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Introduction

There is a fundamental difference between the approaches
used to perform statistical and reliability analyses of non-
maintained (some times called “one-shot”) and those used
for maintained systems. Non-maintained systems either ful-
fill their missions (by surviving beyond mission time) or fail
it (by perishing before the mission is completed). In contrast,
maintained systems can be repaired (maintained) and put
back into operation. During “maintenance,” however, the
system is “down” and unavailable for its intended use. This
situation changes the analysis approach because maintenance
introduces the related and new concept of “availability” (that
the system will be “up” and “available” for use, when need-
ed, in lieu of undergoing maintenance). The main objective
of this START sheet is to help engineers better understand
the meaning and implications of the statistical methods used
to develop performance measures (PM) for assessing system
“availability” (A).

We start by reviewing some relevant definitions. RAC’s
Reliability Toolkit defines availability as “a measure of the
degree to which an item is in an operable state at any time.”
It defines “maintainability” as “a measure of the ability of an
item to be retained in, or restored to, a specified condition,
when maintenance is performed using prescribed procedures
and technician skill levels.”

From these definitions, we can deduce that system availabil-
ity is a probabilistic concept. It is based on the system life
(X), arandom variable (RV). Since the system can fail at any
random time, availability is also based on a second RV: the
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maintenance time (Y). We calculate their “long run aver-
ages” (i.e., results obtained as time goes to infinity, t — o) or
“expected values” and denote them respectively E(X) and
E(Y). E(X) is the expected system life or the up time, often
measured as “Mean Time Between Failures” (MTBF). E(Y)
is the expected maintenance time (which includes the activi-
ties of fault isolation, repair or removal and function check),
often measured as “Mean Time To Repair” (MTTR).

The random nature of system life (X) and maintenance times
(Y) demands the use of statistics for obtaining system PM.
Therefore, we need to redefine Availability in statistical
terms. Hoyland et al (Reference 1), for example, define
“availability at time t”, A(t), as “the probability that the sys-
tem is functioning at time t”. If we call X(t) the “state” of a
system at time “t” (which can be either “up” and running
[X(t) = 1], or “down” and failed [X(t) = 0]), then this defini-
tion of A(t) can be written as:

A(t) =P{X(T)=1};t>0

The availability concept becomes even more complex when
we realize that it is divided into several classes. For exam-
ple, Blanchard (Reference 2) states that “availability may be
expressed differently, depending on the system and its mis-
sion” and defines three types:

1. Inherent availability (A;) is the probability that a system,
when used under stated conditions ... will operate satis-
factorily at any point in time, as required. A; excludes
preventive maintenance, logistics, and administrative
delays, etc.

o MTBF

' MTBF + MTTR

2. Achieved availability (A,) is the probability that a sys-
tem when used under stated conditions ... will operate
satisfactorily at any point in time. A, includes preven-

tive maintenance but excludes logistics and administra-
tive delays, etc.

3. Operational availability (A,) is the probability that a sys-
tem when used under stated conditions ... will operate
satisfactorily when called upon. A, includes all the fac-
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tors that contribute to system downtime for all reasons (i.e.,
maintenance actions and delays, access, diagnostics, active
repair, supply delays, etc.). We call it Mean Down Time
(MDT).

MTBM

° " MTBM + MDT

Notice that, as opposed to A(t), these formulae do not include
any reference to a random time “t”. The reason is that they are
based on the “long run averages” of the system life (X) and
maintenance times (Y) and, hence, about the “long run average”
(or expected) Availability. To better understand this statistical
concept, consider the whole cycle of “up-time plus maintenance”
(i.e., X +Y). The cycle repeats itself again and again, through-
out the entire system life, and constitutes the “totality” of possi-
bilities for the RV system state X(t) within a single cycle. Now
consider “system up-time” (X(t) = 1) as our “event” of interest.
Since the probability of any “event” is defined as the ratio of its
“favorable” to its “total” possibilities, we can state that the “long
run availability” A is:

Favorable Cases _ Up Time

A =P(System Up) =

Total Cases Cycle Time

UP(X(t)=1);ast - o

Since we are not interested in the “up-time” during a specific
cycle but in the long run (t - o), we substitute Up (X) or Down
(Y) times by their respective long run averages, E(X) and E(Y).
For example, if a system has MTBF = 500 hours and MTTR =
30 hours we obtain:

A=A =P(X(@)=1} =
MTBF 500 _ o0

" MTBF+MTTR 500 +30

Finally, we must select which Availability definition we want to
discuss. The three classes of “availability” differ only in their
respective definition scope. For example, in A;, Inherent
Availability, the average up-time (MTBF) includes only design
and manufacturing failures, and the average maintenance (MTTR)
only includes active repair time. In Operational availability, aver-
age up-time (MTBM) includes all downing events, whatever the
cause (e.g., design or manufacturing failure, induced failure, pre-
ventive maintenance event, etc.), and average maintenance
(MDT) includes all possible downtime (Reference 3).

Without diminishing the practical importance and impact of the
differences, the conceptual treatment of availability, from a
strictly statistical point of view, is similar in all these cases.
Their parameters, “expected values” (and perhaps even the dis-

tributions of the variables involved) may change, and with them,
also the interpretation and form of their results. However, such
differences will not modify the basic statistical philosophy used
for obtaining them, nor the concepts on which their approaches
rest. Since the main objective of this START sheet is helping the
engineer better understand such statistical philosophy and
approaches, we will consider all three cases as a single one and
adopt the nomenclature given previously for A; when referring
and dealing with availability.

In the remainder of this START sheet, we first overview and give
numerical examples of the statistical treatment of the availabili-
ty of a simple, repairable system in discrete times. Then, we will
consider the case of a simple, repairable, parallel redundant sys-
tem, comparing two different statistical modeling and analysis
approaches. We will illustrate these approaches by developing
more numerical examples, performing systems analyses, and
comparing their results. Finally, we will mention several ways
to improve system availability and provide additional bibliogra-
phy for further study of these topics.

Statistical Models for Simple Systems
(Up/Down) and Interpretation

In the Introduction, the “long run average” Availability was
obtained as the ratio of the “long run averages” of Up-Time to
Cycle Time. However, Availability is a (cycle) RV itself. Hence,
like any other RV, it has its own distribution, density function,
etc. In this section, we overview a statistical model that
describes Availability (A) as the RV resulting of the algebraic
combination of the RV “time between failures” (X) and the RV
“time to repair” (Y), at every cycle. In the following section, we
describe Availability as a two-state, discrete time Markov Chain.
The objective for presenting two contrasting models is to
enhance the understanding of different statistical approaches, so
engineers can better use them and get meaningful results from
their implementation. We will briefly illustrate their mathemat-
ical derivations using a practical example. In For Further Study,
we reference documents that provide more in-depth information
on the subject.

We start by defining random variable (cycle) Availability as the
following ratio:

X.
A; :—I;Xi,Yi >0,i=1,..,n
X;+Y;

The problem of obtaining the “density function” or statistical
description of A is resolved using a variable transformation of
the joint distribution of the Availability (A) and of some other
convenient function (denoted B), of time between failures X and
time to repair Y, such as B(X, Y) =X+ Y.

Assume that system times between failures and to repair (X and
Y) are independent of each other and Exponentially distributed,




with mean 1 = MTBF = MTTR = 1 hour. Hence, their individ-
ual density functions are f1(X) = Exp (-X) and f5(Y) = Exp (-Y).
Their joint density function, denoted f(X, Y), is just the product
of the two individual Exponential densities, since both (failure
and repair) times X and Y are independent of each other.
Therefore:

f(X,Y)=11(X)x f5 (Y) =Exp{-X} x Exp{-Y} = Exp{-(X +Y)}

Define the (cycle) Availability function A(X, Y) = X/(X + Y).
Define auxiliary function B(X, Y) = X + Y. Then, their inverse
functions are X =W (A, B)=ABand Y=Z (A, B)=B (1 - A).
Finally, obtain the matrix of the partial derivatives of the invers-
es W (A, B) and Z (A, B) and denote it J (W, Z). To derive the
joint distribution g(A, B) of A and B, just substitute the values of
X and Y in the original joint distribution function f(X,Y), with
their inverses [X = W(A, B)=AB and Y = Z(A, B) = B(1 - A)]
and multiply this by the absolute value of the matrix of the par-
tial derivatives [J(W,Z)|=/B|. That is:

g(A,B)=f(AB;B(1- A))x [I(W, Z)|
=Exp{-(AB+B(1-A))} x [B|=BExp{-B}

This variable transformation yields the density of Availability.
For, density function g; (A) of the resulting system Availability
(A=X/(X+Y)) is just the “marginal distribution” of the above
derived, bivariate density function g (A, B).

Hence, the desired marginal (Availability density) is obtained by
integrating function g (A, B) out on B:

g1(A)=g %E:Ig(A,B)dB = [BExp{-B}db=1;
0

for0<A<1

Hence, g; (A) = 1 is the theoretical density of Availability and
corresponds to the density of the Uniform (0, 1). As a result, all
performance measures (PM) of interest, such as the expected
value, variance, percentiles, probabilities, etc., are now obtained
from the theoretical Uniform (0, 1) distribution parameters. For
the simple example given, where both times between failure (X)
and to repair (Y) are distributed Exponentially with mean Y =
MTBF = MTTR = 1, we obtain:

1. Expected Availability = E{Uniform(0,1)} = %2 =0.5.

2. Variance of Availability = Var {Uniform(0,1)} = 1/12 =
0.083.

3. Lo = Percentile of 10% of Availabilities = P{A < 0.1} =0.1.

4. First and Third Quartiles of Availability = 0.25 and 0.75.

The Uniform distribution is a special case of the Beta, which is
the general distribution of Availability when the failure and
repair times are exponentially distributed. Such theoretical
results allow us to obtain empirically the Availability distribution
via Monte Carlo (MC) simulation. To verify this for the results
just given, we generate n = 5,000 Exponentially distributed ran-
dom failure and repair times, X; and Y;, i =1, ..., n, with g =
MTBF = MTTR = 1. We then obtain the corresponding
Availabilities A; = Xi/( X; +Y;), sort them, and calculate the n =
5,000 results numerically, via MC.

The Expected Value is obtained from the sample average
(0.5067); the Variance, from the sample variance (0.0826).
Percentile L;, (Availability achieved 90% of the times) and all
other probabilities are obtained by manipulating the sorted ranks
of the total number of data points “n”, of the MC generated val-
ues. For example, L;, corresponds to the 500" sorted rank (10%
of the n = 5,000 MC data points) and yields a value 0.1048. The
quartiles are 0.2558 and 0.7559. Empirical and theoretical
results agree closely.

For Exponential means different than unit (W = MTBF = MTTR
# 1) the mathematical treatment is more difficult and we use the
Beta distribution, directly. For a more realistic example, we
reuse the example of times between failure (X) with 4 = MTBF
=500 hours, and to repair (Y) with L = MTTR = 30 hours. We
generate n = 5,000 random Beta values with parameters corre-
sponding to the said failure and repair times and obtain the
(cycle) MC Availabilities, A;. Results are given in Figure 1 and
Table 1.
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Figure 1. Histogram of Realistic Example

Table 1: Realistic Availability Results — MC Results for Beta
(500,30) Example:

Average Availability = 0.9435

Variance of Availability 9.92x107

Life Ly = 0.9305

Quartiles = 0.9370 and 0.9505
P{A>0.95} 0.2694

For example, the probability that the Availability is greater than
value 0.95, P{A > 0.95}, is obtained by looking at the sorted
rank corresponding to a MC Availability closer to 0.95: (A =




0.9499 — Rk =3,653). Then, we divide this Rank by n = 5,000
and subtract it from unit:

P{A >095}=1-P{A <0.95}=1- 2922 =1_0.7306 =0.2694

El

Markov Models for Simple Systems (Up/Down)
and Interpretation

Now, consider the previous problem, approached as a two-state
Markov Chain (References 4, 5, 6, and 7). Here we monitor the
“status” of the system at time T, denoted X(T), instead of its
“availability” A(T). Denote State 0 (Down) and State 1 (Up),
and assess the status X(T) of your system S every hour (T = 0,1,
...). Hence, X(T) = 0 means that system S was Down at time T
and X(T) = 1, that system S was Up at time T. We are interest-
ed in studying how the System S develops (transitions) over
time. That is, we want to know what is the probability q (or p)
that system S is Up (or Down) at time T, given that it was Down
(or Up) an hour earlier (at time T - 1). We represent this prob-
lem using the Markov Chain state diagram shown in Figure 2.
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Figure 2. State Diagram for System S
The transition probabilities are:

po1 =P{X(T) =1X(T-1)=0}=4q
p1o =P{X(T)=0X(T-1)=1}=p
poo =1-9
pi1=1-p

For example, let system S be Down at time T - 1. Then, either the
system is Up at time T, with probability g, or it will be Down with
probability 1 - q. If the system was Up at T - 1 then it is either
Down at T with probability p, or it is Up at T, with probability 1
- p. This occurs because there are only two possibilities (Up or
Down) for S at any given time T. The two state probabilities have
to add up to Unit. Let’s analyze this situation further.

Each time unit (hour) T, transitioned by system S, can be con-
sidered as an independent trial, and the probability p;; of moving
from i into the other state j, as the probability of “success”. For
example, let system S be in state Up. Then, moving to state
Down by one step with probability p;p = p = 0.002 yields a
Geometric distribution with Mean 4 = 1/p = 500 hours. If]
instead, system S is in state Down then, moving to state Up by
one-step (hour), with probability p,; = q = 0.033, yields a
Geometric, with Mean L = 1/q = 30 hours. These are the same
parameters of the “realistic” example of the previous section.

The Geometric distribution is the discrete counterpart of the con-
tinuous Exponential and, as the units of time T become smaller
(hours to minutes, seconds, etc.), the two distributions converge.
Therefore, this numerical example is equivalent to the one given
in the previous section, which used similar time parameters, and
will serve as a vehicle for comparison and contrast.

One important property of Markov Chains is their “lack of
Memory.” This means that only the system status at the imme-
diately previous time has any bearing on the status at the current
time, and every other past history goes into oblivion. In addi-
tion, these Markov Chains are time homogeneous (the transition
probabilities p;; do not change over time). Hence, it is enough to
know the “one-step state transition probabilities” or the proba-
bilities p;; of going from any state “i” to any other state “j”” in one
step, to resolve the problems.
Markov Chains can be represented by a “Transition Probability
Matrix” P, where rows represent every system state we can be in
at time T, and columns represent every other state we can go to,
in one step (i.e., where we will be, at T + 1). Entries of Matrix
P (pjj) correspond to the Markov Chain’s one-step transition
probabilities and must add up to unit, on every matrix row. For
our numerical example, the Transition Probability matrix P is:

States 0 1 States 0 1
0 (1-q Q= 0 (0.967 0.033)
1 (p 1-p) 1 (0.002 0.998)

If we need the probabilities of moving from one state to any
other, in two steps, we raise matrix P to the second power. For
example, moving from states Up to Down in two steps, entails
either moving from Up to Down in first step, and remaining in
Down state another step. Or it may entail first remaining Up for
one step, before moving from states Up to Down in the second
step. In matrix language, this is expressed in the following way:

q 4 DZZD'CI
I-pg @GP
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In our example, the p;o® result provides the probability that sys-
tem S is Down, if it was initially Up, after operating for two
hours (T =2): p1o®=p(l -q)+ (1 -p)p=0.003. The p;;® result
(probability that S is Up after 2 hours, given that it started Up)
can be obtained as one minus the probability that S is down, after
2 hours: p;;® =1 - p1p®. We can then interpret p;;® = A(T) =
0.997 as the system Availability, after T = 2 hours of operation,
if it started in state Up (at T = 0).

To obtain the probability of moving from one state to another in

n” steps, we raise the matrix P to the “nth” power (P"). For
example, the probability that S is Down after T = 10 hours




(steps) if it was initially Up, is p1o”"? = 0.017 (this includes that S
could have gone Down or Up, then restored, and this may have
occurred more than once during the T = 10).

For a sufficiently large “n” matrix P" yields quasi identical rows.
Results are interpreted as “long run averages” or limiting proba-
bilities “p;” of S being in the state corresponding to column “i”
These results are similar to the ones obtained using the Expected
Availability and Unavailability and the variable transformations
approaches. To obtain these limiting probabilities (i.e., to calcu-
late P") we need a practical result. For any two-state (e.g., Up,
Down) system, as the one described above, this practical method
is as follows.

_0-a amh__! mqo,(-p-9" 09 40
-pB " p+qB 98 p+q BP PO

€619

Then, for a sufficiently large “n”, the second term goes to zero

and the matrix P" reduces to:

Limit P! _ Limit H1 (p qU (1-p-q" h -q
= O— +~ ¥
n-o n"°°§p+q@3 18 p+q BPP

—[p+q qdpP+qO
D/p+q dp+Q

Verify, for our given numerical example, that the probability of
being in state Up at any arbitrary time T is g/(p + q) = 0.943, and
the probability of being in state Down, is p/(p + q) = 0.057.
These two “state occupancy rates”, E(X) and E(Y), can also be
interpreted as the percent of the time that the system S will spend
in states Up and Down.

A Markov Model for a Simple Redundant System

In Reference 8, we developed a statistical model for a non-main-
tained, simple redundant system, composed of two identical
devices in parallel. The approach was based on the two RV, cor-
responding to the two device lives. In this section we also ana-
lyze a simple redundant system composed of two identical
devices in parallel. The differences now are that we use a
Markov Chain approach, and that system S is maintained and
can function at a degraded level with only one unit. The advan-
tages of Markov modeling of system Availability, as will become
apparent from the numerical example that follows, increase as
the system becomes more complex (as also do the mathematics
behind the analyses involved).

Let, as before, X(T) be the state of the system at time T (= 0,1,2,

. hours). Let State 0 be the Down state, where both devices
have failed and one of them is being repaired. Let State 1 be the
Degraded state, where one device has failed and is being
repaired and the second is working (and the system is operable
but with lesser capabilities). Finally, let State 2 be the Up state,

where both units are operating and the system is working at full
capacity. The state diagram for this model is shown in Figure 3.

P()()

Figure 3. Markov Chain for Redundant System

The state equations are:

po1 =P{X(T)=1X(T-1)=0}=q
p1o =P{X(T)=0[X(T-1)=1}=p

p12 =P{X(T)=2X(T-1)=1}=¢q
pa1 =P{X(T)=1X(T-1)=2}=2p

pii =PIX(D=iX(T-1)=i}=1- 3 pj
i#l

As before, we can consider every step (hour) T as an independ-
ent trial, having probability of success p;; corresponding to the
feasible transitions from our current state “i” into state j = 0,1,2.
Hence, we can again think of the distribution of every change of
state (produced by the occurrence of a failure or a repair) as
being geometric, the discrete counterpart of the Exponential. It
will have “probability of success” p = pjj (corresponding to the
change into that state) and a mean time to accomplishing such
change of 1 = 1/pj;.

The transition probability matrix P for this model is given by:

States 0 1 2 2

0 Poo Por  Po2 0 1-q q 0
p=1 po  pu pr= 1 p 1pq ¢
2 pz() le pzz 2 O 2p 1-2

States 0 1

p

Rows must add to one (probability is unity because the system is
always in one of its three states). And, if we want to know the
probability p;™ of being in some state *j” after “n” steps, given
that we started in some state “i” of the system we raise matrix P
to the power “n” as we did before, and look at entry p;; of the
resulting matrix P". With the advent of modern computers and
math software, these operations are no longer tedious or difficult.

Modify the numerical example of previous section, now using
two units instead of one. The probability p of either unit failing




in the next hour is 0.002. The probability q of the repair crew
completing a maintenance job in the next hour is 0.033. Only
one failure is allowed in each unit time period, and only one
repair can be undertaken at a time.

With these new conditions, the probability that a degraded sys-
tem (State 1) remains degraded after two hours is the sum of the
probabilities corresponding to three events. First, that system
status has never changed. Second, that one unit is first repaired
and then another unit fails during the second hour. Third, that
remaining unit fails in the first hour (the entire system goes
down) then, a repair is completed in the second hour (system
goes up, at degraded level):

2 _ _ (2 _
P =[P x P]p —p%,) =Pp10Po1 * P11P11 * P12P21

=pq+(1-p-q)% +2pq
=0.002 x 0.033 +(1-0.035) +2x 0.002 x 0.033
=0.9314

We are also interested in the mean time that the system spends in
any given state. For example, System S can change to Up or
Down, from state Degraded, in one step, with probabilities p and
q. Hence, S will remain in the state Degraded with probability 1
-p-q. Then, on average, S will spend a “sejour” of length 1/{1
- -p-q} = 1/0.035 = 28.57 consecutive hours in the
Degraded state, before moving out to either Up or Down states.

Let’s now analyze “Availability at time T” = A(T) = P{S is
Available at T}. But this just means that system S is not Down
at time “T” (it can be Up or Degraded). In addition, S could have
initially been Up, Down or Degraded. Hence, A(T) depends on
the initial state of S (States 0,1,2), actual system availability
level (States 1,2) and time (T). Assume we are interested in S
being “Degraded Available” at T, given it was Degraded at T =
0: p;1™. Since for matrix P" every row has to add to unit, we can
obtain such Availability via:

T T T) _ T) _ T T
plo’ +pi1’ +piy’ =10 piy =1-pig -}y’

AM=P{X(T)=1| X(O) =1} =p{]) =1-p{p) -p})

We may instead be interested in “long run averages” or “state
occupancies”. These are the asymptotic probabilities of system
S being in each one of its possible states at any time T, or the per-
cent time spent in these states, irrespective of the state they were
in, initially. These results are obtained by considering the Vector
(denoted M) of “long run” probabilities:

|_| = %il’i‘lit [PI'Ob{X(T) = 0}, PI‘Ob{X(T) =1 }’ PI'Ob{X(T) — 2}]

[ee]

=(M1:M2:M3)

Vector [ fulfills two important properties that allow the calcula-
tion of such values:

[ee]

(1):MxP=11;2) 3 M; =15 with :[T; = K™ Prob(X(T) =i}
In plain English, I x P =TT (Vector N times the matrix P equals
IT) defines a system of linear equations, that are “normalized” by

the second property (that probabilities in the components of
Vector I add to Unit). For our example, we have the following.

[0.967 0.033 0 O

MxP=(o. M1, M2)x 0.002 0.965 0.0330=(o, M1, M2)
g 0 0.004 0.996F

0.967 o +0.002T = Mo
O .033[7g +0.965[11 +0.004[12 [11;

E 0.033[71 +0.996[12 =12

with 5 5 [T =g + M1 + 2 =1

The solution of this linear system of equations yields the long
run or asymptotic occupancy rates:

M=o, M1,M12)=(0.0065,0.1074,0.8861)

A I, = 0.8861 indicates that the system S is operating at full
capacity 88% of the time. A ;= 0.1074 means that S is oper-
ating at a Degraded capacity 10% of the time. Only Iy, the
probability corresponding to State 0 (Down state), is associated

with the system being Unavailable. The “long run” system
Availability is then: 1 - My =1 - 0.0065 = 0.9935.

Finally, we are also interested in the expected times for System
S to go Down if initially S was in State Up (denoted V) or
Degraded (V,), or in the average time S spent in each of these
states before going “Down”. We obtain them by assuming Down
is an “absorbing” state (one that, once entered, can never be left)
and solving the linear system of equations leading to all such
possible situations. That is, one step is taken at minimum (when
the system goes Down, directly). If S is not absorbed in one step,
then it will necessarily move on to any of other, non-absorbing
(Up or Degraded) states, with the corresponding probability, and
the process restarts.

Vi =1+p11V] +p12V2 =1+0.965V] +0.033V,

V) =1+py1 V] +p22Vy =1+0.004V] +0.996V,

Average times until System S goes down yield V| = 4,625 hours
(starting in state Degraded) and V, = 4,875 (starting Up). For
comparison, the non maintained system version referred to ini-
tially, would work an Expected 3/2A = 3/0.004 = 750 hours in
Up state, before going Down (Reference 8). The fact that main-




tenance is now possible, while S continues operating in a
Degraded state (with a single unit), results in an increase of /22
= 0.033/2 x 0.002*> = 4,125 hours in its Expected Time to go
Down (from Up). Verify that the new Expected Time is due to
the sum of Expected times to failures, plus maintenance: V, =
32N + W2N =750 + 4,125 = 4,875.

Model Extensions and Comparisons

We have seen how a stochastic process is just a R.V. X(T),
indexed in some parameter T called “time.” The processes
overviewed here are collectively known as “discrete time param-
eter” Markov Chains, because transitions only occur at regular
intervals (in our examples, every hour). Hourly time intervals
can be shortened (to minutes, seconds, etc.) and X(T) approxi-
mates a “continuous time parameter” Markov Chain (also known
as a Markov Processes) just like a Riemann sum approximates an
Integral.

We have not dealt with continuous time parameter Markov
Chains in this START sheet, because their mathematical treat-
ment requires using differential equations, Laplace Transforms
and other tools of advanced calculus and mathematics. The
objective of this START sheet is not to discuss mathematics, but
to convey important statistical principles to the engineer who
uses software and tools that implement them. The reader inter-
ested in learning more about these advanced methods is referred
to the sources in the Bibliography.

Reference (6), is a START sheet that discusses the mathematical
derivation of a simple continuous time parameter Markov Chain
and some uses. It is available on our web site at: <http://rac.
alionscience.com/pdf/MARKOV.pdf>. Reference 7, also dis-
cusses these models in more detail. Reference 5, Chapter 10, is
an older but classic reliability book that treats this problem at
introductory level. Reference 1, Chapter 6, is a recent textbook
that treats the subject extensively and in a more mathematically
advanced way. Reference 4, is a mathematics book about sto-
chastic modeling with a clear approach to the topic. Finally,
Reference 8 develops the system example used for comparison
here.

We have discussed extensively, however, the understanding and
use of several important statistical models. Among them,
Auvailability via RV transformation and via defining a Markov
Chain that represents the system as it moves through time. In
doing so, we have shown how different but complementary sta-
tistical modeling approaches provide different answers to differ-
ent types of problems and questions.

For example, if the problem is one of characterizing the RV
Availability (A) via finding a confidence interval, a percentile
(Life L,o) or the specific probability of some events (say, A >
0.9) then we may want to derive the distribution of A, directly.
Obtaining such theoretical distributions may not always be easy.

But then, one can resort to MC methods, which will provide
working approximations to the exact but unavailable solutions.

If the system is more complex, involving redundancy, degrada-
tion, etc. and one is more interested in asymptotic or steady state
results, we may want to implement a Markov model. PM such as
“long run” Availability (state occupancies), Expected time to fail-
ure, etc. can also be obtained as the system X(T) moves through
time. Markov Model assumptions (e.g., that distributions of times
to failure, to repair, etc. should be Exponential) are some times
unrealistic. But here too, one can resort to Monte Carlo methods.

Some software packages (e.g., BlockSim) implement some of
these models and methods. Knowledge of the mathematics
involved in model development is no longer necessary for the
engineer. But a better understanding of the nature and implica-
tions of the methods they implement provides a safer use of such
software packages.

Finally, it becomes clear that there are two ways of improving
Availability: either extending the system life or improving its
Maintainability. Logistics deals directly with the latter issue and
its implications. Due to its complexity, Logistics will be the
topic of a forthcoming START sheets.
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