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1.0 Introduction 

 

Much has been written and said, in the last few weeks, about accelerating the phases of Covid-19 

(i.e. development and testing) vaccine clinical trials
1
 to produce a working product. For example: 

 

Trump Administration’s Operation Warp Speed Accelerates AstraZeneca COVID-19 

Vaccine
2
: The agreement between AstraZeneca and the Biomedical Advanced Research and 

Development Authority (BARDA), part of the HHS office of the Assistant Secretary for 

Preparedness and Response, will accelerate the development and manufacturing of the 

company’s investigational vaccine to begin Phase 3 clinical studies this summer with 

approximately 30,000 volunteers in the United States. 

 

Clinical trials length is closely related to the number n of participating volunteers. Determination 

of said sample size “n” required in testing and confidence interval (CI) derivation has always 

been of great importance. For, sampling is both expensive and time consuming, and sample size 

carries a big price tag in time, resources or both. In clinical trials time is crucial, and the number 

n of volunteers is scarce, and the pressure to find/release a vaccine, is strong. 

 

When samples are taken all at one time, it is called single (or fixed) sampling. An alternative 

consists in taking the samples in multiple stages, and assessing their results at every stage. This 

allows the possibility of stopping the process and reaching an early decision, if certain conditions 

are met. For, if the data show a clear-cut trend in favor of (or against) the hypothesis being 

tested, from the start of the clinical trial, then shortening the test can save significant time and 

resources. In such cases the samples are taken in successive stages, according to the assessment 

of results obtained from the previous sampling stages. This is known as “multiple sampling”. 

 

Thence, there are situations where it is more efficient to take samples sequentially, as opposed to 

all at one time, and to define a stopping rule to terminate the sampling process. Taking samples 

sequentially and assessing their results at each stage allows for the possibility of stopping the 

process and reaching an early decision. If the situation is clear-cut favorable or unfavorable (for 

example, if the sample shows that a vaccine is definitely effective or poor), then terminating the 

process early can save significant time and resources. In the case where results are ambiguous, 

and we require additional information to take a better decision, we continue sampling.  

 

1.                                                  
1
 https://www.cancer.org/treatment/treatments-and-side-effects/clinical-trials/what-you-need-to-know/phases-of-

clinical-trials.html describes clinical trials, their phases and objectives/components 
2
 https://www.hhs.gov/about/news/2020/05/21/trump-administration-accelerates-astrazeneca-covid-19-vaccine-to-

be-available-beginning-in-october.html discusses government procedures to accelerate the clinical trial process. 
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https://www.hhs.gov/about/news/2020/05/21/trump-administration-accelerates-astrazeneca-covid-19-vaccine-to-be-available-beginning-in-october.html


Clinical trials are about assessing the success or failure of a treatment, medication or vaccine. 

Thence, we present several industrial sampling plans that discuss test for attributes (pass/fail 

data) that follow the Binomial distribution). We then explore double and multi-stage sampling 

plans. We continue with a discussion of Expected Sample Number (ASN) a performance measure 

used to assess efficiency of multi-stage sampling plans. We conclude with sequential probability 

ratio tests (SPRTs). We illustrate our discussions via numerical and practical examples. 

 

In References 1 and 2, double sampling plans are discussed and extended to higher dimension 

plans, namely sequential tests. In References 3, the problem of calculating the sample size n for 

experimentation is discussed. In References 4 and 5, samples for acceptance testing and censored 

data are discussed. A useful industrial statistics textbook is given in Reference 6. 

 

2.0 Clinical trials for vaccine development and statistical hypothesis testing 

 

A clinical trial entails, implicitly, the testing of a statistical hypothesis. We want to establish with 

high confidence whether, say a drug or a vaccine, has (or doesn’t have) an effect on an illness or 

disease. Therefore, we need to first discuss hypothesis testing under such context.  

 

In hypothesis testing, we define the Null (H0) hypothesis that expresses the status quo (in this 

case that the drug/vaccine has an effect). Then, we define the Alternative (H1) hypothesis as the 

negation of the Null (that the drug/vaccine actually has no effect). We then take a sample of pre-

established size “n” of the random variable X (in this case, the result of a patient taking said drug 

or vaccine). And based upon the results from such sample (say, of fixed size n), we take a 

decision regarding these two hypotheses. This is the single stage sampling procedure. 

 

Random variable X is Bernoulli, for it has two outcomes: success (X=1) with probability p, or 

failure, (X=0) with probability (1-p) and 0 ≤p ≤1. Define X=0 if the drug/vaccine has an effect 

(in the vaccine case, it protects the patient); and X=1, if the drug or vaccine does not works (it 

does not protect the patient, who gets infected with Covid-19). The sum of the “n” Xs (number of 

patients who get infected with Covid-19) is Binomial (n, p). And based upon this sum we take 

the decision of rejecting or not the Null hypothesis (H0) that the drug or vaccine has (or has not) 

had an effect, with a given probability of committing an error taking such decision.  

 

We can place a value on the acceptable effect of said drug or vaccine. For example, we say it is 

acceptable if the vaccine fails to work in less than 10% of cases (p≤0.1); and it is unacceptable if 

it fails in more than 20% of cases (p≥0.2). Alpha (α) is the probability of committing the Type I 

Error: rejecting H0 when it is true; and Beta (β) is the probability of accepting H0 when it is 

false. In medical terms, Alpha (α) is the probability of stating that the drug or vaccine does not 

have an effect on the disease, when it actually has one, and thence, withdrawing the release of a 

safe drug/vaccine to the public when it works well. Beta (β) is the converse probability. 

 

We want low probabilities of errors, say 5% for Alfa (α=0.05), and 10% for Beta (β=0.1). The 

required sample size “n” for this hypothesis test depends, in addition to α and β, on the natural 

variability (σ), and on how far apart the values p for H0 and H1, are. Then, “n” is obtained as: 
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Where Zs are the standard normal table values for α and β, and δ = p1-p0. The sample size “n” for 

a test that detects difference δ = 0.2-0.1= 0.1 with errors α = 0.05 and β = 0.1, when σ = 0.6 is: 
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This means that we would need 309 patients for the clinical trial. But this is the beginning of our 

most serious problem: how to detect that an effect has occurred, and is due to the drug/vaccine. 

 

In industrial statistics, this is straight-forward. Say, you receive a batch of light bulbs, take 309 of 

them at random, and test them. If a light bulb works, it will light up; if it does not it will not. But 

in a clinical trial, things work differently, and we need to adapt these procedures accordingly. 

 

To start, we need to define when the drug/vaccine works. Say it is a drug. Works means that the 

pain is relieved in 48 hours; the fever is down in 24 hours, cough is gone in three days, etc. Then, 

some people will obtain relief naturally, because of their immune system, pure luck, etc., that has 

nothing to do with the drug being tested. Other patients will be very sick, or have a poor immune 

system, etc. and will not get better even with a magical medicine! It is difficult to establish if the 

effect observed on the patient is coming from the drug, or is coming from another source. 

 

A sample (volunteers, available patients, etc) is obtained and divided at random into two groups. 

One group will be given the drug/vaccine, and the other, a “placebo” (nothing). Patients will not 

know what is been given to them. Doctors will not know whether they are administering the real 

medication or the placebo (vaccine or placebo) to the patients. Such tests are known as Doubly 

Blinded clinical trials. However, there is always a record of such assignment in the clinical trial 

protocol that can be accessed by a second, independent group of researchers, and can be used to 

conduct additional statistical procedures, as suggested in our next section.  

 

If, say, the vaccine works, the percent “p1” of inoculated patients that will become infected with 

Covid-19 will be much smaller (say k times) than the percent “p2” of those in the Placebo group. 

This may be assessed using a two-sample t-test (with Ho: p1≤kp2 v. H1: p1>kp2). Establishing 

such difference for a drug is easier, because a disease can be diagnosed beforehand, and the 

sample can be drawn from patients that suffer from said disease. With a vaccine things are very 

different, as we deal with virus infections that are not yet present. Let’s see how it works: 

 

Non-infected individuals are recruited into a clinical trial for a vaccine, and then divided into two 

groups, at random. Some will get the vaccine and others, the placebo, in a doubly blinded clinical 

trial. Then they need to get infected, to test the effectiveness of the vaccine. Thence, they need to 

be exposed to the virus either by inoculation, or by interaction within an infected environment.  

 

If the sample is small, and vaccinated volunteers are willing to be inoculated with the virus, this 

will be done (in earlier phases). Otherwise, we need to release the vaccinated volunteers within 

an infectious environment and wait to see (or hope) that they become infected with the virus.  



 

The first method is the most efficient, because we know that patients have been inoculated with 

the virus. We can then define a period of time T such that, if the vaccinated and infected patient 

does not develop Covid-19, it can be assumed that the vaccine has done its job. 

 

When a large number of patients are released in an infectious environment, some will become 

infected, and some will not. The number of infections in patients receiving the placebo should 

also be larger, and the hypotheses may also be tested using a two-sample t-test. But the number 

of infections will depend on the number of patients and length of the clinical trial. If we curtail 

these, the number infected may be too small to establish a difference with a good probability
3
. 

 

3.0 Multiple (double, triple etc.) stage hypothesis testing 

 

If results are clear, in favor or against a drug/vaccine, then there is no problem. But if results are 

too close to the limits established say, if testing for H0: p≤0.05 we obtained p=0.048 or p=0.052, 

then we need to test further, with a larger sample, or take a longer test time. In statistics this can 

be improved by implementing multiple (double, triple etc.) stage testing procedures.  

 

The logic behind double (multiple) sampling schemes is that, if initial results are clear-cut good 

or bad, we take a decision based on the first sample only. If there are some doubts, then we draw 

a second (additional) sample, and collect more information to be used in reaching a decision. 

This other method lowers the risk of taking the wrong decision, at the cost of a longer and more 

expensive process (i.e. drawing the second sample will cost more time and money). 

 

Let’s illustrate via an example that shows how to build such a test procedure. Assume we have a 

vaccine that requires (H1) protecting at least 90% of immunized, with confidence 1-α=0.95.  To 

test this vaccine, we inoculate “n” say 20 immunized with this virus, wait for time T, and then 

count how many of them are infected. The number of infections X is again distributed Binomial 

with n=20, and where p is the probability of infection of the immunized using the vaccine, and c 

is the number of infected patients in the clinical trial. We express such Binomial probability as: 
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If the vaccine protects 90% or more of those receiving it (H0: p≤0.1), the vaccine is considered 

efficient, in which case it will be used. If the vaccine protects 80% or less of patients receiving it 

(H1: p≥0.2) the vaccine will be discarded. We then define a double sampling plan that analyzes a 

first sample of size n1=20 of inoculated patients, and then counts the number of virus infections 

X in the sample, after time T: S (n1=20, n2=20, c1=14, c2=15, c3=33).  If X > 15, we reject H0 

(and assume H1). If X < 14 we don’t reject H0 (the drug is helpful). If 14≤ X≤15, a decision 

would be too uncertain. So we draw a second sample of size n2 = 20, and count the number of 

survivals (Y) in this second sample. Then, if X + Y < 33 we don’t reject H0 (and decide that the 

new vaccine is acceptable). But if X + Y ≥ 33 we reject H0; assume H1 and decide that the new 

vaccine is not efficient and should not be released.  

1.                                                  
3
There is a procedure in industrial statistics to estimate the sample size “n” required, in order to obtain, with a given 

probability, a minimum number of failed cases. See Reference 3, in the Bibliography, for more details. 



 

The probability of acceptance for such double sampling plan S, for any p, is given by: 
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In general, to find the required S (n, c) plan parameters we establish a system of two Binomial 

equations that fulfill such required Types I and II errors (or risks) of the hypothesis test problem: 
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Solving this system of two equations, we obtain the appropriate values of “c” and “n” for the 

required S(n,c) Plan. For several stages, we repeat the procedure, shown above. Alternatively, 

the ANSI/ASQC Z1.4 (1993)
4
 quality manual sampling tables can be consulted. 

 

When the sample size is large (n > 20) the random variable Number of Failures approximates 

the Normal, with μ = np and σ
2
 = np(1-p).  We can then, using the same two hypothesized pi, for 

i = 0,1, and the two errors or risks α and β given above, establish the system of two simultaneous 

equations below, and find adequate values for both n and c of the required S(n,c) Plan: 
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Here, the zα are the Normal Standard percentiles for probability α. Solving this system for “n” 

and “c”, we obtain the equations that will yield the sample size ‘n’ and the critical number ‘c’ 

fulfilling the problem requirements: 
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1.                                                  
4
 ANSI/ASQC Z1.4. Sampling Procedures and Tables for Inspection by Attributes. American Society for Quality 

Control (1993). Milwaukee. 



The probability of rejection for the double sampling plan S(n,c) is obtained by substituting the 

probability of “acceptance” for that of “rejection”, in above equations. For such p = 0.09 the new 

probability of incorrect rejection is 0.018, instead of just P{X < 16} = 1-0.957 = 0.043, which 

would be the corresponding probability for a fixed sample plan, with n = 20 and c = 16: 
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Notice how such double sampling scheme, when compared to the fixed sample test, not only (1) 

increases the probability of accepting a good drug, but (2) reduces the probability of rejecting a 

good one, even if the initial test results are inconclusive. These are the strongest advantages of 

multiple stage plans which, in many cases, far out weight their extra cost and effort. 

 

In addition, double (multiple) sampling also reduces long run averages of the sample size. Now, 

the random variable “sample size” is probabilistic (varies with every case). Its “Expected Value”, 

known as ASN or “Average Sample Number”, depends on the real value of the percent “p” of 

infection, which is the parameter under test. 

 

The ASN for double sampling is obtained: 
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SN (sample number) can only be n1 or n1+ n2. Then, P (n1) is the probability of drawing a “first” 

sample only, which occurs when arriving to a decision at the first sample (with probability 1 - P 

{c1 ≤ Y ≤ c2}). The probability P {n1 + n2}, of drawing a second sample totaling a size of n1 + n2, 

occurs when we had an inconclusive outcome from the first sample with P {c1 ≤ Y ≤ c2}).  

 

For the double sampling plan S (n1=20, n2=20, c1=14, c2=15, c3=33), described above, let the 

true “p”, be p = 0.8, and let Y be the number of survivals obtained in the first sample, of size 

n1=20. Then, the probability of taking “no decision” on the first sample, when p = 0.8, is P (c1 ≤ 

Y ≤ c2) = P (14 ≤ Y ≤ 15). This yields an ASN = 25.6, smaller than n1+ n2 = 20+20 = 40. 

 

Clinical trials could also be designed and implemented as done in industrial statistics. This could 

help reduce clinical trial testing times. If the initial results were conclusively good or bad, such 

clinical trials could be terminated early. Alternatively, if the initial results were uncertain, then 

subsequent testing stages could be implemented, to arrive to a safer conclusion. 

 

4.0 The Binomial Sequential Probability Ratio Tests 

 



In doubly blind clinical trials, doctors and their patients do not know who is getting the vaccine 

and who the placebo. But there is usually a record in the clinical trial protocol that can be used 

to conduct statistical procedures such as Binomial Sequential Probability Ratio Test (BSPRT). 

 

SPRT tests are designed when results are obtained sequentially one at a time. SPRT can also be 

assessed one at a time. And just as with the double sampling scheme, a test decision to accept or 

reject, can be taken based upon the results obtained, at any stage.   

 

Let the above-mentioned second research group with access to the information regarding which 

patients are actually taking the Covid-19 vaccine analyze the incoming results of such group. If a 

patient that has received the vaccine falls ill with the virus, it means that the vaccine has failed to 

work. We can assign say value p=0.05 for efficient vaccines, if they are successful in 95% of 

cases (i.e. they protect 95% or more of vaccinated individuals, and fail on 5% or less). Likewise, 

we assign value p=0.2 for inefficient vaccines, if they are successful in 80% or less of cases (i.e. 

if they are able to protect only 80% or less of the vaccinated individuals) 

 

Let the researchers determine a time T, after virus inoculation into a volunteer, for the vaccine to 

work (prevent Covid-19 to develop). If after time T a volunteer has not fallen ill with Covid-19, 

the case is considered a success and the patient is removed from the experiment. Alternatively, if 

the patient becomes infected before time T, the case is considered a failure. Such accountability 

will be the task of the second research group that will implement the Binomial SPRT. 

 

For the purpose of BSPRT, each volunteer will consist of a Bernoulli trial. If the virus inoculated 

volunteer gets infected with Covid-19 before time T, it is a failure (X=1, with probability p), and 

he is removed from the experiment. If by time T the volunteer has not fallen ill with Covid-19, it 

is a success (X=0, with probability 1-p) and volunteer will also be removed from the experiment. 

The value of said probability p will depend on the BSPRT hypotheses H0 and H1. 

 

Let n be the number of volunteers in the clinical trial, inoculated but not yet infected, and still 

within their time T. Let y be the cumulative number of infected cases, so far.  There are two 

possible p values for the infection percent: a preferred value (if say, less than 5% of vaccinated 

cases get infected) and an unacceptable value (if say, more than 20% become infected). 

 

Assume we implement the BSPRT to test the hypotheses: H0: p0 ≤ 0.05 and H1: p1 ≥ 0.2. In such 

setting, every inoculated patient is observed for say, T=20 days after vaccination, and is thence 

assumed to be an independent Bernoulli trial, with respective probabilities of success pi, i = 0, 1. 

The cumulative number of successes “y”, out of “n” trials, is distributed Binomial (n,pi); i = 0, 1. 

    

Define the Probability Ratio (PR) as that of the Binomial distributions, under H1 and H0: 
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K, the number of feasible ways that one can obtain “y” successes out of the “n” trials, cancels. 

We then find two values A and B such that, at any stage “n” (i.e. having tested “n” volunteers 

sequentially, one at a time), and having obtained “y” cumulative infections, said PR fulfills: 
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We now define two hypothesis test errors: α (probability of rejecting a vaccine with acceptable 

rate) and β (probability of accepting a vaccine with a high failure rate). Let α = 0.05 and β = 0.1. 

Then, we calculate, at every stage, the probability ratio PR: 

 

 




































1
)1(

)1(
}{;

)1(

)1(
}{

00

11

00

11 B
pp

pp
PBPRPA

pp

pp
PAPRP

yny

yny

yny

yny

 

 

The above equations define the S (B,A), Sequential Probability Ratio Test (SPRT), as one that 

compares PR with values A and B at every stage “n”, and decides whether to: (i) accept H0 if PR 

< B; (ii) accept H1 if PR > A; or (iii) continue testing another subject, if B < PR < A.  

 

It can be shown (References 1 and 2) that constants A and B can be approximated by: 

 

 

 

 

 

For stage 10 of our example, we consider the tenth volunteer on test (n = 10): we have previously 

observed “y” successes (say, y = 1 infection), as well as eight volunteers having completed their 

20 days without infection. Assume we observe a second infection for such tenth volunteer. 

 

For such stage 10 case we calculate the Binomial SPRT PR: 
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Then, we compare result 4.04 with adequate values for A and B and decide to: (i) stop testing 

and accept (H1) that the vaccine infection probability is p  ≥ 0.2, and hence the vaccine doesn’t 

work, if the PR value 4.04 is greater than B; (ii) stop and accept (H0) that infection probability is 

p ≤ 0.05, and hence the vaccine works well, if PR value 4.04 is smaller than A; or (iii) test yet 

one more volunteer and repeat the process, if 4.04 is between values of A and B. 

 

We can simplify the above process and equations, by taking Logarithms in said PR inequality, 

which defines the region leading to the continuation of the test. The result produces a linear 

equation which is a function of the number of successes “y”, out of the number of trials (stage) 

“n” implemented thus far, and which is bounded by the Logarithms of values A and B. The 

coefficients of “a” and “b” of these equations are functions of SPRT pi, i = 0, 1.  
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In our example: p0 = 0.05, p1 = 0.2, n =10, y = 2 and α = 0.05; β = 0.1. Hence, the SPRT 

coefficients “a” and “b” can be calculated, and values “A” and “B” can be approximated: 

 

25.2)ln(;11.0
05.01

1.0
;.89.2)ln(;18

05.0

)1.01(

;558.1
05.01

2.01
ln

05.0

2.0
ln

1

1
lnln

;172.0)842.0ln(
05.01

2.01
ln

1

1
ln

0

1

0

1

0

1







































































BBAA

p

p

p

p
b

p

p
a

 

 

For our example, at the SPRT 10
th

 stage (n = 10 trials), with y = 2 successes, we get: 
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The value of SPRT equation Z (n) = yn 558.117.0   = 1.396 falls inside the Continuation 

Region (-2.25, 2.89) and therefore, we need to observe another volunteer. The representation of 

said SPRT tests for the horizontal axis is depicted in Figure 1. The test sequence for the example 

developed here, is given in Table 1. Decision is taken on stage 15 (3.652>2.89). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Representation of the SPRT test for horizontal regions. 
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Table #1: SPRT Evaluation 

Stage  CumFail  ZFunction 

  1        0     -0.172 

  2        0     -0.344 

  3        0     -0.516 

  4        0     -0.688 

  5        0     -0.860 

  6        0     -1.032 

  7        1      0.354 

  8        1      0.182 

  9        1      0.010 

 10        2      1.396 

 11        2      1.224 

 12      3      2.610 

 13      3 2.438 

 14      3 2.266 

 15      4 3.652 

 

 

The 15
th

 volunteer suffers the 4
th

 cumulative virus infection. The equation value (3.65) is larger 

than the upper bound (B=2.89). The SPRT stops testing and rejects the hypothesis H0: p0 ≤ 0.05 

that the vaccine protects at least 95%, and instead assumes the alternative hypothesis H1: p1 ≥ 0.2 

that the vaccine allows an infection rate of at least 20%. 

   

The SPRT used only n=15 volunteers to discard this vaccine, which saved time and personnel.  

 

5.0 Discussion 

 

We are struggling with the Coronavarus Pandemic, a new, little researched, and very contagious 

virus. There is yet no treatment or vaccine against it. To buy us badly needed time to develop 

them, palliative solutions such as social distancing, testing and contact tracing, isolation of the 

infected, hand sanitation, hot spot shut-downs etc., are being used. But these are not substitutes. 

 

An (1) efficient (protect most people to whom it is administered) and (2) safe (do no harm) 

vaccine must be found. This implies trying out multiple vaccines and then selecting the best ones. 

Not all vaccines will work. And, of those who do, some will have troubling characteristics or 

side effects. Discovering these may allow using some vaccines on some cohorts and other 

vaccines in other cohorts, thus minimizing their negative consequences. 

 

Statistics can help with the first phases of identifying the most effective vaccines among all the 

candidates, and discarding the inferior ones. The first phases are usually shorter and use fewer 

volunteers. Thence, the two methods illustrated in this paper are applicable to them. 

 

If an experiment consists of testing the results of two groups (vaccine v. placebo) we first need to 

establish the sample size n to be used, which depends on the errors α and β and the distance δ = 

p1-p0 defining the difference in vaccine efficiency. In our example δ=0.1 was small, so n=309. If 

such sample size is too large, and we need a smaller one, we need to give up on errors α, β, or δ. 

Let’s make δ = 0.3 instead. The new sample size required would now be only 34.33. The size of 

the sample is then of great importance, and we need methods that reduce it at the lowest cost. 

 



One of these methods is double sampling. The size of the first sample may be too small; the size 

of both may be too large. Having the possibility of using such a second sample only when really 

needed, leads to a more efficient way to reduce the sample size. Since we will be testing many 

vaccines with different samples, double sampling will reduce the overall sample size. 

 

Another method discussed is Binomial Sequential Probability Ratio Tests (BSPRT). It requires 

that volunteers be inoculated with the virus (for drugs and treatments this is not a problem, for 

the patient disease has been diagnosed and treatments either work or not). Inoculation allows us, 

when the vaccine does not work, to (1) be sure volunteers have been infected, and (2) when has 

infection occurred. These facts allow us to establish thresh-hold T for the virus infection to arise.  

 

Inoculation is not always possible
5
. In such cases, said volunteers will need to be released in an 

environment where they may become naturally infected. But then, we can never be sure that they 

did become infected and the vaccine prevented the virus to prosper, nor the exact date the virus 

infection occurred, in order to use thresh-hold T. Doctors and researchers may be able to come 

up with some procedure that substitutes virus inoculation, and provides similar information. 

 

The second research group would monitor the trial volunteers inoculated with the virus. Each 

inoculated volunteer has only two outcomes. One is that the vaccine works and, at the end of T 

pre-assigned days, the volunteer is virus-free. The other is that the volunteer becomes infected 

with the virus, before T days elapse. Such results are annotated as they take place (if a tie occurs, 

break it at random) and are sequentially incorporated into the SPRT procedure. 

 

Vaccines that fail efficiency tests are discarded. Those that succeed are passed to higher levels 

(and longer) clinical trial phases, where the finalists are selected. But more important yet: here 

the secondary (negative) effects of the vaccines are detected. For example, one efficient vaccine 

may induce heart problems or strokes in older patients. Another one may induce liver failures on 

diabetic patients. Such vaccines should not be administered to patients with diabetes, or elderly. 

But if needed (hundreds of millions of doses will be required) they may be used, accordingly. 

Before we close, we want to bring up two crucial issues. First, there is a need to implement virus 

test, with samples taken at random from the entire population. Such sampling would allow us to 

estimate virus prevalence, something that so far has yet to be done (mostly, testing for suspected 

virus cases has been done, so we can confirm, trace and isolate them). The latter approach helps 

reduce the spread of Covid-19, but it does not provide an estimation of its prevalence. 

Secondly, the current political environment in the country does not help. In December 2019, our 

attention was concentrated in the Congress accusations against the President. In January 2020, 

said attention was on the Senate impeachment. During February and March, President Trump 

minimized the importance of the impending Pandemic. Valuable preparation time was lost, that 

could have reduced deaths. It is necessary to depoliticize the struggle against Covid19. 

 

1.                                                  
5
  On August 1900 US Army physician J. Carroll allowed an infection by a mosquito to test the Yellow fever theory. 

http://www.americaslibrary.gov/jb/progress/jb_progress_yellow_1.html#:~:text=On%20August%2027%2C%20190

0%2C%20Carroll,mosquitoes%20transmitted%20the%20feared%20disease. 



6.0 Conclusions 

 

There is an urgent need to find both a treatment and a vaccine to combat Covid-19. For that, we 

need to perform clinical trials with vaccine candidates to select efficient and safe ones. There is 

some pressure to curtail such clinical trials in order to have these tools available soon. 

 

Statistics, the science that studies variation and searches and analyzes patterns (or lack thereof) 

using the most efficient methods of data collection, can be used to help shorten clinical trials 

based on science and not on other considerations. The ASA, as an institution member of Civil 

Society, and individual statisticians, are in a position to contribute in this area. 

 

I encourage my colleague statisticians to propose other procedures that can be used toward this 

end, to develop examples and tutorials with them, and share them with public health researchers. 

I also encourage public health scientists and practitioners to try these methods out, in their work. 

 

We are all together, in this battle against the Coronavarus Pandemic. 
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