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Introduction 
A frequent question posed to the RAC or posted on the RAC 

Forum relates to calculating the sample size “n” required in 

experimentation.  Engineers use samples to estimate or test 

performance measures (PM) such as reliability, MTTF, etc.  

Having an adequate sample size is important, for it determines 

the amount of time and dollars dedicated to the effort. 

 

The sample size used in an experiment depends, first, on the 

statistical distribution of the random variable (r.v.) in question 

(e.g., device life).  Such life may be distributed Normally, a 

symmetric distribution whose standard deviation is usually 

smaller than its mean and hence induces a moderate variability.  

Therefore, a smaller sample size can still yield an acceptable 

level of certainty (or uncertainty) regarding estimates and tests. 

 

If the r.v. life is distributed say Exponentially, a highly skewed 

distribution having a standard deviation as large as its mean, the 

situation differs.  Large variances induce large variability.  

Hence, the r.v. can now attain either very small or very large 

values.  This fact introduces higher levels of uncertainty in 

estimations, which have to be compensated by drawing larger 

sample sizes.  Therefore, inherent variability, or variance of the 

r.v. under study, constitutes the second factor of importance in 

sample size determination. 

 

Finally, we have the issue of the level of “confidence” in 

estimation problems or of the Types I and II errors
1
 in testing 

                                                 
1
 We commit a Type I Error when we decide that the alternative 

hypothesis (H1) is true, when in fact the null (H0) is true (e.g. 

assume that the mean is 1, when in fact it is 0). 

 

problems.  To obtain higher confidence, all other factors being 

equal, we require wider “confidence intervals” (CI), which are 

usually not very useful.  To reduce the width of a CI, we need to 

draw a larger sample.  If instead of deriving a CI (estimation), 

we are testing, then we also need to consider the Type II error. 

 

Summarizing, derivation of adequate sample sizes for testing or 

estimating a parameter requires three elements: the distribution 

of the r.v., its variability, and the risks of erring in the process of 

deriving such estimations or tests. 

 

This START Sheet discusses and provides examples of several 

types of sample size derivations for location parameters.  We 

first obtain sample sizes for interval estimation of the population 

using the Normal, Student t, and Exponential distributions, as 

well as for proportions.  Then, we estimate the sample sizes for 

testing the mean of the Normal and of the Weibull distributions.  

Finally, we present examples of sample size derivation for the 

nonparametric (distribution-free) case.  Due to its complexity, 

the derivation of sample sizes for estimating and testing 

variances will be the topic of a separate START sheet. 

 

Sample Size for Interval Estimation of 
the Normal Mean 
When a device life is distributed Normally, and we want to 

obtain an estimate of its MTTF, we base our sample size 

estimations on the formula for the CI for the mean (μ): 

 

Hx
n

zx 


 2/  

 

In its half-length (H), which is the amount that is added and 

subtracted from the sample mean, the CI formula includes four 

elements.  The four elements are, the confidence level (1 - ) 

desired, the random variation () inherent in the Life of the 

device, the sample size (n) required to fulfill the requirements 

and the Normal Standard percentile (zα/2).   

 

The preceding probability statement says that the CI will cover 

the true MTTF at least 100(1-α) % of such times (e.g. 95% of 

the times).  Let’s assume we know the standard deviation of the 

population.  Consider now pre-establishing a fixed CI half-

length of H=zα/2×σ/√n, about the true MTTF, for a pre-specified 

                                                                                        
We commit a Type II Error when we decide that the null 

hypothesis (H0) is true, when in fact the null (H0) is true (e.g. 

assume that the mean is 0, when in fact it is 1). 
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confidence level (1-α).  Such equation H defines all our needs.  

After some algebraic manipulations, we obtain the sample size: 

 

 
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To illustrate this with a numerical example, assume that a device 

life has a Normal distributed, and that the standard deviation σ 

is known to be 8.6 units of time.  Assume that we want to derive 

a 95% CI for the MTTF with a “precision” H of two time units 

(i.e., 95% of the times, MTTF estimates will be two units or 

less, away from the true but unknown MTTF of the device Life).  

Then, we would require a sample size of: 

 

nsobservatio 7203.71
2

6.896.1

2

22




n  

 

Assume now that the device Life has a Normal distribution, but 

the standard deviation σ is unknown, but estimated (s) from a 

pilot sample, prior experience, or using other means.  Now we 

need to use an iterative process, using the Student t distribution:  

 

 
2

22
1,2/

1,2/
H

st
nHx

n

s
tx

n
n


 


  

 

The basic line of thought is exactly the same as before, except 

that now we use Student t instead of the Normal percentile.  

However, this introduces an interesting twist, since the t 

percentile requires knowledge of the Degrees of Freedom (DF), 

which in turn depends on the sample size (DF = n – 1).  

However, the sample size “n” is not known, because that is 

precisely what we are looking for with this procedure. 

 

The solution is to set an initial, arbitrary sample size “n.”  Then, 

using the t percentile for these DF, we calculate a resulting 

sample size n’.  Then, we compare n with n' and see if they 

agree or not.  If they do, we stop.  If not, we let n' determine the 

new DF and iterate. 

 

We illustrate this method with the previous numerical example.  

But now assume that the standard deviation is unknown but we 

have an estimate of 8.6.  Define an initial n = 20: 

 

 
81998.80

4
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Since n' = 81 differs from 20, we must iterate the calculations, 

using DF = 81 – 1 = 80: 
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Proceeding this way, we arrive to the final value of n = 75, 

higher than the value n = 72, obtained for the case where σ was 

known.  Notice how we pay the price of drawing three 

additional observations to compensate for the lack of 

information about σ. 

 

Finally, consider the case of Life with a Normal distribution, 

when the standard deviation σ is known, or is unknown and 

estimated by “s.”  Suppose that, instead of deriving a CI, we 

require the sample size n for a hypothesis test.  Then, in addition 

to Type I error α, we must also consider Type II error β.  Such 

error yields a difference of δ = μ0 - μ1.  

  

The sample size is obtained by considering a system of two 

equations, derived from the Operating Characteristic function 

(5), and assuming the two error probabilities  and β are given.  

Solving the resulting system of two equations yields the 

required sample size: 

 
2

)(







 




 zz
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In the previous example, assume we now want the sample size n 

for a test that detects a difference of two units (δ = 2) in MTTFs 

with errors α = 0.05 and β = 0.1, when σ = 8.6: 

 

1587.158
2
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By adding the extra requirement that we err if we accept a 

MTTF μ1 further than 2 units away from the true μ, the sample 

size n has increased to 158.  Error β can now be at most 10% 

yielding zβ = z0.1 =1.28.  We have discussed these derivations in 

the START on OC Functions (5).  The interested reader will 

find more details and numerical examples in that reference. 

 

Sample Size for Interval Estimation of 
a Proportion  
A frequent query submitted to RAC deals with determining the 

sample size required for estimating the true proportion defective 

“p,” or the true reliability “R” of a device, for a given Mission 

Time.   

 

These two cases are, conceptually from a statistical point of 

view, handled the same.  For, if we know the reliability required 

for a mission time “T,” or we can estimate it, then a device 

failure to meet such reliability requirement is equivalent to it 

being “defective.”  Hence, the unreliability “p” is now P 

{Device Life < T} = p = 1 - R and, from the CI formula: 

 

Hp
n
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If, as before, we pre-establish the “precision” H, and the 

“confidence” (1-α) then, after some algebra, we obtain the 

formula for the sample size “n” required to fulfill these: 
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To illustrate the percent defective (PD) calculations, assume we 

want to obtain the sample size required to estimate, with an 80% 

confidence (α = 0.2) the PD in a production lot.  Assume a 

precision “H” of, at most, 3% (e.g. the maximum distance we 

want such estimate “p” to be from the true, but unknown, lot 

PD, either by excess or by defect).  We say: H = 0.03, with 

confidence (1-α) = 0.8.  We need, as with the Student t case, a 

preliminary estimate of the true lot PD parameter.  We can 

obtain such estimate from a pilot survey or historical data (or, 

worst case, by assuming p = 0.5).  Let, in our example, this 

estimate be p = 0.05.  Then, the sample size required is: 

 

n = (zα/2 / H )
2
 × p(1-p)  = [(1.28/0.03)

2
]*0.05*0.95 = 86.47 ≈ 87 

 

Hence, a sample of n = 87 yields an estimate of PD “p”, such 

that 80% of the time, it is not further than 3% from the true but 

unknown PD.  The procedure is valid when n×p and n×(1-p) are 

greater than 5.  Our example is borderline, since n×p = 87 × 

0.05 = 4.35 ≈ 5. 

   

Assume we want instead an estimate of device reliability, for a 

Mission Time T, and we know it is somewhere around 0.95.  If 

the reliability point estimate is: R = 1 – 0.5 = 0.95, then the 

probability of failure in time T is p = .05.  Also assume a 

“precision” H = 0.03 (i.e. no further than 0.03 above or below 

0.95) with at least 80% “confidence.”  Then, we perform the 

same calculations above (p = 1 - R) obtaining the same sample 

size n = 87.  

 

An alternative method consists of using Binomial nomographs, 

which can be found in the References 1, 5, 10, 11 or 12.  

Nomographs are very useful in determining sample sizes when, 

if instead of a CI, we derive a hypothesis test.  Then, in addition 

to Type I error α, we must also consider Type II error β, which 

comes from accepting a bad hypothesis.  

 

Sample Size for Estimating the 
Exponential Mean  
We know, from Reference (4), that if “n” devices have lives Xi, i = 1, 

… , n, distributed as Exponential with MTTF = μ, then the statistic 

2T/μ (where T = Σ Xi) is distributed as Chi Square (Χ2) with DF = 2n.  

From this we get the 100(1-α)% CI, say 95%, for MTTF (μ): 
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As in the Normal case, we want a “precision” or maximum distance “τ” 

from either CI limit (2T/Χ2) to the real (unknown) value of MTTF (μ).  

But now, we express this as the ratio τ: 
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Following Reference 1, we denote C = Χ2
α/2;2n and D = Χ2

(1-α)/2;2n.  We 

solve the preceding system of two equations for variables C, D, and τ.  

After some algebra manipulations, we obtain: 
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Therefore, to obtain the adequate DF, we only need to inspect the Chi 

Square Tables, finding the ratio that fulfills the conditions, for 

confidence (1-α) and precision τ.  For example, assume we seek the 

sample size requirement for a 90% CI for the MTTF, with a precision 

of 45%.  Then, 1-α = 0.9, α = 0.1, α/2 = 0.05, τ = 0.45 and ratio C/D is: 
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When the sample size required is large (n>30), we can use the Normal 

approximation to the Chi Square distribution: z = √(2Χ2
n   ) - √(2n – 1).  

With some algebra, we then obtain: 
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For example, assume we now seek the sample size requirement for a 

90% CI for MTTF, with a precision of 20%.  Then, 1-α = 0.9, α = 0.1, 

α/2 = 0.05, z(0.05) = 1.65, and τ = 0.2.  The result is: 
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To verify this, we calculate the ratio of the two Chi Squares, with DF = 

2n = 130 (for, 64.4 ≈ 65 = 130/2): 
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Hence, a 90% CI for the Exponential MTTF of the device lives, with a 

precision of 20% of the true MTTF, i.e. τ = 0.2, would require drawing 

a sample of about 65 observations. 

 

Sample Size Requirements for Testing 
the Weibull Mean 
Sometimes we need the sample size requirements for testing, 

instead of for estimating parameters.  We will illustrate this 

situation for the Weibull distribution.  Assume we need the 

sample size “n” to test the Weibull Mean Life “m”, when shape 

parameter β is known, and Types I and II errors (producer and 

consumer risks), device reliability R and test time T are given.  

Weibull also involves a scale or characteristic life parameter η 

(now a “nuisance” parameter) that we, of necessity, need to 

substitute out of our equations.  

 

We follow the algorithm described in (1).  Using the Weibull 

density f(x), the cumulative distribution F(x), the mean life “m,” 

and the Reliability R(x): 
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We can construct a Test Plan (n, c) that yields a sample size “n” 

and a critical number “c” (maximum failures to be observed) 

that fulfills the error and mission time problem requirements.  

 

To achieve this, we assume that the r.v. “number of failures in 

test time T,” denoted “x” can be approximated by a Binomial (n, 

p) distribution.  The parameters are “n,” the number of trials or 

devices placed on test, and “p,” the probability of having a 

device failure at any trial: 

  

})/({1)(1)( TExpTRTFp   

 

We define a hypothesis test for device mean life “m”, that 

fulfills Types I and II errors α and β
*
, yielding Confidence (1-α) 

and Power (1-β
*
).  The two hypotheses Hi: m = mi for i = 0,1 

were originally based on the Weibull mean.  However, they are 

now converted, after some algebra, into hypotheses H’i: p = pi 

for i = 0,1, based on Binomial parameter “p”: 
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Since shape β is known, reliability R(T) = 1 - p is only a 

function of T/m, the known test time “T” and the hypothesized 

Weibull mean “m.”  We can then establish a system of two 

Binomial equations that fulfill the required Types I and II errors 

(or risks) of the problem: 
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Solving this system of two equations, we obtain the appropriate 

values of “c” and “n” for the problem. This is the least preferred 

method, given its computational difficulties and trial-and error 

approach to obtaining simultaneously “n” and “c”. We still use 

it (once “n” and “c” are obtained by one of the other two 

methods described below) but only to check their accuracy. 

 

The alternative includes implementing a graphical method for 

obtaining such “n” and “c” values. It is similar to the method for 

obtaining an acceptance plan from an OC curve (5).  Let’s 

explain its use through a numerical example.  

 

Say we seek the sample size “n” required to test that the mean 

“m” of a Weibull life is 5000 hours, versus that is 1000 hours.  

The time T available for testing each device is only 500 hours, 

and both risks α and β
*
 are 0.01.  The Weibull shape parameter 

is known to be β = 2.  We first need to calculate the two pi, for i 

= 0, 1, from the equations given above:   
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Then, we place the two pi values obtained on the left scale of the 

Acceptance Plan Nomograph (Refs. 1, 5, 7). Probabilities for 

Confidence (1-α) = 1- 0.01= 0.99 and Type II Error β
*
=0.01 are 

placed on the right hand scale of Acceptance Plan Nomograph.  

 

Finally, we draw two connecting lines for these pairs of points, 

(p0,1-α) and (p1,β
*
), obtaining values n = 46 and c = 2 in the 

chart margins. These values are obtained by projecting the 

intersection point of these two lines, in the margin scales.   

 

We can then check the resulting n and c values, by substituting 

them, jointly with the values pi for i = 0,1 and α and β
*
, in the 

above Binomial equations. That is:   
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There exists however, a third alternative or method for this 

problem, consisting in certain approximations that allow us to 

avoid the above graphical procedures.  When the sample size is 

large, say n > 20, the r.v. Number of Failures approximates the 

Normal, with μ = np and σ
2
 = np(1-p).  We can then, using the 

same two hypothesized pi, for i = 0,1, and the two errors or risks 

α and β
*
 given above, establish a system of two simultaneous 

equations to find adequate values for both n and c: 
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Here, the zα are the Normal Standard percentiles for probability 

α. Solving this system for “n” and “c”, we obtain the equations 

that will yield the sample size ‘n’ and the critical number ‘c’ 

fulfilling the problem requirements: 
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For the same numerical example given before, and substituting 

proportions p0 = 0.0078 and p1 = 0.1783 in the above equations, 

we obtain the adequate values n and c: 
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We can verify how the three pairs of values (n, c), obtained by 

these three alternative methods, are very close, as expected. 

 

Sample Size and Nonparametric 
Estimation for Zero Failures 
In the previous section, we discussed the case where we 

assumed that the device life is Weibull.  Sometimes, we cannot 

(or do not want to) assume a specific distribution.  In such cases, 

we must use a nonparametric approach (also known as 

distribution free, since no distribution is specified).  However, 

there is a cost of not specifying a distribution: we now have to 

define the test length as equal to the Mission Time (not less, as 

we did above). 

 

We again place “n” random, identically distributed, and 

independent items on a life test, now for the pre-specified 

Mission Time length “T.”  Each item will either fail or pass the 

test of length T.  Hence, each item on test is an independent 

Bernoulli trial and the r.v. number of observed failures “x”, out 

of “n” trials, is distributed Binomial.  The failure probability is 

p= 1 - R, where R is the probability that any item survives 

mission time T. Using the Binomial tables and the required 

reliability R, we calculate the sample size “n” that provides the 

“Confidence” (1 - ) required in the problem statement. 

 

For example, to demonstrate a reliability R = 0.95, with a 

Confidence 1- = 0.9, for a Mission Time of T hours and no 

failures, we place “n” devices on a test of length T.  Each device 

can fail the test with probability p = 1- R = 0.05.  Since zero 

failures implies that all “n” devices “survive”, we search the 

Binomial tables for a convenient sample size “n.”  This “n” 

must yield zero failures (c = 0), or equivalently twenty 

survivals, with Confidence 1-  = 0.9.  The Binomial (n, p) 

equation is then: 
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Since the required Confidence = 1 – α = 0.9 and zero failures is 

c = 0, we have: 

 

P {Observing NO failures} = (1-p)
n
 = R

n
 = (0.95) 

n
 = α = 0.1   

=> (0.95) 
45

 = 0.0994 ≈ 0.1, for n ≈ 45. 
 

Hence, a sample of size n = 45 yields a confidence close to 0.9, 

of finding zero failures (c=0) in a life test of Mission Time T, 

when the reliability for this mission time T is 0.95. 

 

However, searching the Binomial (n,p) tables for a suitable “n” 

can be a tedious and time  consuming task.  We can instead use 

an equivalent equation, derived from such Binomial probability 

for the Confidence, for the case of zero failures (c=0) or twenty 

successes: 
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Taking Logarithms on both sides, noticing that p = 1 – R, and 

after some algebra, we obtain: 
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For example, applying this formula to the immediately 

preceding example, we obtain: 

 

4589.44
2227.0
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The results, obtained using the Binomial and the Logarithm 

formula, are close because both methods are totally equivalent.  

However, the second result (formula) is easier and faster to 

obtain than the first one (trial and error).  

 

Summarizing, we first establish the problem requirements 

regarding the desired (1-α) confidence and acceptable reliability 

R.  Then, we calculate the sample size n that satisfies these 

requirements.  Such sample size n can then be used to estimate 

the reliability R, with the desired confidence.  The life test must 

be of length equal to Mission Time T. 

 

Conclusions 
The theory for determining the sample size that meets a testing 

or estimation requirement is extensive and complex.  Such 

theory is driven by the type of parameter we want to estimate or 

test (i.e. location, scale, or shape) and by the distribution of the 

sampling statistic we use to implement the hypothesis test or to 

obtain the estimation. 

 

In this START Sheet, we have discussed the problem of 

estimating and testing some location parameters (mean, 

proportion) for the Normal, Exponential, and  Weibull 

distributions, and for distribution-free (nonparametric) 

situations.  Our objective has been to illustrate the logic and the 

statistical thinking behind the derivation of such sample sizes.  

A better understanding of this logic may help practicing 

engineers to better implement such procedures. 

 

We have only discussed a few of the most widely used cases.  

There are many other situations of interest.  For a more 

extensive and in-depth treatment of this subject, the reader is 

referred to Chapter 13, pages 699 to 776, of Reference 1.  

 

An assessment of the complexity of these derivations may be 

provided by the fact that the referred Chapter 13 is the last one 

of this extensive, two-volume reliability handbook.  However, 

the  manifold advantages that deriving an adequate sample size 

for our problem provides in terms of savings in time and effort, 

far outweighs its theoretical complexities. 
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