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Abstract: The study of fractals arising as attractors of IF'S’s became an
area of practical importance thanks to Mandelbrot’s fundamental insight
that many natural objects have some self similarity and Barnsley’s insight
that it is possible to begin with a shape and determine an IFS whose
attractor converges onto that shape . A number of artificial as well as
natural fractals and their possible IFS’s will be investigated using java

applets that are freely available on the Web.



AFFINE TRANSFORMATIONS:

An affine transformation is of the form
T a b T e
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f(p=(00)(0)+(5)

or

x\, [ rcos(@) —ssin(¢) T e
f(( y )) o ( rsin(f)  scos(g) y + f
e r and s are the scaling factors in the x and y directions resp.

e 0 and ¢ measure rotation of horizontal and vertical lines resp.

e ¢ and f measure horizontal and vertical translations resp.

It can be easily shown that:
o’ =a’+ 02,
o 52 =17+ d°
e 0 = arctan(c/a), and

e ¢ = arctan(—b/d).
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For example, shears are represented as follows:

B/

,/ ........ )AI ................
ok B
D A

=

Yy =2x+y

Shear in the y direction
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FINDING IFS RULES FROM IMAGES OF POINTS

Given three non-collinear initial points p; = (z1,v1),p2 = (T2,¥2),p3 =
(x3,y3) and three image points ¢; = (ug, v1), g2 = (ug, v2),q3 = (us, v3) re-
spectively. Find an affine transformation 7" such that T'(p1) = ¢1, T (ps) =
q2, and T'(p3) = gs.

r(oh=(e0)(0)+(5)

Now Using p1, p2, p3 and their images we arrive at the following six equa-

Recall that,

tions in six unknowns:

axry + by + e = uy
cry +dyr + f =
axy + bys + e = uy
cry +dys + [ = v9
axs + bys + e = ug
cxs +dys + f = v3

This system has a unique solution if and only if the points p1, p2, and p3

are noncollinear.



Example: The Seirpinskit Triangle
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m(3 )= (5 2)(2)+ ()
w3 )= (5 2)-(2) ()
w3 =3 2)(2) ()
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Example: The Seirpinski Carpet
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The IFS for the Seirpinski carpet is {14, 15, T3, Ty, T5, T, T, T3} where
x 333 0 x 0
iy )= (7% ) (5)+ (0)
x ..333 0 x 333
w5 )= (%0 ) (5) (%)

(2= (%5 ) (2)+(
T i )= '333 .332 ' ;j + .332
(2 (%5 ) (2)+ (5
Tl i )= .333 .332 ' z + .662
(2= (%5 2) () (2
(2= (%5 ) (2)+ (2



Example: A simple tree
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Demonstrate some of the java applets at

http://classes.yale.edu/fractals/Software /Software.html

Discuss the IFS for the Fern.
Discuss the IEFS for the mountain range.

Discuss the IEFS for the Wave.




ITERATED FUNCTION SYSTEMS:

An [terated Function System in R? is a collection {Fy, F, ..., Fy} of con-
traction mappings on R2. (F; is a contraction mapping if given x,y then
d(Fi(z), Fi(y)) < sd(x,y) where 0 <s<1)

The Collage Theorem says that there is a unique nonempty compact
subset A C R? called the attractor such that

A= Fi(A)UFR(A) U...UFy(A)

Sketch of Proof:

Given a complete metric space X, let H(X) be the collection of nonempty
compact subsets of X. Given A and B in H(X) define d(A, B) to be the
smallest number r such that each point of in A is within r of some point
in B and vice versa. If X is complete so is H(X).

d(A,B) =2

Given an IFS on X, define G : H(X) — H(X) by
G(K)=F(K)U...UFyN(K)

If each Fj is a contraction then so is G. The contraction mapping theorem
says that a contraction mapping on a complete space has a unique fixed
point. Hence there is A € H(X) such that

G(A) = A= F(A) UFy(A)U...UFy(A)

Given Ky C R?, let K,, = G"(Kjy). Then

Snd(Ko, G(KQ))
1—s

Hence K, is a very good approximation of A for large enough n.

d(A, K,) <
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To understand the previous result note that:

d(A, K()) = d( hm Kn,K())
= A, o)
S hm d(K(), Kl) + d(Kl, KQ) + -+ d(Kn_l, Kn)
< lim d(Ko, K1) + sd(Ko, Ky) + -+ - + 8" d(EKo, K1)
1
< 7, A Ky
Hence,
1 S
d(A, K;p) < TS d(K1, Ky) < . d(Ky, K1)
A s
<
d(A, Kz) < 7— X d(K2, K3) < 57— . d(Ko, K1)

Determinastic Algorithm: (Slow!)
Given Ky, let K,, = G"(Kj). Now K,, — A and n — oc.

Random Algorithm: (Fast)

Given @y € Ko, let Q41 = Fj(Q;) where Fj is chosen with probability
pj from all of the F;. Clearly @); € K; and for sufficiently large i, @Q); is
arbitrarily close to some point in A.

‘thAZ| \azdz — bzczl
N pr—

N .
Z |d6tAz‘ Z |azdl — bzcz\
=1 =1

Choose p; ~

Geometrically, choose p; “proportional to F;.”
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How do these algorithms work:

333

331 332

313 323

311 312 321 322

133 233

131 132 231 232

113 123 213 223
111 112 121 122 211 212 221
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