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Modeling a process or a system as a Markov Chain offers an excellent tool for its performance 

evaluation and for the study of different factors that can run it astray. In this talk we will present 

four examples of modeling Covid-19 problems as Markov Chains: (1) the trajectory of Covid-19 

infected patients into an ICU, and up to their death; (2) assuming that the virus will infect a large 

part of the population, thus preventing further community spread and yielding Herd 

Immunization; (3) study of the Re-opening of Colleges under Covid-19 using a Markov Chain 

defined over a nine element state space that moves  through a set of Transient states, 

eventually leading to two Absorbing States: Expulsion or Coursework; (4) assessing different 

patterns of vaccination, which may affect achieving (or not) Herd Immunity: polls suggesting 

that a significant number of people are not inclined to become vaccinated.   

Summary 



Advantages 

Stochastic Modeling allows us to:

• Establish the directions of the transitions

• Obtain the system performance for 

specified transition rates

• Find appropriate state transition rates to 

obtain specified system performance

• Play the “what if” game with the system



A Markov Chain model to study the spread of the Covid-19 virus 

https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for

_Covid-19_Survival_Analysis

*This Markov Chain is intended to illustrate the power that Markov modeling offers 

to Covid-19 studies. This article models the trajectory of Covid-19 infected patients 

into an ICU, and up totheir death through a Markov Chain. We first consider a simple 

three-state, recurrent model. Itssteady state probabilities are obtained for an efficient 

and an inefficient system and we compare.We then include additional absorbing 

states, to account for more complex situations. Using TPM 

we obtain the (1) probability of death of a Patient; and using their sojourns in the 

different states,(2) their expected time to death. The results are useful in establishing 

(1) logistic requirements ofhealth care units, to provide excellent patient care, and (2) 

some objective Triage procedures, ifever such extremes are required. This Markov 

Chain tutorial has been, by far (i.e. by the numberof hits in its LinkedIn and 

ResearchGate web pages) our most read Covid-19 stats report. 

https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-19_Survival_Analysis
https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-19_Survival_Analysis


Modifying the Covid-19 Example

◼ Substitute contexts with industrial examples.

◼ State Diagrams and rates are the same.

◼ Calculations and numerical results are same.

◼ Interpretations now within industrial context.

◼ Everything else also stands.



First Example: Repairable Systems

◼ Assume you have a repairable system

◼ With three recurring states:

◼ Up/Full Operation

◼ Degraded Operation

◼ Down/Failed State

◼ Assume Device is fixed to Degradable state

◼ Starts operating again and continues repair

◼ Eventually may become Fully Operational

◼ Or may again Fail and cycle repeats

◼ Time step is One Day



Markov Chain State Space 

Diagram Over a Simple 

Three-element state space: 

(0) Operating, (1) 

Degraded and (2) Failed. 

Transition Probability Matrix P for Three State Markov Chain 
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Case (Rates) Long-run Operating Degraded Failed System  

Efficient (5%) Probabilities 0.545 0.273 0.182

Efficient (5%) Times Between 1.834 3.667 5.50

Inefficient 

(10%)

Probabilities 0.387 0.322 0.290

Inefficient 

(10%)

Times Between 2.583 3.099 3.444

Comparisons of two-systems performance measures:

Efficient system: transition probability  (Degraded) is 0.05 and 

that of remaining Failed (State 2) is 0.7.

Ineficient system: transition probability  (Degraded) is 0.1 and 

that of remaining Failed (State 2) is 0.8.

For Efficient System: T0 =1/ π0 =1/0.545= 1.834;T1 = 1/ π1 = 3.667; T2 = 1/ π2 = 5.50;



Second Example: One Shot Device 

◼ Assume you have a working Hospital

◼ On-Line Electrical Power from Company Service

◼ If On-Line Electrical Power Fails, then 

◼ Off-Line Hospital Power Generators take over

◼ Two generators provide Full Service

◼ If One Off-Line Generator fails, Degraded Service

◼ If Both Generators Fail, final option kicks in:

◼ Emergency Generator takes over (Degraded)

◼ If this generator fails, then System Fails.



Markov Chain over five states

 (1)   (2)   (3)   (4)   (5)

0.93  0.07  0.00  0.00  0.00   (1); System working On-Line

0.05  0.80  0.10  0.05  0.00   (2): Off-Line, Fully operational (2)

0.00  0.15  0.80  0.05  0.00   (3): Off-Line, Degraded (1 Unit)

0.00  0.00  0.05  0.80  0.15   (4): Emergency Unit only

0.00  0.00  0.00  0.00  1.00   (5): Failed System (absorbing state)

(1)      (2)      (3)       (4) 

26.1905  16.6667  10.0000  6.66667

11.9048  16.6667  10.0000  6.66667

 9.5238  13.3333  13.3333  6.66667

 2.3810   3.3333   3.3333  6.66667

Matrix inverse (I-Q)-1 of the Transient States:

Sojourns in Trans. States Before Absortion.



Markov Chain State Space Diagram
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Starting State for the System Average Time to System Failure 

From Initial System On-Line Time = 26.19 + 16.66 + 10.00 + 6.66 = 

59.52 days

From Off-Line Time (Two Units) = 16.67 +10 + 6.67 = 33.34 days

From Off-Line Time (One Unit) = 10.00 + 6.66 = 16.66 days

From the Time of connecting the 

Emergency Unit only

= 6.66 days

Average Time, System On-Line = 26.19 days

Average times to Failure from all transient states



Starting State Two Days Four 

Days

Eight 

Days

Sixteen 

Days

Initial On-Line 

Generator

0.000 0.002 0.018 0.098

From Off-Line 

(Two Units)

0.007 0.036 0.118 0.282

From Off-Line 

(One Unit)

0.007 0.038 0.127 0.307

From Emergency 

Unit only

0.270 0.444 0.636 0.780

Probabilities of System Failure, starting from any of the transient states



On-Line Off-Line 

(Two U.)

Off-Line 

(One Unit )

Emergency Failed 

System

On-Line 0.96 1.0 0.75 1.0 1.0

Off-Line (2 

Units)

0.45 0.94 0.75 1.0 1.0

Off-Line (1 

Unit)

0.36 0.8 0.92 1.0 1.0

Emergency 

Unit only

0.09 0.2 0.25 0.85 1.0

Failed 0.0 0.0 0.0 0.0 1.0

Probability of System ever reaching any state from another one



A Two-Absorbing-States Markov Chain to study the problem of Covid-19 Herd 

Immunization 

 

https://www.researchgate.net/publication/343345908_A_Markov_Model_to_Study_C

ovid-19_Herd_Immunization  

This second Markov model assumes that the virus will infect a large part of the 

population, thus preventing further community spread and yielding Herd 

Immunization. Our previous Markov Chain assumed there was neither a vaccine nor a 

treatment for Covid-19. Also that, if current infection rates remained unchecked, 

everyone would eventually die. This paper assumes thatCovid-19 survivors become 

immune, thence, cannot become re-infected. There is much debate about employing 

Herd Immunity as an alternative solution for combating Covid-19. Our Markov Chain 

quantitatively analyzes such situation. The model obtains (1) the probability of a 

Patient death or immunization. Also, the (2) expected times to death (or to 

immunization) when startingfrom different states in the Space (which can be used in 

Triage situations). Transition rates canhelp compare efficient and inefficient 

strategies, as well as help establish an acceptable infectionrate. Times spent in a State 

(Sojourn) help estimate the required size of health care facilities thatwill treat patients. 

Statistics models help answer many health questions, as well as to compare the 

performance of different public health strategies, in a more objective, way.  



Markov Chain for Herd Immunization 
Over an eight-element State Space: 

(0) Covid-19 Immunized population 

 (an absorbing state); 

(1) Non Infected persons in the General Population; 

(2) Infected persons 

 (but asymptomatic; i.e. not known to be such); 

(3) Infected persons Detected and Isolated; 

 (after symptoms, or Covid-19 tests positive)

(4) Hospitalized patients 

 (after becoming ill with Colvid-19); 

(5) Patients in the ICU (very sick); 

(6) Patients in a Ventilator (critical);

(7) Patient Death 

 (an absorbing state) 
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Markov Chain State Space Diagram 



State;Immune;UnInfected;Infected;Isolated;Hospital;ICU;Ventilator;Dead

   0   1.0  0.00     0.00      0.0      0.0    0.0    0.0     0.0

   1   0.0  0.96     0.04      0.0      0.0    0.0    0.0     0.0

   2   0.2  0.05     0.40      0.2      0.2    0.0    0.0     0.0

   3   0.2  0.05     0.00      0.6      0.2    0.0    0.0     0.0

   4   0.0  0.00     0.00      0.1      0.8    0.1    0.0     0.0

   5   0.0  0.00     0.00      0.0      0.3    0.3    0.3     0.1

   6   0.0  0.00     0.00      0.0      0.1    0.3    0.3     0.3

   7   0.0  0.00     0.00      0.0      0.0    0.0    0.0     1.0

Markov Chain Transition Probability Matrix



Starting State for any 

Individual

Average Time to Pass Away 

(Die )

From Time of Initial 

Infection (undetected)

=1.667+2.22+5.556+ 

0.972+0.417=10.83 days

From the Time of 

Infection/Isolation

=3.889+5.556+0.972+0.4167

=10.83 days

From the Time of 

Hospitalization

=11.11+1.94+0.83 = 13.9 

days

From the Time of entering 

an ICU

=2.91667 + 1.25000 = 4.17 

days

From the Time of entering a 

Ventilator

2.08 days

Average times to death from each of the transient states



Starting 

State

Probability of 

Dying

Probability 

Immunization

Uninfected 0.222222  0.777778

Infected/und

etected

0.222222  0.777778

Infected/Isol

ated

0.222222  0.777778

Hospitalized 0.444444  0.555556

In ICU 0.666667  0.333333

On Ventilator 0.777778  0.222222

Probability of Dying or Becoming Immune, 

Starting from a Transient State



A Markov Chain to study the problem of Re-opening Colleges under Covid-19 

 

https://www.researchgate.net/publication/343825461_A_Markov_Model_to_Study_C

ollege_Re-opening_Under_Covid-19 

This Markov Model studies the dilemma of Re-opening Colleges under Covid-19. We 

analyze the situation using a Markov Chain defined over a nine element state space 

that moves through aset of Transient states, eventually leading to two Absorbing 

States: Expulsion or Coursework Completion. The model, due to its specific State 

Spaces and transition probabilities is very usefulto compare reopening plans. Through 

the infection (transition) rates we study their impact on the probabilities of Expulsion 

and Course Completion. Differing infection rates depend on student compliance with 

community public health measures such as face covering, social distancing, etc.By 

assigning different values to these rates, their impact can be assessed and compared. 

Once updated and fine tuned (or rebuilt) Markov models can be used by college 

authorities to re-assessand improve their reopening plans, by faculty and students, to 

assess their risks in such openings, and by governments, to assess the validity and 

safety of such plans, thus allowing or proscribing them.  



Markov Chain for College Reopening

over a nine-element State Space

(1) Arrival to Campus and Covid- 19 testing; 

(2) Infected students go into Isolation units; 

(3) Some students are placed in Presential courses;

(4) Other students are placed in Distance Learning courses; 

(5) Some students who violated Code are placed in Suspension; 

(6) Some students become infected with Covid-19, 

  but are not detected as such;

(7) Some students violate code but are not detected;

(8) Absorption: Some students are Expelled from College

(9) Absorption: Other students Complete their Semester
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Markov Chain State Space Diagram



Markov Chain Transition Probability Matrix

St.  1    2       3      4      5       6       7       8      9.

1 0  0.05  0.35  0.6  0.00  0.00  0.00  0.00  0.0

2 0  0.70  0.20  0.0  0.05  0.00  0.00  0.05  0.0

3 0  0.00  0.80  0.0  0.00  0.05  0.05  0.00  0.1

4 0  0.00  0.00  0.8  0.00  0.05  0.05  0.00  0.1

5 0  0.00  0.10  0.1  0.70  0.00  0.00  0.10  0.0

6 0  0.50  0.00  0.0  0.00  0.30  0.00  0.00  0.2

7 0  0.00  0.00  0.0  0.70  0.10  0.00  0.20  0.0

8 0  0.00  0.00  0.0  0.00  0.00  0.00  1.00  0.0

9 0  0.00  0.00  0.0  0.00  0.00  0.00  0.00  1.0



Starting State Probability of 

Expulsion

Probability of 

Completion

Arrival 0.216839  0.783161

Infected 0.384030  0.615970

Presential 0.208039  0.791961

Distance 

Learning

0.208039  0.791961

Suspension 0.472026  0.527974

Infected but 

undetected

0.274307  0.725693

Probability of Expulsion or Completion, 

Starting from a Transient State



A Markov Model to Assess Covid-19 Vaccine Herd Immunization Patterns 

https://www.researchgate.net/publication/347441411_A_Markov_Model_to_Assess_

Covid-19_Vacine_Herd_Inmunization_Patterns 

The Markov model assesses different patterns of vaccination, which may affect 

achieving (ornot) Herd Immunity. The urgency of this paper stems from polls 

suggesting a significant number of people are not willing to become vaccinated. Herd 

Immunity can be acquired by (a) letting thevirus infect most of the population. 

Weaker ones (the elderly, those with co-morbidities etc.) willdie) and those surviving 

will become immunized; alternatively, (b) by vaccinating a large part ofthe general 

population. Vaccination carries two aspects: one individual and the other social. First, 

the vaccine protects the individual. Secondly, if enough individuals in the general 

population are vaccinated, the activity has an effect over the Pandemic. With few new 

customers to infect, the virus starves and disappears. By changing the vaccination 

parameters (e.g. infection rates, participation and immunization percentages), model 

results will differ, allowing the comparison of different public health strategies. 



Markov Models can be improved by modifying their state space, 

transition rates and/or transition directions, among other 

modifications. 

Alternatively, models can be used as an illustration or to assess 

and improve engineering plans, or to assess their risks when 

participating in such plans, 

Changing transition rates in the Markov Chain helps study how 

they affect absorption probabilities and thus compare efficient 

and inefficient plans, as well as to help establish an acceptable 

community infection rate 

Conclusions
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