previous analysis of the same problem by another group of 
students). The problem states the differences in heights among three characters 
without revealing their actual heights. The heights could be thought to vary 
insofar as they could take on a set of possible values. Of course that was our view. 
The point of researching the issue was to see what sense the students made of 
such a problem. 

After discussing each statement in the problem, the instructor encouraged the 
students to focus on the differences between the protagonists' heights (see Carraher, 
Brizuela, et al., 2001, for details on this first part of the class), and the students were 

Tom is 4 inches taller than Maria. 
Maria is 6 inches shorter than Leslie. 
Draw Tom's height, Maria's height, and 
Leslie's height. 
Show what the numbers 4 and 6 refer to. 

Maria Maria's Height 

Figure 6. The Heights problem. 

This content downloaded from 137.123.124.4 on Wed, 5 Mar 2014 16:04:53 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


D. W. Carraher, A. D. Schliemann, B. M. Brizuela, and D. Earnest 105 

asked to represent the problem on individual worksheets. Most of the students used 
vertical lines to show the three heights (see example in Figure 7). To our surprise, 
one of the students (Jennifer) chose to represent the heights on a variable number 
line much like the one they had been working with during previous meetings (see 
Figure 8). Blirbara then adopted Jennifer's number line as a basis for a full-class 

Figure 7. Jeffrey's drawing and notation for the Heights problem. 

Tom is 4 inches taller than Maria. 
Maria is 6 inches shorter than Leslie. 
Draw: Tom's height 

Maria's height 
Leslie's height 

Show what the numbers 4 and 6 refer to in your drawing. 

Figure 8. Jennifer's drawing (notches) showing differences but no origin. She also uses a 
variable number that forms the basis of subsequent discussion. 
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discussion of the relations among the heights. She further adopted Jennifer's 
assumption that Maria is located at N on the variable number line (see the middle 
number line in Figure 9). 

Figure 9. Three variable number line representations (on an overhead projector) used by 
students and teacher to discuss the cases where Maria (middle) is attributed the height of N; 
Leslie (bottom) is assigned the height of N; and Tom (top) is assigned a height of N. 

Bdrbara: Now if Maria's height was N, what would Tom's height be? 
Students: N plus four. 
Bdrbara: Why? 
Students: Because he would be four inches taller. 
Bdrbara: Mm, hmm. And what would Leslie's height be? 
Nathan and 
students: N plus six. 
Nathan: Because Leslie is six inches taller. 

It is remarkable that Jennifer realized that a representational tool introduced in earlier 
classes would help to clarify the problem at hand. It is equally impressive that the 
remaining students appeared comfortable with this idea and easily inferred Tom and 
Leslie's heights (N + 2, N+ 4, respectively) from Maria's (N). Birbara wondered 
to herself whether the students realized that the decision to call Maria's height N 
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was arbitrary. So she asked the students to assume instead that Leslie's height was 
N. The students answered that Tom's height would be N- 2 and Maria's would be 
N- 6 (see the bottom number line in Figure 9). They inferred this not by acting on 
the algebraic script but rather by making the appropriate displacements on the vari- 
able number line. 

Next, B&irbara asked the students to assume that Tom's height was N. Max went 
to the front of the class and placed Leslie at N+ 3 (see the top number line in Figure 
9; there is an erasure under N+ 3 where Max had first incorrectly put Leslie's name). 
Max realized that the difference between Tom and Leslie is 2, but nonetheless placed 
her 3 units to the right of Tom. (This is an example of the "fence post" issue. Students 
are well accustomed to the idea that a number refers to the count of elements in a 
set, that is, a set's cardinality. However, the issue before children often is "What 
should I count?" On a number line, two sorts of elements suggest themselves. One 
can count the number of intervals or one can count the number of "fence posts," or 
notches. In Max's case, he seemed to have counted the "fence posts" lying between 
N and N + 3, the delimiters.) Other students correctly stated that Leslie should be 
placed under N+ 2. Finally, when Birbara asked Amir to show where Maria's name 
should be located, he placed it, without hesitation, under N -4. 

If we focus too much on the occasional errors made by students like Max, we may 
fail to see the larger picture; namely, that by the end of the lesson the students are 
relating the given numerical differences to algebraic notation, line segment 
diagrams, number lines (including variable number lines), subtraction, counting, 
and natural language descriptions. The fluidity with which students move from one 
representational form to another suggests that their understanding of functions of 
the form x + b is robust and flexible. Their willingness to use Nto represent the height 
of any of the three characters in the story (as long as the relations among the 
heights of the three protagonists are kept invariant) shows an encouraging degree 
of robustness in their thinking. 

DISCUSSION 

Were These Students Doing Algebra? 

Do the activities documented here qualify as algebra? Some might be tempted 
to argue that students had solved the Piggy Bank problem through procedures, such 
as "undoing," deemed merely arithmetical or prealgebraic (Boulton-Lewis et al., 
1997; Filloy & Rojano, 1989). Others might note that the students did not "solve 
for x" in the traditional sense of applying syntactical rules to written forms, without 
regard to their meaning, to produce a unique value for the unknown. However, it 
is important to recognize what the students did achieve. They used letters to mean- 
ingfully represent variables. They used algebraic expressions such as N+ 3 to repre- 
sent functions. Furthermore, they used knowledge about the changes in quantities 
to formulate new algebraic expressions. They understood the relations between the 
daily amounts of each protagonist in the story problem; they also understood how 
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the amounts on each day related to the starting amounts. In the discussion of the 
Heights problem (i.e., Lesson 8), they displayed a clear grasp of functional rela- 
tions among indeterminate quantities; they were working with variables while 
maintaining an invariant relationship between them. And they generated appropriate 
expressions for the heights of the remaining protagonists regardless of which actor 
had been assigned the initial value N. As such, it appears that the students were 
working with functions, a fundamental object of study in algebra (Schwartz & 
Yerushalmy, 1994). 

In several senses the lessons described above are typical of the 32 early algebra 
lessons we implemented during 1 semester (eight lessons implemented in each of 
four third-grade classrooms). At the beginning, most children relied on instantiating 
unknowns to particular values. But over time, in each lesson, and across the lessons, 
the students increasingly came to use algebraic notations and number line repre- 
sentations as a natural means of describing the events of problems they were 
presented with (see Carraher, Schliemann, & Schwartz, in press, for further analysis 
of this evolution in fourth grade). 

Although students expressed their personal understandings in drawings and 
explanations, we do not suggest that their behavior was completely spontaneous. 
Clearly, their thinking was expressed through culturally grounded systems, including 
mathematical representations of various sorts. Number line representations and the 
use of letters to represent unknown amounts or variables are examples of cultural 
representations we explicitly introduced to the students. The issue is not whether 
they invent such representations fully on their own but rather whether they embrace 
them as their own-that is, whether they incorporate them into their repertoire of 
expressive tools. 

Findings such as these have persuaded us that, given the proper experiences, chil- 
dren as young as eight and nine years of age can learn to comfortably use letters to 
represent unknown values and can operate on representations involving letters and 
numbers without having to instantiate them. To conclude that the sequence of oper- 
ations "N + 3 - 5 + 4" is equal to N + 2, and to be able to explain, as many children 
were able to, that Nplus 2 must equal 2 more than what John started out with, what- 
ever that value might be, is a significant achievement-one that many people 
would think young children incapable of. Yet such cases were frequent and not 
confined to any particular kind of problem context. It would be a mistake to dismiss 
such advances as mere concrete solutions, unworthy of the term "algebraic." 
Children were able to operate on unknown values and draw inferences about these 
operations while fully realizing that they did not know the values of the unknowns. 

We have also found further evidence that children can treat the unknowns in addi- 
tive situations as having multiple possible solutions. For example, in a simple 
comparison problem (Carraher, Schliemann, & Schwartz, in press) wherein we 
described one child as having three more candies than another, our students from 
Grade 3 were able to propose that one child would have N candies and the other 
would have N + 3 candies. Furthermore, they found it perfectly reasonable to view 
a host of ordered pairs-(3, 6), (9, 12), (4, 7), (5, 8)-as all being valid solutions 
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for the case at hand, even though they knew that in any given situation only one 
solution could be true. They even were able to express the pattern in a table of such 
pairs through statements such as "the number that comes out is always three larger 
than the number you start with." When children make statements of such a general 
nature, they are essentially talking about relations among variables and not simply 
unknowns restricted to single values. We have found that eight- and nine-year-old 
children can not only understand additive functions but also meaningfully use 
algebraic expressions such as "n - n + 3" and "y = x + 3" (see Carraher, Schliemann, 
& Brizuela, 2000; Schliemann, Carraher, & Brizuela, in press). 

Cases such as those above may seem strange to people accustomed to thinking 
of variation in terms of changes in the values of a single entity over time. Variation 
is actually a broader concept than change. Sometimes, variability occurs across a 
set of unrelated cases, as in the variation of heights in a population or as in the covari- 
ation of heights and weights. The example of one child having three more candies 
than another can be understood as variation within and, even more important, 
invariance across a set of possibilities. The invariance across cases can form the 
basis of discussions with students about function tables containing many "solutions," 
one for each row. In this case, column one would correspond to the amount of 
candies the first child has; column two would correspond to the amount of candies 
the second child has. Each row contains a valid solution, insofar as it is consistent 
with the information given. Once students have filled out and explored such a func- 
tion table, the issue is to explain it. What properties stay the same regardless of the 
row? This is no trivial matter, and it gives rise to general statements about number 
patterns that are the essence of algebra. 

Such forms of variation are important because they allow one to reason both about 
particular values and sets of possible values. They allow one to consider unknowns 
as variables. This is precisely the spirit with which many students viewed the 
Piggy Bank problem before information was discovered, regarding Thursday, that 
finally allowed them to disregard the multiple possibilities and focus on the values 
to which the problem was now constrained. Students who feel the need to instan- 
tiate variables from the beginning can do so and participate in the classes from their 
own perspective, restricting their attention to one possible scenario from the start. 
This should not be a reason for concern, for we have found that such students learn 
from others and from class discussions, and within a few weeks they comfortably 
welcome algebraic representations into their own personal repertoire of expressive 
tools. Were their initial reliance upon instantiation due to developmental constraints, 
the relatively quick learning we witnessed from the piggy bank lesson to the lesson 
on heights could not have taken place. 

The students demonstrated that they had begun to handle fundamental algebraic 
concepts. Still, there is much for them to learn. Algebra is a vast domain of math- 
ematics, and the progress shown by students in the present study is the beginning 
of a long trajectory. In this initial stage, students benefit immensely from working 
in rich problem contexts that they use to help structure and check their solutions. 
As they become increasingly fluent in algebra, they will be able to rely relatively 
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less on the semantics of the problem situation to solve problems. Algebraic expres- 
sions will not only capture but, more and more, will help guide their thinking and 
problem solving. With time, they will hopefully be able to derive valid inferences 
by acting on the written and graphical forms themselves, without having to reflect 
back on the rich problem contexts in order to successfully proceed; that is, their 
semantically driven problem solving will become increasingly driven by the syntax 
of the written expressions. 

Concluding Remarks 

Our work has been guided by the ideas that (1) children's understanding of addi- 
tive structures provides a fruitful point of departure for an "algebrafied arithmetic"; 
(2) additive structures require that children develop an early awareness of negative 
numbers and quantities and their representation in number lines; (3) multiple prob- 
lems and representations for handling unknowns and variables, including algebraic 
notation itself, can and should become part of children's repertoires as early as 
possible; and (4) meaning and children's spontaneous notations should provide a 
footing for syntactical structures during initial learning, even though syntactical 
reasoning should become relatively autonomous over time. 

There may be many reasons for viewing algebra as more advanced than arith- 
metic and therefore placing it after arithmetic in the mathematics curriculum. But 
there are more compelling reasons for introducing algebra as an integral part of early 
mathematics. There are good reasons for considering the abstract and concrete as 
interwoven rather than fully distinct (Carraher & Schliemann, 2002). Addition and 
subtraction, multiplication and division are operations, but they are also functions 
and so are amenable to description through algebraic notation. If we dwell too much 
on the concrete nature of arithmetic, we run'the risk of offering students a superfi- 
cial view of mathematics and of discouraging their attempts to generalize. Although 
computational fluency is important (even crucial) for allowing students to reason 
algebraically, it does not assure that students will be attentive to the patterns under- 
lying arithmetic and arithmetical relations. Algebraic notation (as well as tables, 
number lines, and graphs) offers a means for expressing such patterns clearly and 
succinctly. If introduced in meaningful ways, it offers the virtue of bringing together 
ideas that otherwise might remain fragmented and isolated. 

Many have argued that young children are incapable of learning algebra because 
they do not have the cognitive wherewithal to handle concepts such as variables and 
functions (Collis, 1975; Filloy & Rojano, 1989; Herscovics & Linchevski, 1994; 
Kuchemann, 1981; MacGregor, 2001). Our classroom studies suggest that children 
can handle algebraic concepts and use algebraic notation somewhat earlier than 
commonly supposed. There may be no need for algebra education to wait a supposed 
"transition period" after arithmetic. As others have shown (Carpenter & Franke, 2001; 
Carpenter & Levi, 2000; Schifter, 1999), there are many opportunities for introducing 
algebraic concepts into the curriculum during the early years of mathematics educa- 
tion. Moreover, we also show, as Bodanskii (1991) and Davis (1971-1972) did before 
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us, that it is possible to introduce algebraic notation in the early grades. Our data 
further expand our understanding of how young children come to appropriate algebra 
notation as they represent open-ended problems, and we provide examples of how 
the teaching and learning of arithmetic operations can be related to functions. 

Lest we give the mistaken impression that any mathematical concept can be 
learned at any time, let us set the record straight. By arguing that the algebraic char- 
acter of arithmetic deserves a place in early mathematics education, we are not 
denying the developmental nature of mathematical skills. Number concepts, the 
ability to use algebraic notation, to interpret graphs, model situations, and so forth, 
develop over the course of many years. Even in so "simple" an area as additive struc- 
tures, children need to be able to reify differences so that they can be treated as bona 
fide quantities with their own properties and subject to arithmetical operations. 
Children who are just beginning to work with addition and subtraction may inter- 
pret a statement such as "Tom is 4 inches taller than Maria, and Maria is 6 inches 
shorter than Leslie" as meaning that one of the children is 4 inches tall while another 
is 6 inches tall (Carraher, Schliemann, & Brizuela, 2000; Schliemann, Carraher, & 
Brizuela, in press). They may confuse a height with a difference between two 
heights. When children get beyond this issue, this does not signify that they will 
no longer have troubles with additive differences. When one changes the context 
to one about money or introduces a number line, new problems arise (for example, 
"How does a difference in heights manifest itself when two line segments are used 
to represent people's heights?"). Thompson (1993) found that fifth-grade students 
may confuse second-order additive differences ("the differences between the 
heights of two brother-sister pairs") with first-order differences ("the differences 
between a brother and sister"). Issues involving concepts as rich as additive differ- 
ences, ratio and proportion, division, and so on, crop up again and again in the course 
of one's life, and it would be naive to assume that the challenges are conquered, 
once and for all, at a particular moment in time, least of all, when one learns how 
to perform calculations with addition and subtraction in early schooling. One could 
take a pessimistic view of such a conclusion: We will never cease to stumble when 
confronted with variations of mathematical problems that we have encountered 
before. But this same situation provides reason for hope, for it signifies that the 
schemes that have begun their evolution very early in life, perhaps as early as when 
a baby begins to play with nesting cups, will later prove useful to tasks that they 
were never designed to handle but which nonetheless succumb to metaphorical 
opportunism. 

Early Algebra Education is by no means a well-understood field. Surprisingly 
little is known about children's ability to make mathematical generalizations and 
to use algebraic notation. As far as we can tell, at the present moment, not a single 
major textbook in the English language offers a coherent algebrafied vision of early 
mathematics. We view algebrafied arithmetic as an exciting proposition, but one 
for which the ramifications can only be known if a significant number of people 
undertake systematic teaching experiments and research. It may take a long time 
for teacher education programs to adjust to the fact that the times have changed. 
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We hope that the mathematics education community and its sources of funding 
recognize the importance of this venture. 
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