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Introduction
Most statistical methods (of parametric statistics) assume an
underlying distribution in the derivation of their results (meth-
ods that do not assume an underlying distribution are called
non-parametric, or distribution free, and will be the topic of a
separate paper). 

When we assume that our data follow a specific distribution we
are taking a serious risk.  If the assumed distribution does not
hold then the confidence levels of the confidence intervals (CI)
or of the hypotheses tests implemented may be completely off
[5].  Consequences of incorrectly identifying the underlying
distribution may prove very costly. One way to deal with this
problem is to check distribution assumptions carefully.

There are two approaches to checking distribution assump-
tions.  One is via empirical procedures. These are easy to
understand and implement and are based on intuitive and
graphical properties of the distribution that we want to assess.
Such empirical procedures can be used to check and validate
distribution assumptions and have been discussed at length in
several other RAC START sheets [6, 7, 8, and 9]. 

There are also other, more formal procedures to assess the
underlying distribution of a data set.  These are the Goodness of
Fit (GoF) tests, based on statistical theory [3, 4].  They are
numerically convoluted and usually require specific software to
aid the user through their lengthy calculations.  But their results
are quantifiable and more reliable than the ones from the empir-
ical procedures. This paper discusses one of such theoretical
GoF procedures, for large samples:  the Chi-Square GoF test.

In what follows, we review some issues associated with the
implementation of the Chi-Square GoF test, especially when
assessing distribution assumptions for the Exponential,
Weibull, Normal, and Lognormal.  For, these distributions are
widely used in quality and reliability work.  We first review
some theoretical considerations that will help us better under-
stand (and use) the underlying statistical theory behind the
GoF tests.  Then, we develop several numerical and graphical
examples that illustrate how to implement and interpret the
Chi-Square GoF test for fitting several distributions.

Some Statistical Background
Establishing the underlying distribution of a data set or ran-
dom variable is crucial for the correct implementation of
some statistical procedures.  For example, deriving the test
and CI for the population MTBF requires knowledge about
the distribution of the lives of the device.  If the lives are
Exponential, things will be done one way; if they are Weibull,
they will be done differently.  Therefore, we first need to
establish the life distribution from the data, before we can cor-
rectly implement the test procedures.

The GoF tests are the statistical procedures that allow us to
establish whether an assumed distribution is correct. GoF
tests are essentially based on either of two distribution basics:
the cumulative distribution function, or CDF, and the proba-
bility density function or PDF.  Procedures based on the CDF
are called “distance tests” while those based on the PDF are
called “area tests” [3, 4].  The Chi-Square GoF test, which is
the topic of this paper, is an area test.

To assess data, we implement a well-defined scheme.  First,
assume that data follow a pre-specified distribution (e.g.,
Normal).  Then, we either estimate the distribution parameters
(e.g., mean and variance) from the data or obtained from prior
experience.  Such process yields the “composite” distribution
hypothesis (which has more than one element that jointly
must be true) called the null hypothesis (or H0).  The negation
of the assumed distribution (null hypothesis) is called the
alternative hypothesis (or H1).  We then test the assumed
(hypothesized) distribution using the data set.  Finally, H0 is
rejected whenever any one (or more) of the several elements
in hypothesis H0 is not supported by the data.
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The Chi-Square test is conceptually based on the probability den-
sity function (PDF) of the assumed distribution. If this distribution
is correct, its PDF (yielding an area of unity) should closely
encompass the data range (of X). We thus select convenient values
in this data range (Figure 1) that divide it into several subintervals.
Then, we compute the number of data points in each subinterval.
These are called “observed” values.  Then, we compute the num-
ber that should have fallen in these same subintervals, according to
the PDF of the assumed distribution.  These are called the “expect-
ed” values and the Chi-Square test requires at least five of them in
every subinterval.  Finally, we compare these two results.  If they
agree (probabilistically) then the data supports the assumed distri-
bution.  If they do not, the assumption is rejected.  The formula
(statistic) that uses the differences between “expected” and
“observed” values to test the GoF follows a Chi-Square distribu-
tion.  Hence, the name Chi-Square test.

In what follows we proceed as in Figure 1, using several data sets
to fit a Normal, an Exponential, and a Weibull distribution.  We
will work with the same data sets used in the START sheets that
discussed these empirical GoF procedures [7, 8, and 9].  In this
way, the reader can compare the results for these two approaches
and verify that they agree.

Figure 1.  Area Goodness of Fit Test Conceptual Approach

The procedure is as follows:

1. Divide the data range of X into k subintervals.
2. Count the number of data points in each subinterval (his-

togram).
3. Superimpose the PDF of the assumed (theoretical) distri-

bution.
4. Compare the empirical (histogram) with theoretical (PDF).
5. If they agree (probabilistically) the distribution assump-

tion is supported by the data.
6. If they do not, the assumption is most likely incorrect.

The formula for the Chi-Square Statistic is:

where 
ei expected number of data points in cell i (ei ≥ 5)
oi actual (observed) number of data points in cell i;
k  total number of cells or subintervals in the range;
n  sample size for implementing the Chi-Square test (n≥5*k)
k  total number of cells or range subintervals
k -1- No. Estimated Parameters (nep); Chi-Square degrees of

freedom (DF>0)

χ2
γ is the Chi-Square distribution (table) with DF=γ

Fitting Normal and Lognormal Distribution
In the START sheet on empirically assessing the Normal and
Lognormal distributions [8], we used the large data set shown in
Table 1. We will now reassess it using the Chi-Square GoF test.
We first obtain point estimations of the assumed Normal distribu-
tion parameters:  mean and standard deviation shown in Table 2.

The point estimations allow us to define the composite distribu-
tion hypothesis: Normal (µ=19.5; σ=7.05).  Since parameters
mean and variance were estimated from the data (Table 2) the
resulting Chi-Square statistic degrees of freedom are:  DF=k-2-1
= No. of subintervals - No. of parameters estimated - 1 (with
DF>0).  We thus can safely select k = 5 subintervals.

Next, we select the following interval endpoints: 14, 17, 22, and
26 which, in turn, define five cells or subintervals, each of which
contains more than the required five minimum expected observa-
tions (Figure 2).

In Table 3, we present the intermediate results for this Chi-Square
GoF test example.

In the first column we show the endpoints of the intervals. In the
second, we give the standardized endpoints:  (endpoints-average)
/Std-dev. In the third column, we give their cumulative
values,obtained from the usual Normal tables.  For example, for
the first endpoint (14), then for the standardized (-0.78014) end-
point, we have:

X
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Table 2.  Descriptive Statistics
Variable N Mean Median StDev Min Max Q1 Q3

Data 45 19.50 18.56 7.05 6.14 32.54 15.06 25.73

Table 1.  Data for the Normal GoF Test (Sorted)
6.1448 6.6921 6.7158 7.7342 9.6818 12.3317 12.5535 13.0973 13.6704

14.0077 14.7975 15.3237 15.5832 15.7808 15.7851 16.2981 16.3317 16.8147
16.8860 17.5166 17.5449 17.9186 18.5573 18.8098 19.2541 19.5172 19.7322
21.9602 23.2046 23.2625 23.7064 23.9296 24.8702 25.2669 26.1908 26.9989
27.4122 27.7297 28.0116 28.2206 28.5598 29.5209 30.0080 31.2306 32.5446

0.2176  (-0.78014) Normal  
7.05

19.5 - 14
 Normal  (14)P19.5,7.05 ==





=
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Figure 2.  Representation of the Chi-Square GoF test for
Normality

Then, we obtain in column four, the lagged differences of the
Cumulative values, which constitute the individual cell “areas,”
under the assumed Normal (19.5, 7.05) PDF.  We now multiply
each cell “area” by the total sample size (n=45). Since each
“area” is the probability that any sample element falls in the cor-
responding cell, this product yields the Expected number of ele-
ments (e) in each cell, according to the assumed distribution.

Then, we process the observed (o) and expected (e) values, of
each cell, through the statistic:

The Chi-Square statistic value (4.67) is smaller than the Chi-
Square table value (5.99) for DF=5-2-1=2 and 1−α=0.95, so we
can assume that the distribution of the population originating the
data set is Normal (19.5, 7.05).  Furthermore, we will be wrong
less than 5% of the times. The process is summarized in Table 4.

Finally, if we want to fit a LogNormal distribution, we take the
logarithm of the data and then implement the Table 4 procedure
on these transformed data.  If the original data is Lognormal, its
logarithm is Normally distributed.

Table 4.  Step-by-Step Summary of the Chi-Square GoF Test

Fitting an Exponential Distribution
The large data set in Table 5 came from the same Exponential
(θ=100) population that generated the sample in the START sheet
on Exponential distribution assessment [7].

We will now assess the Exponentiality of the data via the Chi-Square
GoF test, just like we did in the previous section for the Normal.  We
first obtain the descriptive statistics as shown in Table 6.

Analogously, this allows us to define the composite distribution
hypothesis: Exponential (θ=100.2).  Since we estimated the mean
from the data (Table 6) the resulting Chi-Square has DF=k-1-1
and we can safely select k=5 and still have DF=5-2=3>0.

For endpoints we now select 30, 50, 95 and 160, which in turn, and
just like before, define five subintervals.  We also obtain the cumu-
lative and individual cell probability values, as in the previous sec-
tion.  We illustrate it, for the first endpoint (30).

Table 3.  Intermediate Values for the GoF Test for Normality
Row IntEnd StdEnd CumProb CellProb Expect Obsvd (e-o)^2/e

1 14 -0.78014 0.217654 0.217654 9.7944 9 0.06443
2 17 -0.35461 0.361441 0.143787 6.4704 10 1.92535
3 22 0.35461 0.638559 0.277118 12.4703 9 0.96574
4 26 0.92199 0.821732 0.183173 8.2428 6 0.61024
5 Infin Infin 0.999999 0.178300 8.0235 11 1.10420

Totals 1.000000 45.0010 45 4.67000

Under the Assumption
data is: N(19.5, 7.052)

µ = 19.5

σ=7.05

2614
1 22

Area=0.183
Exp. = 8.24
Observed=6

Area = 0.143
Exp = 6.47
0bserved=10

X

( )
5.99    4.67  
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1. Establish the Null Hypothesis H0: Data is assumed Normal (µ; σ).
2. Estimate the Normal parameters from the data: µ=19.5; σ=7.05.
3. The test statistic is:

4. Establish/Standardize the K=5 Subintervals (Figure 2).
5. Obtain Probability for the K=5 Subintervals (Table 3).
6. Test statistic distribution: Chi-Square; DF =5-2-1=2.
7. Establish test significance level (error): α=0.05.
8. Obtain Chi-Square critical value:  5.99.
9. Obtain Test Statistic value:  4.67.
10. As Critical Value > Test Statistic, assume Normality!

( )∑ =
= k
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i

2
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e

o - e
  χ

Table 5.  Data for the Exponential GoF Test (Sorted)
5.142 16.344 17.150 18.325 22.473 25.789 25.928 26.230 29.153

32.264 35.138 35.387 41.743 42.374 43.388 46.975 47.246 51.309
53.628 56.689 60.392 74.860 76.610 77.456 93.350 94.216 95.831

103.956 111.403 117.269 118.441 121.334 122.694 128.675 136.434 168.727
172.222 213.474 213.889 215.220 221.943 229.777 235.789 281.492 351.505

Table 6.  Descriptive Statistics
Variable N Mean Median StDev Min Max Q1 Q3

Data 45 100.2 76.6 81.8 5.1 351.5 35.3 132.6

0.25874  4)Exp(-0.299 - 1.0 
100.2

30
-Exp - 1.0  (30)P100.2 ==





=
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The resulting values, equivalent to those in Table 3, are shown in
Table 7.

The result of the Chi-Square GoF test statistic for this data set and
assumption is:

Here, like before, the Chi-Square statistic value (1.46) is not larg-
er than the Chi-Square table value (7.81) for DF=5-2=3 and 1−
α=0.95.  We can then assume H0:  that the distribution of the pop-
ulation originating the data set is Exponential with θ =100.2.
Furthermore, we will be wrong less than 5% of the times. 

The entire GoF process, for this case, is summarized in Table 8.

Table 7.  Intermediate Values for the Exponential GoF t\Test

Row IntEnd CumProb CellProb Expected Observed (e-o)^2/e
1 30 0.25874 0.258738 11.6432 9 0.600055
2 50 0.39286 0.134126 6.0357 8 0.639309
3 95 0.61252 0.219661 9.8848 9 0.079192
4 160 0.79746 0.184933 8.3220 9 0.055242
5 Infin 1.00000 0.202500 9.1125 10 0.086437

Totals 1.000000 49.9980 45 1.460200

Table 8.  Step-by-Step Summary of the Chi-Square GoF Test

Fitting a Weibull Distribution
In the START sheet on empirically assessing the Weibull distribu-
tion [9], we used the large data set as shown in Table 9.  We now
assess whether the data is Weibull via the Chi-Square GoF test,
just like we did for the Normal and Exponential data. We first
obtain the descriptive statistics as shown in Table 10.

To obtain the Weibull parameter estimators, we can use Weibull
paper [1, 2], or regress the following equation.

The regression equation for the present case is:

C2 = - 3.41 + 1.35 C1

S = 0.1774 R-Sq = 97.9% R-Sq(adj) =  97.9%

The regression slope (1.35) is the Weibull Shape Parameter; the
Weibull Characteristic Life (CharLf) is obtained by:  

CharLf = Exp(-(Intercept/Slope)) = Exp(-(-3.41/1.35)) = 12.378

The parameter estimators allow us to define the composite distri-
bution hypothesis H0: Weibull (α=12.378; β=1.354).  Since we esti-
mated both of them from the data the resulting Chi-Square has
DF=k-2-1.  We can select k=5 and still have: DF=5-3=2>0.

For endpoints we now select 3.9, 7.8, 12.3, and 17.4, which, in
turn and just like before, define five subintervals. We also obtain
the cumulative and individual cell probability values, as in the
previous section.  We illustrate it, for the first endpoint (3.9):

( )
∑ =<== =

k
 1i

2
0.95,3

i

2
ii2 7.81    1.46  

e

o - e
  χχ

1. Establish the Null Hypothesis H0: Data is assumed Exponential (θ).
2. Estimate the Exponential parameter from the data: θ = 100.2.
3. The test statistic is:

4. Establish the K=5 Subintervals (no need to standardize).
5. Obtain Probability for the K=5 Subintervals (Table 7).
6. Test statistic distribution: Chi-Square; DF =5-1-1=3.
7. Establish significance level (error): α=0.05.
8. Obtain Chi-Square critical value:  7.81.
9. Obtain Test Statistic value:  1.46.
10. As Critical Value > Test Statistic, assume Exponentiality!
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Table 10.  Descriptive Statistics of Data in Table 9
Variable N Mean Median StDev Min Max Q1 Q3

WeibSamp 45 11.19 9.79 7.85 0.9 34.07 3.99 15.74

Table 9.  Data for the Weibull GoF Test (Sorted)

0.8997 1.2838 1.5766 1.8627 2.4193 2.4353 3.1520 3.3367 3.4850
3.9605 3.9921 3.9934 4.1013 4.8306 5.3545 5.6094 7.7829 7.8240
8.3431 9.0248 9.2627 9.2766 9.7943 11.4391 12.2847 12.4112 13.1651

13.4990 13.5532 14.1542 14.4694 14.5857 15.1603 15.6962 15.7833 17.4998
18.1497 18.6342 19.4354 19.7557 19.9496 22.5383 23.8066 29.9006 34.0658

0.4 -n 

0.3 - Rank(x)
  p  whereln(x);  versus

p - 1

1
lnln x

x
=




















Predictor Coef StDev T P
Constant -3.40715 0.06856 -49.69 0.000
C1 1.35424 0.03008 45.02 0.000

=

















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The resulting values, equivalent to those in Table 3, are shown in
Table 11.  The result of the Chi-Square GoF test statistic for this
data set and assumption is:

Here, like before, the Chi-Square statistic value (1.68) is not larg-
er than the Chi-Square table value (5.99) for DF=2 and 1−
α=0.95.  We can then, as done before, assume H0:  that the dis-
tribution of the population is Weibull (α=12.37; β=1.35).
Furthermore, we will be wrong less than 5% of the times. The
entire process is summarized in Table 12.

Table 11.  Intermediate Values for the Weibull GoF Test

Row IntEnd CumProb CellProb Expected Observed (e-o)^2/e
1 3.9 0.18963 0.189629 8.5333 9 0.02522
2 7.8 0.41491 0.225279 10.1376 8 0.450721
3 12.3 0.62890 0.213992 9.6296 8 0.275787
4 17.4 0.79471 0.165807 7.4613 10 0.863791
5 Infin 1.00000 0.205300 9.2385 10 0.062768

Totals 1.000000 45.0000 45 1.678600

Table 12.  Step-by-Step Summary of the Chi-Square GoF Test

A Counter Example
For completion, we now develop an example where the data does not
fit the hypothesized distribution. We do that using the Exponential
data (Table 5). We will now assume these data come from a Normal
distribution and will use the descriptive statistics in Table 6, to estab-
lish the hypothesized Normal parameters: µ=100.2; σ=81.8.

For endpoints we select 30, 80, 120, and 170 which, in turn and
just like before, define five subintervals. Since we estimated the
two Normal parameters from the data, the resulting Chi-Square
statistic has DF=5-3=2>0. We obtain cumulative and individual
cell probability values, as done in the previous sections. Results
are shown in Table 13.

We observe: (1) a large discrepancy between Observed and
Expected values (15 and 9.31) in Cell 2 and (2) test statistic value
(5.82) is very close to the critical Chi-Square table value (5.99).
This shows that the assumption of Normality is not well supported
by the data. We repeat the GoF test for seven cells (expected value
per cell 45÷7=6.3>5 and DF=7-2-1=4>0). Results, showing the
data are not Normal(100.2,81.8) are in Table 14.
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1. Establish the Null Hypothesis H0: Data is assumed Weibull (α, β).
2. Estimate the Weibull parameters from the data: α=12.378;

β=1.354.
3. The test statistic is:

4. Establish the K=5 Subintervals (no need to standardize).
5. Obtain Probability for the K=5 Subintervals (Table 11).
6. Test statistic distribution: Chi-Square; DF =5-1-2=2.
7. Establish significance level (error): α=0.05.
8. Obtain Chi-Square critical value: 5.99.
9. Obtain Test Statistic value: 1.68.
10. As Critical Value > Test Statistic, we assume Weibull!
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Table 14.  Intermediate Values for the GoF Test With Seven Cells
Row CountEx CumProb CellProb Expected Observed (e-o)^2/e

1 15 0.14881 0.148807 6.69631 1 4.8456
2 50 0.26971 0.120903 5.44062 16 20.4941
3 85 0.42629 0.156584 7.04628 7 0.0003
4 115 0.57179 0.145495 6.54727 6 0.0457
5 150 0.72867 0.156884 7.05977 6 0.1591
6 185 0.85006 0.121384 5.46228 2 2.1946
7 Infin 1.00000 0.149944 6.74747 8 0.2325

Totals 1.000000 45.00000 45 27.9720
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Table 13.  Intermediate Values for the GoF Test With Five Cells
Row CounterEx CumProb CellProb Expected Observed (e-o)^2/e

1 30 0.19539 0.195394 8.79271 9 0.00489
2 80 0.40248 0.207082 9.31871 15 3.46369
3 120 0.59563 0.193155 8.69196 7 0.32935
4 170 0.80325 0.207623 9.34304 5 2.01883
5 Infinit 1.00000 0.196746 8.85358 9 0.00242

Totals 1.000000 45.00000 45 5.81920
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Summary
In this START sheet, we have discussed the important concept of
Goodness of Fit assessment of statistical distributions, for large
samples, via the Chi-Square test.  We have provided several
numerical and graphical examples for the Normal, Lognormal,
Exponential, and Weibull distributions, relevant in reliability and
maintainability studies.  We also have discussed some related the-
oretical and practical issues, providing several references to
background information and further readings. 

The small sample Goodness of Fit problem cannot be dealt with
via the Chi-Square test.  For the number of observations per cell
is too small for the GoF test statistic to converge to its Chi-Square
underlying distribution.  In such cases, we use other, CDF-based
distance Goodness of Fit tests, such as the Anderson-Darling and
Kolmogorov-Smirnov.  Due to their complexity, these tests are
treated in more detail in separate START sheets.
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