EXS 511 ADVANCED STATISTICAL APPLICATIONS IN EXERCISE SCIENCE
SUNY Cortland
Kinesiology Department

Course Information
Credit Hours: 3.0
Semester/Year: Spring 2011
Class Location: Moffett 127 (PRST 1135)
Texts Required:
Text – Recommended

Professor Information
Instructor: Joy L. Hendrick, Ph.D.
Phone: (607) 753-5707
Office Location: PRST 1154
Office Hours: M 3:00 – 5:00 pm, F 8:30 - 10:00 am; Others by appointment please
Email: Joy.Hendrick@cortland.edu
Web: http://facultyweb.cortland.edu/hendrick

COURSE DESCRIPTION:
(C) This is an advanced course in statistics with applications in exercise science. Content includes a review of basic descriptive and inferential statistics, plus coverage of multiple-factor and repeated measures ANOVA, post-hoc tests, multivariate analysis of variance, analysis of covariance, multiple regression, canonical analysis and factor analysis. Computerized statistical analyses are imbedded throughout the course. Prerequisites: EXS 201 or MAT 201 or PSY 201 or COM 230 or ECO 221 or HLH 299 or PED 434 or equivalent. (3 cr. hr.)

COURSE ATTENDANCE POLICY:
Class attendance is required, however, students will not be penalized for having one unexcused absence. Afterwards, there will be up to a letter-grade deduction on the final grade for each additional absence. Illness, travel, appointments, coaching obligations and court appearances are some examples of unexcused absences. Hospitalization, death in the immediate family, away SUNY Cortland athletic contests are examples of excused absences. No handouts, notes or assistance will be given for material distributed or covered during an unexcused absence (or an excused absence without prior, written notification). Students are 100 percent responsible for all work missed, regardless of the type of absence. In the event of extreme winter weather, students should refer to the college home page (www.cortland.edu) in the mid afternoon to see if cancellation notices are posted. Otherwise, students should assume the classes will be held.

EVALUATION OF STUDENT PERFORMANCE:
Requirements and Evaluation:
I. Examinations (5 quizzes at 12% each; 20% final exam)
 67%
II. Assignments (5-7)
 33%
Total
 100%
ASSIGNMENTS: No assignments/handouts will be given out after the class session in which they were distributed, unless previous arrangements had been made. All written work will be collected at the beginning of class on the day it is due (or by another specified date and time). No late work will be graded for credit. All work due on the day of an excused absence is still expected to be turned in on time, unless previous arrangements have been made. Each student is expected to submit his/her own work, including calculations and computer assignments (refer to the section in the College Handbook on Academic Dishonesty). Minimum requirements for passing course include: completion of 80% of all written work, and passing grades on at least two-thirds of the exams (including the final exam).

EXPECTATIONS: For student success, expectations include: coming prepared to all classes, staying up-to-date by studying all assignments and practicing with SPSS on campus (this equates to at least 5-6 hours of out-of-class time between each class session, with additional time for studying before each exam), turning in all assignments on-time, and seeking help and asking questions as soon as problems arise. SPSS practice involves creating data files, redoing class analyses and those in the text and experimenting with other options. Unfortunately, SPSS is only available on-campus.

TECHNOLOGY: There is a computer component to this course. Students will be learning and using statistical software (SPSS) to organize and analyze data. Specific computer assignments will be required throughout the semester. Support will be provided for instruction on running the associated software. Students are encouraged to use computers (either in one of the campus computer labs or one’s personal computer) to enhance the quality of their written assignments. Students are also encouraged to obtain on-campus email accounts and to frequently check their email. Announcements and reminders may be distributed via email to the class at various times throughout the semester. Occasionally in class, references to web sites will be made. Therefore, students should be familiar with how to use the Internet. Class notes and handouts will be uploaded in a timely fashion on the class web site: http://web.cortland.edu/hendrick/exs511.htm Students will need to supply a flash drive (recommended, however U: drive space is available as well) and bring SUNY Cortland ID to class in order to print in the computer lab.

ACADEMIC INTEGRITY: The College is an academic community, which values academic integrity and takes seriously its responsibility for upholding academic honesty. All members of the academic community have an obligation to uphold high intellectual and ethical standards. For more information on academic integrity and how academic dishonesty can occur, please refer to the College Handbook, the College Catalog, the Code of Student Conduct and Related Policies, the following web site http://www.cortland.edu/copyright/ or ask your instructor. All work submitted for this class must be each student's own work. Any work submitted (in part or whole) that is not unique will be considered plagiarized and will be treated as such per academic policy. This includes, but is not limited to, material retrieved from references; therefore proper documentation of cited material (using quotation marks with associated page numbers) in APA is a must!

STUDENTS WITH DISABILITIES: SUNY Cortland is committed to upholding and maintaining all aspects of the federal Americans with Disabilities Act of 1990 (ADA) and Section 504 of the Rehabilitation Act of 1973. If you are a student with a disability and wish to request accommodations, please contact the Office of Disability Services located in Van Hoesen Hall or call (607)753-2066 for an appointment. Any information regarding your disability will remain confidential. Because many accommodations require early planning, requests for accommodations should be made as early as possible.
OBJECTIVES OF THE COURSE:

The student will be able to:
1. exhibit an understanding of statistical concepts and techniques that are consistent with contemporary and valid research in the field of exercise science.
2. effectively organize data and accurately calculate appropriate statistics for specific research applications.
3. build on past knowledge of statistics to enhance understanding and ability to make applications of various statistical techniques.
4. exhibit knowledge of how to analyze and interpret data using current appropriate technology.
5. understand the difference between planned and post-hoc comparisons and to conduct each analysis effectively to arrive at accurate conclusions.
6. develop a working knowledge of statistics to effectively interpret literature in exercise science.
7. interpret performance data in order to make appropriate and relevant conclusions.

COURSE OUTLINE:

I. Review of Basic Descriptive Statistics
 A. Organizing Data
 B. Central Tendency
 C. Variability
 D. Correlation

II. Comparing Means
 A. T-tests
 B. Factorial ANOVA
 C. Repeated Measures ANOVA
 D. Mixed ANOVA
 E. Post-hoc and planned comparisons
 F. Omega-squared

III. Relationships among Variables
 A. Regression
 B. Multiple Regression
 C. Canonical Analysis

IV. Advanced Techniques
 A. Analysis of Covariance
 B. Multivariate Analysis of Variance
 C. Discriminant Analysis
 D. Factor Analysis

V. Research-related Measurement Issues
 A. Reliability
 B. Validity
 C. Other
Tentative Course Outline

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic(s)</th>
<th>Assigned Readings/Assignments*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 25</td>
<td>Introduction</td>
<td>TN&S – Chapters 1 & 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 1</td>
</tr>
<tr>
<td>Feb. 1</td>
<td>Review of descriptive Statistics</td>
<td>TN&S – Chapters 7 & 9 (pp 147 - 157)</td>
</tr>
<tr>
<td></td>
<td>Probability Theory, T-tests</td>
<td>SPSS – Chapters 2, 3 & 5</td>
</tr>
<tr>
<td>Feb. 8</td>
<td>Effect Size, Correlation</td>
<td>TN&S – Chapter 8 (pp. 125-138)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 6</td>
</tr>
<tr>
<td>Feb. 15</td>
<td>Quiz 1; ANOVA</td>
<td>TN&S – Chapter 9 (pp. 157-167)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 8 (pp. 201-221)</td>
</tr>
<tr>
<td>Feb. 22</td>
<td>Repeated measures ANOVA</td>
<td>TN&S – Chapter 9 (pp. 168-170)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 8 (pp. 222-237)</td>
</tr>
<tr>
<td>Mar. 1</td>
<td>Quiz 2; Mixed ANOVA</td>
<td>SPSS – Chapter 8 (pp. 238-255)</td>
</tr>
<tr>
<td>Mar 8</td>
<td>Multiple Regression</td>
<td>TN&S – Chapter 8 (pp. 139-141)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 9</td>
</tr>
<tr>
<td>Mar 22</td>
<td>Quiz 3; Multiple regression cont.</td>
<td>“</td>
</tr>
<tr>
<td>Mar. 29</td>
<td>Nonparametrics</td>
<td>TN&S – Chapter 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 4 & 7</td>
</tr>
<tr>
<td>Apr. 5</td>
<td>MANOVA</td>
<td>TN&S – Chapter 9 (pp. 174-178)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 10 (pp. 296-306)</td>
</tr>
<tr>
<td>Apr. 12</td>
<td>Quiz 4; Covariance</td>
<td>TN&S – Chapter 9 (pp. 171-172)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 10 (pp. 283-295)</td>
</tr>
<tr>
<td>Apr. 19</td>
<td>Discriminant and Factor Analyses</td>
<td>TN&S – Chapter 9 (pp. 173-174), p. 142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – Chapter 11, 12</td>
</tr>
<tr>
<td>Apr. 26</td>
<td>Quiz 5</td>
<td>“</td>
</tr>
<tr>
<td>May 3</td>
<td>Power Analysis</td>
<td>SPSS- pp. 10-11; G*Power</td>
</tr>
<tr>
<td>May 10</td>
<td>Issues of Reliability and Validity</td>
<td>TN&S – Chapter 11 (pp. 193-204)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSS – pp. 368-373</td>
</tr>
<tr>
<td>May 17</td>
<td>Final Exam</td>
<td>“</td>
</tr>
</tbody>
</table>

*TN&S refers to Thomas, Nelson & Silverman (2005); SPSS refers to Brace, Kemp & Snelgar (2009)
Additional readings and articles may also be assigned

jh s11
EXS 511 Supplemental References

