Measurements of Past Ice Sheet Elevations in Interior West Antarctica

Robert P. Ackert Jr.,* David J. Barclay,‡ Harold W. Borns Jr.,§ Parker E. Calkin,† Mark D. Kurz,‡ James L. Fastook,§ Eric J. Steig¶

A lateral moraine band on Mount Waesche, a volcanic nunatak in Marie Byrd Land, provides estimates of past ice sheet surface elevations in West Antarctica. Helium-3 and chlorine-36 surface exposure ages indicate that the proximal part of the moraine, up to 45 meters above the present ice surface, was deposited about 10,000 years ago, substantially later than the maximum ice extent in the Ross Embayment. The upper distal part of the moraine may record multiple earlier ice sheet high stands. A nonequilibrium ice sheet model predicts a delay of several thousand years in maximum ice levels at Mount Waesche relative to the maximum ice extent in the Ross Sea. The glacial geologic evidence, coupled with the ice sheet model, indicates that the contribution of the Ross Sea sector of the West Antarctic Ice Sheet to Holocene sea level rise was only about 3 meters. These results eliminate West Antarctic ice as the principle source of the large meltwater pulse during the early Holocene.

Knowledge of the past configurations and behavior of the West Antarctic Ice Sheet (WAIS) is necessary to calibrate glaciological models that attempt to predict future responses of the ice sheet and to quantify the contribution of the Antarctic ice sheets to eustatic sea level rise during the last deglaciation. Outlet glaciers in the Transantarctic Mountains were once dammed by thick grounded ice in the Ross Embayment, where only a floating ice shelf occurs today (1). In the McMurdo Sound region, 14C and surface exposure ages on drift deposited by ice grounded in the Ross Sea date to the last glacial maximum (LGM) (2). Geophysical mapping of the Ross Sea floor (3) and 14C ages on sediments overlying till (4) demonstrate that grounded ice extended up to the continental shelf break at the LGM, over 1000 km beyond the present grounding line. In contrast to its extent, direct evidence for the interior elevation of the WAIS has been quite uncertain. An ice sheet model constrained by the evidence from the Ross Embayment, trimlines in the Ellsworth Mountains, and stratigraphic and topographic evidence from the Hobbs coast suggests that ice sheet domes in West Antarctica were 450 to 600 m higher during the LGM (5). However, the age of the trimlines and stratigraphic unconformities, and this reconstruction may overestimate interior elevations (5). Total gas content from the Byrd ice core, which is largely a function of past atmospheric pressure (elevation of the site) (6), has been interpreted as indicating that ice elevations were ~200 m lower (7) and 40 to 500 m higher (8) during the LGM and early Holocene. Byrd core δ18O data imply that ice elevations were ~500 m higher during the LGM (9). Here, we present new surface exposure ages from a lateral moraine band at Mount Waesche that directly date the most recent ice highstand in interior West Antarctica.

Mount Waesche is the southernmost volcano in the Executive Committee Range, a line of volcanoes that projects through the WAIS in Marie Byrd Land (Fig. 1). Regional ice flow is southward from a dome centered on the northern Executive Committee Range, where ice...
end of the ice-cored moraine northwestern for
-3 km along the base of the volcano. The
moraine varies in width from 150 to 300 m and
generally increases in elevation to the north-
west, rising irregularly to a maximum height of
120 m above the present ice margin. Like the
ice-cored moraine, the lateral moraine band
is composed of locally derived volcanic rocks.
The rocks are primarily basalts containing pla-
gioclase, olivine, and clinopyroxene. Clasts are
subangular to angular and are typically <25 cm
in length; no striated or glacially molded clasts
were observed. We infer that the lateral morai-
nes are composed of tephra and volcanic debris
erupted onto the surface of the ice sheet (11).
One difference between the ice-cored mo-
naire and the higher lateral moraine band is
that the latter is composed primarily of basalt frag-
ments rather than pyroclastic debris. The great-
er abundance of basalt clasts on the higher
moraine surface may have resulted from lavas
that flowed out over the ice surface, along the
ice margin, or from preferential weathering of the
more erodible pyroclastic debris.

The uppermost surface of the distal section of
the lateral moraine band occurs locally as a
terrace 20 to 30 m wide, roughly parallel to the
present ice margin. The relief is subdued and
rarely exceeds 1 m. Below this part, the mo-
naire surface consists of discontinuous subpar-
allel ridges up to 5 m high and 100 to 200 m
long that mark former ice margin positions. In
general, the surface of the upper distal section
of moraine is less hummocky than the lower
proximal section, and the ridges are longer.
Clast size is more uniform and smaller on the
upper distal part, and fluting of clasts due to
wind erosion (ventifactation) is most developed
there. The change in character of the moraine
surface from the upper distal to the more pro-
X
ximal parts of the lateral moraine band suggests
that the moraine band is a complex feature and
that the upper parts are older than the lower
parts. Although there is not a clear morphologic
break between the upper and lower parts, we
divide the lateral moraine band into higher dis-
tal and lower proximal sections on the basis of
the distribution of the surface exposure ages.

We collected samples for surface exposure
dating along two transects across the lateral
moraine band and from one isolated patch of
lateral moraine in a similar setting (12). Clasts
10 to 20 cm in diameter were collected away
from patterned ground and shattered boulders.
The presence of pedogenic salts beneath the
samples and ventifactation of the exposed sur-
faces were used as criteria for indicating the sur-
facial stability of the samples. In addition, sam-
ple were taken from in situ lava flow outcrops
above the moraines and from a large pile of
coarse tephra on the ice sheet surface (Fig. 2).

Surface exposure dating was used to constrain the age of the lateral moraine band (13). The surface exposure dating technique relies on the buildup of cosmogenic nuclides (\(^{10}\)Be, \(^{21}\)Ne, \(^{10}\)Be, \(^{36}\)Ar, and \(^{39}\)Cl) in rocks exposed to cosmic rays at Earth’s surface. These nuclides are formed primarily during spallation reactions between cosmic rays and major elements in the rock. A fundamental assumption is that accumulation of cosmogenic nuclides commenced at deposition on the moraine and has not been interrupted. In this case, the surface exposure age yields the age of moraine formation and the associated ice margin.

Erosion or shielding of a sample after deposition on a moraine would result in ages younger than the moraine. Exposure of cosmic rays before deposition would result in ages older than the moraine. Prior exposure in a surface exposure data set may be manifested by a scatter of ages older than a cluster of younger ages at or substantially older than the age anticipated on the basis of other age constraints.

At Mount Waesche, tephra and lava flows that erupted onto the ice sheet and were subsequently incorporated in glacial moraines are ideal for exposure dating, assuming that burial by ice is rapid and exposure after reemergence in the ablation zone is short.

Cosmogenic \(^{39}\)Ar was measured in 24 separates of olivine or clinopyroxene (or both) from 19 samples (14). Four whole-rock \(^{36}\)Cl measurements were made: two on porphyritic samples that also had \(^{39}\)Ar measurements and two on anaphyte basalts in which \(^{39}\)Ar measurements were not possible (Tables 1 and 2). In order to calculate surface exposure ages from measured concentrations of cosmogenic nuclides, production rates calibrated on surfaces of known age must be scaled to the elevation and latitude of the sample (15). An additional complication in Antarctica is that anomalous low atmospheric pressure (thinner atmospheric depth) results in production rates that are up to 20% higher than those at 60° latitude. In this study, the high-latitude sea level production rates for \(^{39}\)Ar (16) and \(^{36}\)Cl (17) were scaled to the appropriate Antarctic altitude (18).

In general, the exposure ages increase with distance from and elevation above the ice margin (Fig. 3). The youngest samples, from tephra exposed in the ablation area, have exposure ages of 100-900 years old and suggest that prior exposure is minimal. Two surface exposure ages [\(-360,000\) years ago (\(-360\) ka)] on lava flows are older than any sample from the moraine. The old lava flow ages indicate that erosion rates are low and suggest that mass wasting of material from the volcano slopes above has not supplied substantial amounts of debris to the lateral moraine band.

The paired \(^{39}\)Ar and \(^{36}\)Cl data can be used to evaluate erosion rates (Tables 1 and 2) (19, 20). Because the \(^{36}\)Cl production rate due to neutron capture on \(^{36}\)Ar increases downward within the uppermost 10 cm of rock, erosion effectively increases the \(^{36}\)Cl concentration at the surface. Low erosion rates \([<5 \text{ mm/Myr}]\) can result in apparent \(^{36}\)Cl surface exposure ages that are older than the true surface exposure age. The opposite effect occurs for \(^{39}\)Ar, which is produced by spallation reactions. Concordant ages only occur within a narrow range of erosion rates that are similar to those determined from other Antarctic studies (0.5 to 1 mm/ky) (21). The younger samples constrain erosion rates to \(<0.5 \text{ mm/ky (WA-4C-1)}\) and \(<5 \text{ mm/ky (WA-4D-1)}\), the high Cl concentration of the older samples makes the ages very sensitive to erosion rates even as low as these. Comparison of \(^{39}\)Ar and \(^{36}\)Cl ages from location WA-4B suggests that erosion of that sample is negligible.

The surface exposure ages on the seven samples from four localities within the lower proximal section of the moraine band (Fig. 3)
show, with one exception, similar ages. The sample nearest the ice margin (WA-3E-1) has an anomalously old age (∼50 ka), suggesting prior exposure, and was rejected. The mean of the other six samples is 9.0 ± 1.8 ka. There does not appear to be a relation between surface exposure age and position on the lower part of the moraine. The oldest and youngest samples were collected from the same location, so the younger samples do not simply represent progressive lowering of the ice margin. Rather, the samples with slightly younger ages possibly reflect postdepositional exhumation by frost action or erosion by boulder shattering (22). If the two younger samples are removed, the four remaining samples form a tight cluster of ages; the mean of these samples is 10.0 ± 0.6 ka and may be a better age estimate for the lower part of the moraine. The uncertainty in the mean is similar to the 2σ analytical uncertainty and the exposure ages of the samples from the ice surface. In either case, the mean ages indicate that the interior of the WAIS was up to 45 m thicker at ∼10 ka.

The exposure ages of the samples from the transects across the upper distal part of the moraine and from the isolated moraine outcrop (Fig. 2) vary from 10.8 to 231 ka along the moraine (Fig. 3). Because nonconcordant exposure ages occur at most sample locations and the ages do not cluster around some value (as is the case on the proximal part of the moraine), we do not assign an age to the upper section of the moraine band. The exposure ages are consistent with observations of surface morphology that indicate an older age for at least some parts of the upper distal section of the moraine band. The scatter of ages may reflect breakup of boulders after deposition, exhumation by frost action, or exposure of debris from the volcanic slopes, or record earlier WAIS high stand events. Cold-based ice can override surfaces without causing substantial disturbance. The surface exposure age of sample WA-3A-2, which falls within the age range of samples from the lower part of the moraine band, may indicate that WAIS elevations were up to 85 m above the present ice surface during the last ice sheet high stand.

The 818O record from the Byrd ice core indicates that the age obtained for the most recent ice sheet high stand at Mount Waesche falls near the end of a 3000-year period of strong warming in West Antarctica that culminated at the start of the Holocene (22). Grounding line retreat of the WAIS was well underway by ∼11 ka (4), and ice retreat in the McMurdo Sound region began by 14 ka (2). Apparently, maximum ice elevations around Mount Waesche occurred several thousand years after the maximum ice extent in the Ross Sea. This conclusion is consistent with results from a quasi-three-dimensional ice sheet model of the WAIS tuned to fit the available chronology of ice advance and deglaciation from the Ross Embayment. The model provides a finite element solution of a two-dimensional (mapplane) time-dependent mass continuity equation that integrates ice flow in a vertical column of ice (24, 25). In the model, the difference between the maximum elevation and that at the end of the model run at Mount Waesche is ∼40 m (Fig. 4).

Ice sheet growth and decay in this model is driven solely by changes in calving rates, which, to first order, simulate the effects of sea level change on the ice sheet. This simple approach is justified by results from more complex three-dimensional time-dependent thermomechanical ice sheet models, which suggest that eustatic sea level is the primary control on the configuration of the Antarctic Ice Sheet (26). In the model, the WAIS does not have sufficient time to equilibrate with its extended grounding line position during the LGM, consistent with other models (27). As a consequence, interior elevations continue to thicken during grounding line retreat until the initial wave of thinning reaches the interior of the ice sheet.

The similarity of the model results with the glacial geologic evidence at Mount Waesche may be serendipitous if a factor of 0.1 change in snow accumulation rates in the WAIS interior between the LGM and the Holocene, as indicated by ice core data (28), is included in the model, maximum elevations are lower and occur several thousand years later than what is observed. This implies that the current version of the model may overestimate the ice-dynamics response time to changes in boundary conditions, likely because of unrealistic simulation of ice stream dynamics (25). However, with accumulation held constant, the model produces an elevation history for interior West Antarctica that is in excellent agreement with elevation changes inferred for the Byrd ice core (8, 25).

The model time scale (years after the start of grounding line retreat) can be converted to calendar years by pinning the maximum ice elevations predicted at Mount Waesche to the age of the lower part of the moraine band (Fig. 4). The model results may then be used to constrain the timing and magnitude of Holocene ice volume changes in the Ross Sea sector of the WAIS. In the model, most ice is lost early (Fig. 5, line A). By ∼10 ka (3000 model years), only ∼3 m of excess sea level equivalent remains. Because the model accurately predicts ice levels at Mount Waesche, it is unlikely that the interior WAIS volume is substantially underestimated. Most of the remaining ice is released during a short pulse in the early Holocene (Fig. 5, line B).

These results have implications for the contribution of the WAIS to eustatic sea level rise during the last termination. The Antarctic Ice Sheet, and the WAIS in particular, has been suggested as the source of the two meltwater pulses responsible for the abrupt rises in sea level recorded in the Barbados coral record (29). The later of these two events, meltwater pulse 1B, refers to an ∼28 m of sea level rise in 1000 years at 11 ka. The ice mass responsible for meltwater pulse 1B is located in Antarctica in global models of deglaciation that are based on geophysical predictions of postglacial relative sea level change (ICE-3G and ICE-4G) (30). Our results indicate that there is insufficient ice remaining in the WAIS for it to be...
Past and Future Grounding-Line Retreat of the West Antarctic Ice Sheet

H. Conway,1 B. L. Hall,2,3 G. H. Denton,2 A. M. Gades,1 E. D. Waddington1

The history of deglaciation of the West Antarctic Ice Sheet (WAIS) gives clues about its future. Southward grounding-line migration was dated past three locations in the Ross Sea Embayment. Results indicate that most recession occurred during the middle to late Holocene in the absence of substantial sea level or climate forcing. Current grounding-line retreat may reflect ongoing ice recession that has been under way since the early Holocene. If so, the WAIS could continue to retreat even in the absence of further external forcing.

The grounding line of the WAIS has retreated nearly 1300 km since the Last Glacial Maximum (LGM) about 20,000 years before present (yr B.P.), when grounded ice in the Ross Sea Embayment extended almost to Coulman Island (F1–3) (Fig. 1). Complete collapse of the WAIS would cause sea level to rise 5 to 6 m. Estimates of the present stability of the WAIS are hampered by uncertainties in the overall mass balance (F4) and uncertainties concerning the dynamic response of the ice sheet to changes in sea level or climate. It is thought that it would take 10^6 years for the WAIS to reach equilibrium after a perturbation (F5), but accurate assessment is difficult because the dynamics of the present ice sheet is dominated by ice streams. Fast-flowing ice streams evacuate inland ice rapidly, but field evidence indicates that abrupt changes from fast to slow flow have occurred in the past (F6). We look to the deglacial history of the WAIS for clues about its future. Below we present dates from three locations, southern Scott Coast, Hatherton Coast, and Roosevelt Island (Fig. 1), that resolve the Holocene deglaciation of the Ross Sea Embayment.

At the LGM, outlet glaciers that flowed through the Transantarctic Mountains and across the coast thickened substantially where they merged with grounded ice filling the Ross Sea Embayment. Only along the southern Scott Coast adjacent to McMurdo Sound, 450 km south of Coulman Island, did the Ross Sea ice sheet terminate on land in the mouths of ice-free Taylor Valley and dry valleys fronting the Royal Society Range (Fig. 1). This peculiar situation arose because only here did East Antarctic ice and alpine glaciers terminate well inland, leaving the coast susceptible to incursions of landward-flowing grounded ice at the LGM. Over 200 14C dates of lacustrine algae from proglacial lakes (3, 7, 8), dammed in these valleys by grounded ice, show that the Ross Sea ice sheet was close to its LGM position from at least 27,820 to 12,880 calendar yr B.P. (9).

The grounding line was still north of McMurdo Sound 9420 yr B.P.; this date corresponds to the youngest delta of a proglacial lake dammed in Taylor Valley by grounded Ross Sea ice (3, 8). Two thousand years later, the McMurdo Sound region was free of grounded ice, based on two lines of evidence. First, molluscs reorganized the area after the

References and Notes

12. This research was supported by NSF grants OPP 89–18872 (H.W.B. and R.E.C.), OPP 94–18283, and EAR 94–14561 (MD.K.); the authors thank S. Murphy for assistance in sample preparation. D. Lott and J. Curtice for maintaining the mass spectrometer, and L. Woodward for drafting figures. D. Dunbar provided samples, differential GPS elevations, and valuable discussion. G. Wiles, C. Dorion, and T. Redfield assisted in the fieldwork. This is Woods Hole Oceanographic Institution contribution #10020.
13. 16 july 1999; accepted 9 september 1999.

280