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Introduction
Most statistical methods assume an underlying distribution in
the derivation of their results. However, when we assume that
our data follow a specific distribution, we take a serious risk.
If our assumption is wrong, then the results obtained may be
invalid. For example, the confidence levels of the confidence
intervals (CI) or hypotheses tests implemented [2, 7] may be
completely off. Consequences of mis-specifying the distribu-
tion may prove very costly. One way to deal with this prob-
lem is to check the distribution assumptions carefully.

There are two main approaches to checking distribution
assumptions [2, 3, and 6]. One involves empirical procedures,
which are easy to understand and implement and are based on
intuitive and graphical properties of the distribution that we
want to assess. Empirical procedures can be used to check and
validate distribution assumptions. Several of them have been
discussed at length in other RAC START sheets [8, 9, and 10]. 

There are also other, more formal, statistical procedures for
assessing the underlying distribution of a data set. These are
the Goodness of Fit (GoF) tests. They are numerically con-
voluted and usually require specific software to perform the
lengthy calculations. But their results are quantifiable and
more reliable than those from the empirical procedure. Here,
we are interested in those theoretical GoF procedures spe-
cialized for small samples. Among them, the Anderson-
Darling (AD) and the Kolmogorov-Smirnov (KS) tests stand

out. This START sheet discusses the former of the two; the
latter (KS) is discussed in [12].

In this START sheet, we provide an overview of some issues
associated with the implementation of the AD GoF test, espe-
cially when assessing the Exponential, Weibull, Normal, and
Lognormal distribution assumptions. These distributions are
widely used in quality and reliability work. We first review
some theoretical considerations to help us better understand
(and apply) these GoF tests. Then, we develop several numer-
ical and graphical examples that illustrate how to implement
and interpret the GoF tests for fitting several distributions.

Some Statistical Background
Establishing the underlying distribution of a data set (or ran-
dom variable) is crucial for the correct implementation of some
statistical procedures. For example, both the small sample t test
and CI, for the population mean, require that the distribution of
the underlying population be Normal.  Therefore, we first need
to establish (via GoF tests) whether the Normal applies before
we can correctly implement these statistical procedures.

GoF tests are essentially based on either of two distribution
elements: the cumulative distribution function (CDF) or the
probability density function (pdf). The Chi-Square test is
based on the pdf.   Both the AD and KS GoF tests use the
cumulative distribution function (CDF) approach and there-
fore belong to the class of "distance tests."

We have selected the AD and KS from among the several dis-
tance tests for two reasons. First, they are among the best dis-
tance tests for small samples (and they can also be used for
large samples).  Secondly, because various statistical packages
are available for both AD and KS, they are widely used in prac-
tice.  In this START sheet, we will demonstrate how to use the
AD test with the one particular software package - Minitab.

To implement distance tests, we follow a well-defined series
of steps. First, we assume a pre-specified distribution (e.g.,
Normal). Then, we estimate the distribution parameters (e.g.,
mean and variance) from the data or obtain them from prior
experiences.  Such a process yields a distribution hypothesis,
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also called the null hypothesis (or H0), with several parts that
must be jointly true. The negation of the assumed distribution (or
its parameters) is the alternative hypothesis (also called H1). We
then test the assumed (hypothesized) distribution using the data
set. Finally, H0 is rejected whenever any one of the elements
composing H0 is not supported by the data.

In distance tests, when the assumed distribution is correct, the the-
oretical (assumed) CDF (denoted F0) closely follows the empiri-
cal step function CDF (denoted Fn), as conceptually illustrated in
Figure 1.  The data are given as an ordered sample {X1 < X2 < ...
< Xn} and the assumed (H0) distribution has a CDF, F0(x).  Then
we obtain the corresponding GoF test statistic values.  Finally, we
compare the theoretical and empirical results.  If they agree (prob-
abilistically) then the data supports the assumed distribution. If
they do not, the distribution assumption is rejected.

Figure 1.  Distance Goodness of Fit Test Conceptual Approach

The test has, however, an important caveat.  Theoretically, dis-
tance tests require the knowledge of the assumed distribution
parameters.  These are seldom known in practice. Therefore,
adaptive procedures are used to circumvent this problem when
implementing GoF tests in the real world (e.g., see [6], Chapter
7).  This drawback of the AD GoF test, which otherwise is very
powerful, has been addressed in [4, 5] by using some implemen-
tation procedures.  The AD test statistics (formulas) used in this
START sheet and taken from [4, 5] have been devised for their
use with parameters estimated from the sample.  Hence, there is
no need for further adaptive procedures or tables, as does occur
with the KS GoF test that we demonstrate in [12].

Fitting a Normal Using the Anderson-Darling
GoF Test
Anderson-Darling (AD) is widely used in practice. For example,
MIL-HDBKs 5 and 17 [4, 5, and 2], use AD to test Normality
and Weibull. In this and the next section, we develop two exam-
ples using the AD test; first for testing Normality and then, in the
next section, for testing the Weibull assumption.  If there is a

need to test for Lognormality, then log-transform the original
data and use the AD Normality test on the transformed data set.

The AD GoF test for Normality (Reference [5] Section 8.3.4.1)
has the functional form:

(1)

where F0 is the assumed (Normal) distribution with the assumed
or sample estimated parameters (µ, σ); Z(i) is the ith sorted, stan-
dardized, sample value; “n” is the sample size; “ln” is the natu-
ral logarithm (base e) and subscript “i” runs from 1 to n.  

The null hypothesis, that the true distribution is F0 with the
assumed parameters, is then rejected (at significance level α =
0.05, for sample size n) if the AD test statistic is greater than the
critical value (CV).  The rejection rule is:

Reject if:  AD > CV = 0.752 / (1 + 0.75/n + 2.25/n2)

We illustrate this procedure by testing for Normality the tensile
strength data in problem 6 of Section 8.3.7 of [5].  The data set,
(Table 1), contains a small sample of six batches, drawn at ran-
dom from the same population.

Table 1.  Data for the AD GoF Tests

To assess the Normality of the sample, we first obtain the point
estimations of the assumed Normal distribution parameters:
sample mean and standard deviation (Table 2).

Table 2.  Descriptive Statistics of the Prob 6 Data

Under a Normal assumption, F0 is normal (mu = 315.8, sigma =
14.9).

We then implement the AD statistic (1) using the data (Table 1)
as well as the Normal probability and the estimated parameters
(Table 2).  For the smallest element we have: 
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Table 3 shows the AD statistic intermediate results that we com-
bine into formula (1).  Each component is shown in the corre-
sponding table column, identified by name.

Table 3.  Intermediate Values for the AD GoF Test for
Normality

The AD statistic (1) yields a value of 0.1699 < 0.633, which is
non-significant: 

Therefore, the AD GoF test does not reject that this sample may
have been drawn from a Normal (315.8, 14.9) population.  And
we can then assume Normality for the data.

In addition, we present the AD plot and test results from the
Minitab software (Figure 2).  Having software for its calculation
is one of the strong advantages of the AD test. Notice how the
Minitab graph yields the same AD statistic values and estima-
tions that we obtain in the hand calculated Table 3.  For exam-
ple, A-Square (= 0.17) is the same AD statistic in formula (1). In
addition, Minitab provides the GoF test p-value (= 0.88) which
is the probability of obtaining these test results, when the
(assumed) Normality of the data is true. If the p-value is not
small (say 0.1 or more) then, we can assume Normality. Finally,
if the data points (in the Minitab AD graph) show a linear trend,
then support for the Normality assumption increases [9].

The AD GoF test procedures, applied to this example, are sum-
marized in Table 4.

Finally, if we want to fit a Lognormal distribution, we first take
the logarithm of the data and then implement the AD GoF pro-
cedure on these transformed data. If the original data is
Lognormal, then its logarithm is Normally distributed, and we
can use the same AD statistic (1) to test for Lognormality.

Figure 2.  Computer (Minitab) Version of the AD Normality Test

Table 4.  Step-by-Step Summary of the AD GoF Test for
Normality

Fitting a Weibull Using the Anderson-Darling
GoF Test
We now develop an example of testing for the Weibull assump-
tion.  We will use the data in Table 5, which will also be used for
this same purpose in the implementation of the companion
Kolmogorov-Smirnov GoF test [12]. The data consist of six
measurements, drawn from the same Weibull (α = 10; β = 2)
population.  In our examples, however, the parameters are
unknown and will be estimated from the data set.

Table 5.  Data Set for Testing the Weibull Assumption

We obtain the descriptive statistics (Table 6).  Then, using graph-
ical methods in [1], we get point estimations of the assumed
Weibull parameters: shape β = 1.3 and scale α = 8.7.  The
parameters allow us to define the distribution hypothesis:
Weibull (α = 8.7; β = 1.3).

3

i X F(Z) ln F(Z) n+1-i F(n+1-i) 1-F(n1i) ln(1-F)
1 294.2 0.072711 -2.62126 6 0.938310 0.061690 -2.78563
2 308.5 0.311031 -1.16786 5 0.678425 0.321575 -1.13453
3 313.1 0.427334 -0.85019 4 0.550371 0.449629 -0.79933
4 317.7 0.550371 -0.59716 3 0.427334 0.572666 -0.55745
5 322.7 0.678425 -0.38798 2 0.311031 0.688969 -0.37256
6 338.7 0.938310 -0.06367 1 0.072711 0.927289 -0.07549
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• Sort Original (X) Sample (Col. 1, Table 3) and standardize:  Z =
(x - µ)/σ 

• Establish the Null Hypothesis:  assume the Normal (µ, σ) distri-
bution

• Obtain the distribution parameters:  µ = 315.8; σ = 14.9 (Table 2)
• Obtain the F(Z) Cumulative Probability (Col. 2, Table 3)
• Obtain the Logarithm of the above: ln[F(Z)] (Col. 3)
• Sort Cum-Probs F(Z) in descending order (n - i + 1) (Cols. 4 and 5)
• Find the Values of 1- F(Z) for the above (Col. 6)
• Find Logarithm of the above: ln[(1-F(Z))] (Col. 7)
• Evaluate via (1) Test Statistics AD = 0.1699 and CV = 0.633
• Since AD < CV assume distribution is Normal (315.8, 14.9)
• When available, use the computer software and the test p-value

11.7216 10.4286 8.0204 7.5778 1.4298 4.1154
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Table 6.  Descriptive Statistics

The Weibull version of the AD GoF test statistic is different from
the one for Normality, given in the previous section. This
Weibull version is explained in detail in [2, 5] and is defined by:

(2)

where Z(i) = [x(i)/θ*]β* and where the asterisks (*) in the Weibull
parameters denote the corresponding estimations. The OSL
(observed significance level) probability (p-value) is now used
for testing the Weibull assumption. If OSL < 0.05 then the

Weibull assumption is rejected and the error committed  is less
than 5%. The OSL formula is given by:

OSL = 1/{1 + exp[-0.1 + 1.24 ln (AD*) + 4.48 (AD*)]}

To implement the AD GoF test, we first obtain the corresponding
Weibull probabilities under the assumed distribution H0.  For
example, for the first data point (294.2):

Then, we use these values to work through formulas AD and
AD* in (2). Intermediate results, for the small data set in Table
5, are given in Table 7.
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Table 7.  Intermediate Values for the AD GoF Test for the Weibull

Row DataSet Z(i) WeibProb Exp-Z(i) Ln(1-Ez) Zn-i+1 ith-term
1 1.430 0.09560 0.091176 0.908824 -2.39496 1.47336 0.64472
2 4.115 0.37789 0.314692 0.685308 -1.15616 1.26567 1.21092
3 7.578 0.83566 0.566413 0.433587 -0.56843 0.89967 1.22342
4 8.020 0.89967 0.593296 0.406704 -0.52206 0.83566 1.58401
5 10.429 1.26567 0.717949 0.282051 -0.33136 0.37789 1.06387
6 11.722 1.47336 0.770846 0.229154 -0.26027 0.09560 0.65242

The AD GoF test statistics (2) values are: AD = 0.3794 and AD*
= 0.4104.  The value corresponding to the OSL, or probability of
rejecting the Weibull (8.7; 1.3) distribution erroneously with
these results, is OSL = 0.3466  (much larger than the error α =
0.05). 

Hence, we accept the null hypothesis that the underlined distri-
bution (of the population from where these data were obtained)
is Weibull (α = 8.7; β = 1.3).  Hence, the AD test was able to rec-
ognize that the data were actually Weibull.  The GoF procedure
for this case is summarized in Table 8.

Table 8.  Step-by-Step Summary of the AD GoF Test for the
Weibull

Finally, recall that the Exponential distribution, with mean α, is
only a special case of the Weibull (α; β) where the shape param-
eter β = 1. Therefore, if we are interested in using AD GoF test
to assess Exponentiality, it is enough to estimate the sample
mean (α) and then to implement the above Weibull procedure for
this special case, using formula (2).

There are not, however, AD statistics (formulas) for all the dis-
tributions. Hence, if there is a need to fit other distributions than
the four discussed in this START sheet, it is better to use the
Kolmogorov Smirnov [12] or the Chi Square [11] GoF tests.

A Counter Example
For illustration purposes we again use the data set ‘prob6’ (Table
1), which was shown to be Normally distributed. We will now
use the AD GoF procedure for assessing the assumption that the
data distribution is Weibull.  The reader can find more informa-
tion on this method in Section 8.3.4 of MIL-HDBK-17 (1E) [5]
and in [2].

We use Weibull probability paper, as explained in [1] to estimate
the shape (β) and scale (α) parameters from the data.  These esti-

• Sort Original Sample (X) and Standardize: Z= [x(i)/θ*]β* (Cols. 1
& 2, Table 7).

• Establish the Null Hypothesis: assume Weibull distribution.
• Obtain the distribution parameters:  α = 8.7; β = 1.3.
• Obtain Weibull probability and Exp(-Z) (Cols. 3 & 4).
• Obtain the Logarithm of 1- Exp(-Z)  (Col. 5).
• Sort the Z(i) in descending order (n-i+1) (Col. 6).
• Evaluate via (1): AD* = 0.4104 and OSL = 0.3466.
• Since OSL = 0.3466 > α = 0.05, assume Weibull (α = 8.7; β = 1.3).
• Software for this version of AD is not commonly available.

Variable N Mean Median StDev Min Max Q1
Data Set 6 7.22 7.80 3.86 1.43 11.72 3.44

AD)n0.2/  (1  *AD and +=
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Table 10.  Step-by-Step Summary of the AD GoF Test for the
Weibull

Summary
In this START Sheet we have discussed the important problem
of the assessment of statistical distributions, especially for small
samples, via the Anderson Darling (AD) GoF test. Alternatively,
one can also implement the Kolmogorov Smirnov test [12].
These tests can also be used for testing large samples. We have
provided several numerical and graphical examples for testing
the Normal, Lognormal, Exponential and Weibull distributions,
relevant in reliability and maintainability studies (the
Exponential is a special case of the Weibull, as is the Lognormal
of the Normal). We have also discussed some relevant theoreti-

cal and practical issues and have provided several references for
background information and further readings. 

The large sample GoF problem is often better dealt with via the
Chi-Square test [11].  It does not require knowledge of the dis-
tribution parameters - something that both, AD and KS tests the-
oretically do and that affects their power. On the other hand, the
Chi-Square GoF test requires that the number of data points be
large enough for the test statistic to converge to its underlying
Chi-Square distribution - something that neither AD nor KS
require. Due to their complexity, the Chi-Square and the
Kolmogorov Smirnov GoF test are treated in more detail in sep-
arate START sheets [11 and 12].
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Table 9.  Intermediate Values for the AD GoF Test for the Weibull

ith xi zi exp(-zi) ln(1-exp) n+1-i z(n+1-i) ith-term
1 294.2 0.249228 0.779402 -1.51141 6 0.769090 0.29344
2 308.5 0.364332 0.694661 -1.18633 5 0.522213 0.77533
3 313.1 0.410129 0.663565 -1.08935 4 0.460886 1.24957
4 317.7 0.460886 0.630725 -0.99621 3 0.410129 1.69995
5 322.7 0.522213 0.593206 -0.89945 2 0.364332 2.13249
6 338.7 0.769090 0.463434 -0.62257 1 0.249228 2.55137

• Sort Original Sample (X) and standardize: Z= [x(i)/θ*]β* (Cols. 1
& 2, Table 5).

• Establish the Null Hypothesis: assume Weibull distribution.
• Obtain the distribution parameters:  α = 350; β = 8.
• Obtain the Exp(-Z) values (Col. 3).
• Obtain the Logarithm of 1 - Exp(-Z )  (Col. 4).
• Sort the Z(i) in descending order of (n-i+1) (Cols. 5 and 6).
• Evaluate via (1):  AD*=2.92 and  OSL = 6xE-7.
• Since OSL = 6xE-7 < α = 0.05, reject assumed Weibull (α = 350;

β = 8).
• Software for this version of AD is not commonly available.
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mations yield 8 and 350, respectively, and allow us to define the
distribution hypothesis H0:  Weibull (α = 350; β = 8). 

We again use the same Weibull version [5] of AD and AD* GoF
test statistics (2) to obtain the OSL value, as was done in the pre-
vious section. And as before, if OSL < 0.05 then the Weibull
assumption is rejected and the error committed is less than 5%.

As an illustration, we obtain the corresponding probability
(under the assumed Weibull distribution) for the first data point
(294.2).

Then, we use these values to work through formulas AD and
AD* in (2). Intermediate results, for the small data set in Table
1, are given in Table 9.

The AD GoF test statistics (2) values are AD = 2.7022 and AD*
= 2.9227.  The corresponding OSL, or probability of rejecting
Weibull (8, 350) distribution erroneously, with these results is
(OSL = 6xE-7) extremely small (i.e., less than α = 0.05).  

Hence, we (correctly) reject the null hypothesis that the under-
lined distribution (of the population from where these data were
obtained) is Weibull (α = 350; β = 8). As we verify, the AD test
was able to recognize that the data were actually not Weibull.
The entire GoF procedure, for this case, is summarized in Table
10.
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