FILINT MI WATER SYSTEM MISMANAGEMENT

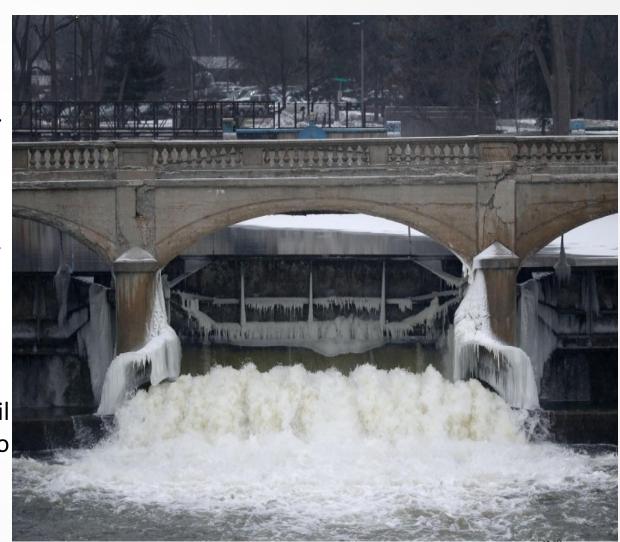
Six Sigma Syllabus

DMAIC

DEFINE PHASE

MEASURE PHASE

ANALYSE PHASE


IMPROVE PHASE CONTROL PHASE

1. Project Scope

Flint, located 70 miles north of Detroit, is a city of 98,310, where 41.2% of residents live below the poverty line.

The Flint water crisis began in 2014 when the Flint River became the drinking water source for the city of Flint, Michigan. Due to insufficient water treatment, over 100,000 residents were potentially exposed to high levels of lead in the drinking water. A federal state of emergency was declared in January, 2016 and Flint residents were instructed to use only bottle or filtered water for drinking and bathing. As of early 2017, the water quality had returned to acceptable levels, however residents were instructed to continue to use bottled or filtered water until all the lead pipes have been replaced, which is expected to be completed no sooner than 2019.

2. Mission Statement

- Improve the water quality and reduce the lead content
- Reconstruction of the old piping system
- Improve the structure of the government
- Increase personal income
- Improve the population distribution

Pumping water

from Flint River

Add lime to control

Old piping system

lead remaining

Residence

(including researchers)

Government

responding

3.COPQ Analysis

Customer

Acceptance cost

Acceptance cost

Acceptance cost

New equipment for test

and construct cost

In-process and final

testing cost, Quality

audits cost

Internal disputes

among departments

Prevention

Process planning and

control cost

Quality planning of

new source cost

The process of water

treatment cost

Contructing system cost,

planning cost

Process planning cost,

Control cost

Process	Internal Fail	External Fail	Appraisal
New piping system	Redesign the piping	New adjustments for	

system cost

Rework of pumping

cost, Retesting cost

Material of lime cost,

Retesting cost

Retesting the old pipes cost,

Extra mentor of researchers

cost

Reinspection cost,

Downtime of research

cost

Downtime cost, Extra

mentor cost, Non-value

the new system cost

Adjustments to new

water source cost,

Penalties cost

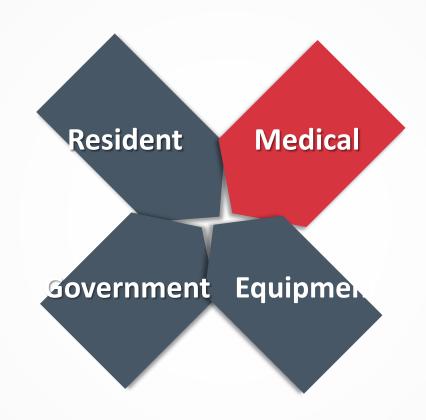
Penalties for useless

work cost

Potential loss of

customers cost

Complains from


citizens cost

Delays,

court/paperwork costs

4. Customers' Concerns

- Resource quality
- Official response
- Scientific testing report
- Medical care condition
- Water cost
- Residents complains
- Official staff condition
- Result of water test
- Financial burden
- Medical response
- Whether there is new water source

- Government support
- Financial supply
- Residents condition
- Water treatment
- Environmental problems

- Pipe System condition
- Testing equipment
- Equipment for medical care
- Equipment for constructing

The latent reasons for the inefficient response and improper decisions from the government

The real poverty conditions of residents in Flint city

5. Uncovered

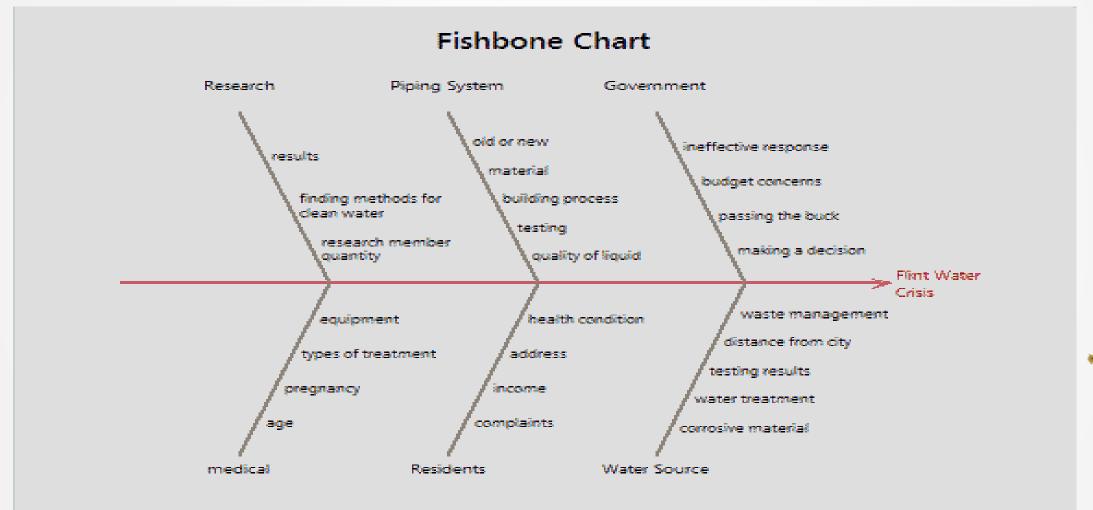
issues

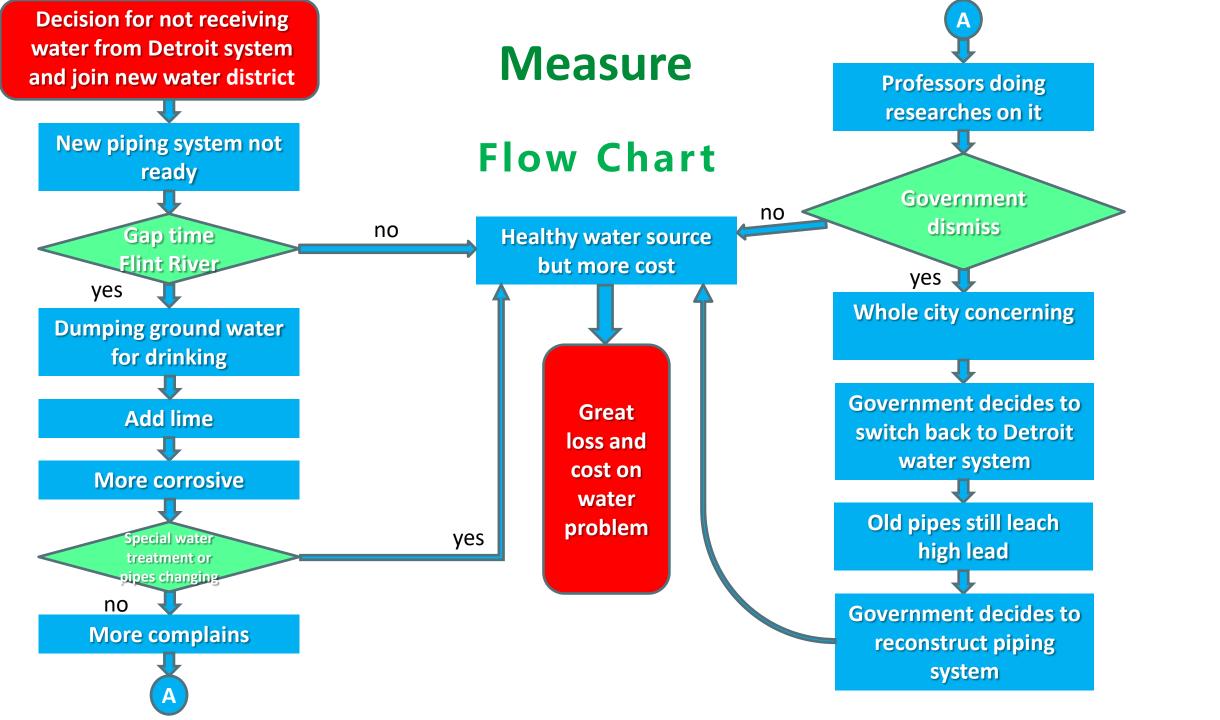
The population problems in the Flint City

The economy problems in the Flint City

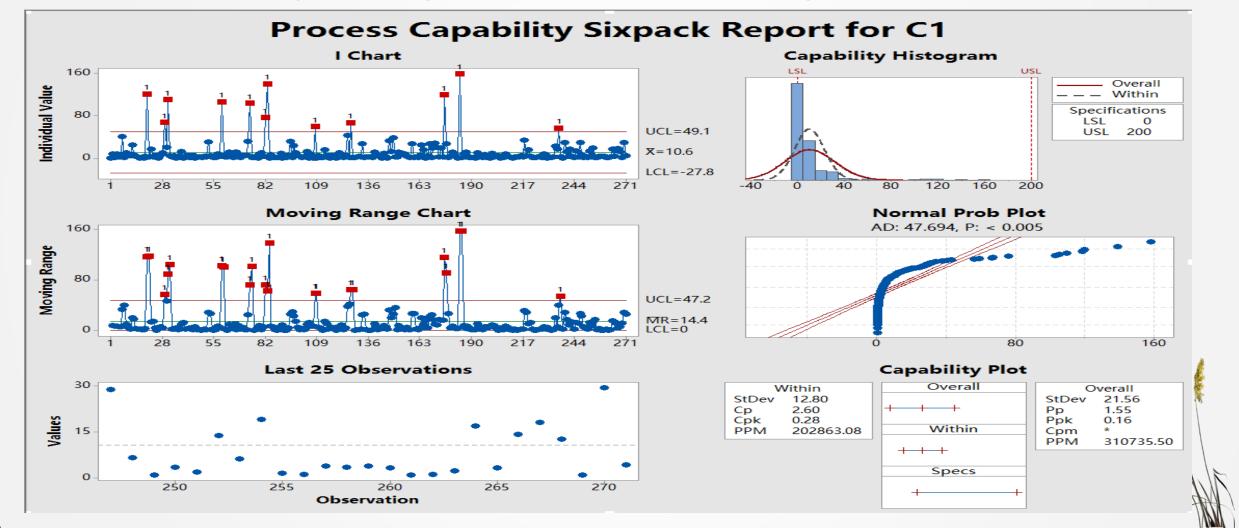
6. Project Team Launch

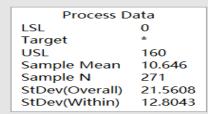
The project will assign people from different kind of departments to act as different roles in the water testing and piping reconstruction process:

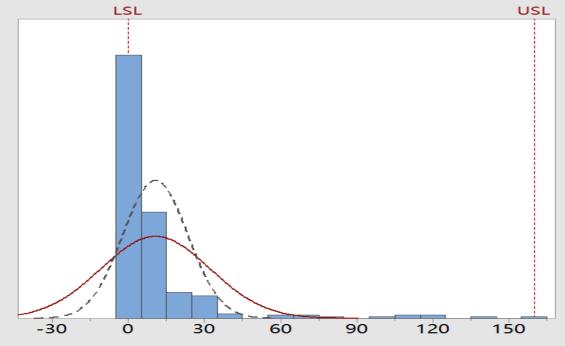

- Leader: Department Director of the water supply system
- Measuring and Survey: Research team from science department
- Recorder: Support Government officials
- Construction: Supplier, Engineering team, Industry Experts
- Facilitator: Support Staff

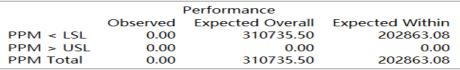

1. Affinity chart and Fish Bone Chart

Government	Water Source	Piping System	Residents	Researchers	Medical
Ineffective response	Corrosive compounds	Old/new	Complaints	Results	Age of affected persons
Budget	Water treatment	Material	Income	Methods	Pregnant women
Funding	Testing results	Pluming	Addresses	Treatment	Human medication and treatment
Suggestions	Geographic boundaries	Testing results	Health conditions	Number of participants	Medical assistance
Proposed solutions	Water pollution from pesticides/fertilizers	Water quality	experience		


1. Affinity chart and Fish Bone Chart




2. Process Capability and Six Pack Analysis


2. Process Capability and Six Pack Analysis

Process Capability Report for C1

—— Overall ——— Within	
Overall Ca	apability
Pp	1.24
PPL	0.16
PPU	2.31
Ppk	0.16
Cpm	*
Potential (With	in) Capability
Ср	2.08
CPL	0.28
CPU	3.89
Cpk	0.28

3. OC curves

As for the Flint water mismanagement problem, we have to firstly calculate the break-even point to determine the sampling inspection is proper. The total number of testing water is N=2300; the number of the water in sample is n=124; proportion defective in lot is p=0.4%; the damage cost incurred if a defective slips through inspection is A=1000; the inspection cost per item is I=8; therefore, the break-event $p_b = \frac{I}{A} = 0.8\%$; for the value of p is smaller than the value of p_b , so that the total cost will be lowest with sampling inspection.

3. OC curves

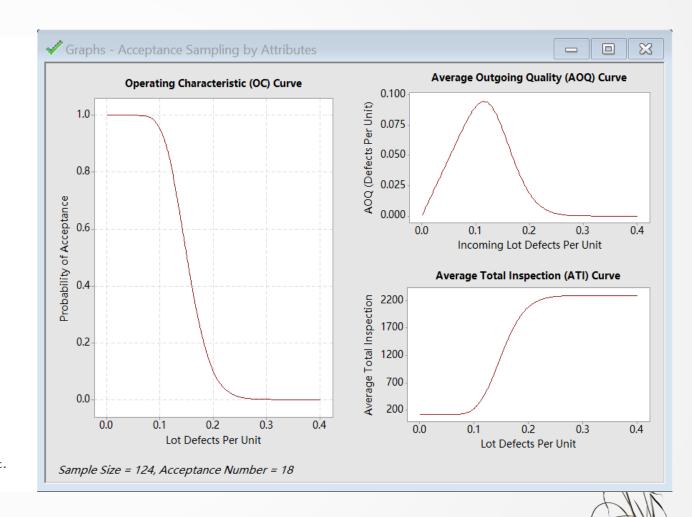
Measurement type: Number of defects Lot quality in defects per unit

Lot size: 2300

Use Poisson distribution to calculate probability of acceptance

Acceptable Quality Level (AQL) 0.1 Producer's Risk (α) 0.05

Rejectable Quality Level (RQL or LTPD) 0.2 Consumer's Risk (β) 0.1


Generated Plan(s)

Sample Size 124 Acceptance Number 18

Accept lot if number of defects in 124 items ≤ 18; Otherwise reject.

Defects Probability Probability
Per Unit Accepting Rejecting AOQ ATI
0.1 0.951 0.049 0.09000 230.0
0.2 0.099 0.901 0.01864 2085.6

Average outgoing quality limit (AOQL) = 0.09441 at 0.11544 defects per unit.

4. MSA and Gage R&R Analysis

Measurement Scope

- Sampling: Choose 10 different areas to sample
- Operators: 3 researchers in the same apartment
- Number of Trials: 2
- Number of Samples: 30(3 samples in each area for each researcher to measure the 3 different part of the pipes: inlet, inside the pipes, outlet.)

4. MSA and Gage R&R Analysis

ANOVA Test

ANOVA: Measurement versus Part, Operator

```
Factor Type Levels Values
Part fixed 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Operator fixed 3 A, B, C
```

Analysis of Variance for Measurement

```
        Source
        DF
        SS
        MS
        F
        P

        Part
        9
        29.4188
        3.2688
        77.98
        0.000

        Operator
        2
        0.0231
        0.0116
        0.28
        0.760

        Part*Operator
        18
        2.9347
        0.1630
        3.89
        0.000

        Error
        60
        2.5152
        0.0419

        Total
        89
        34.8918
```

```
S = 0.204742  R-Sq = 92.79\%  R-Sq(adj) = 89.31\%
```


4. MSA and Gage R&R Analysis

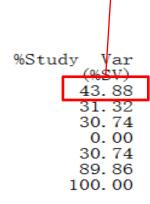
Gage R&R--ANOVA Method

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

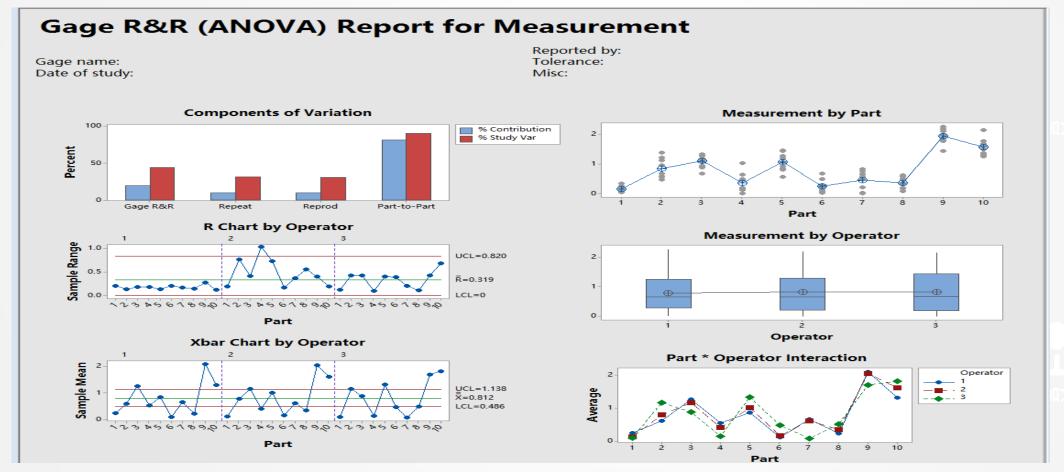
Source Part	_	SS 29. 4188	3. 26875	20.0486	0.000
Operator	2	0.0231	0. 01100	0. 0709	0.932
Part * Operator	18	2. 9347	0. 16304	3.8894	0.000
Repeatability	60	2.5152	0.04192		
Total	89	34. 8918			

 α to remove interaction term = 0.05


Gage R&R

Source Total Gage R&R Repeatability Reproducibility Operator Operator*Part Part-To-Part	VarComp 0.082293 0.041919 0.040374 0.000000 0.040374 0.345079	%Contribution (of VarComp) 19.26 9.81 9.45 0.00 9.45 80.74
Part-To-Part	0. 345079	80. 74
Total Variation	0. 427372	100. 00

	Source Total Gage R&R Repeatability Reproducibility Operator Operator*Part Part-To-Part Total Variation	StdDev (SD) 0. 286868 0. 204742 0. 200933 0. 000000 0. 200933 0. 587434 0. 653737	Study Var (6 × SD) 1.72121 1.22845 1.20560 0.00000 1.20560 3.52461 3.92242
--	---	--	--


Number of Distinct Categories = 2

>10% the measurement system is unacceptable and should be improved.

4. MSA and Gage R&R Analysis

Gage R&R--ANOVA Method

4. MSA and Gage R&R Analysis

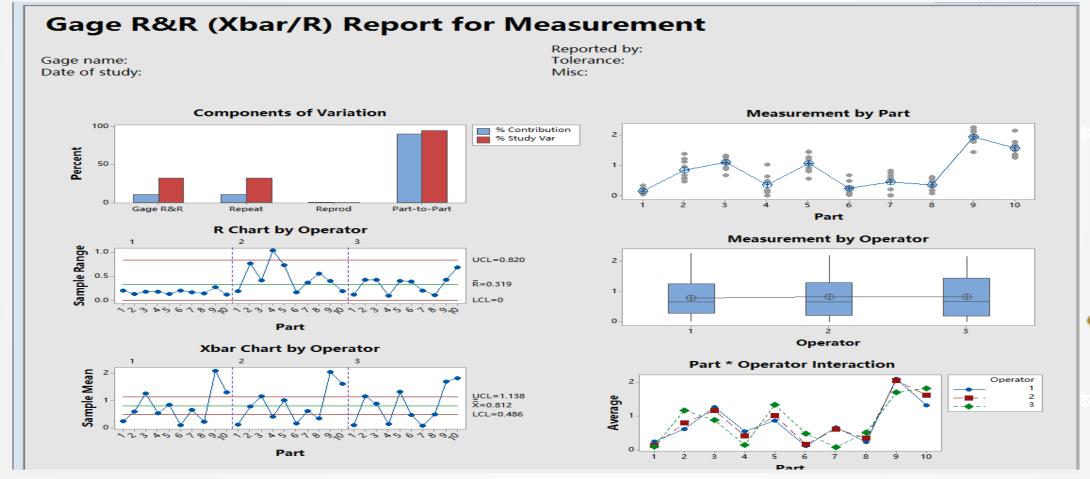
Gage R&R--XBar/R Method

Gage R&R Study - XBar/R Method

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0.035440	10. 13
Repeatability	0.035440	10. 13
Reproducibility	0.000000	0. 00
Part-To-Part	0.314485	89. 87
Total Variation	0.349924	100.00

Var (%SV) 31. 82 31. 82 0. 00 94. 80

>10% the measurement system is unacceptable and should be improved.


%Study Study Var Source StdDev (SD) SD) Total Gage R&R 0.188254 1. 12952 Repeatability 0.188254 1. 12952 31.82 Reproducibility 0.000000 0.00000 Part-To-Part 0.560789 3.36474 94.80 100.00 Total Variation 0.591544 3, 54926

添加文本

Number of Distinct Categories = 4

4. MSA and Gage R&R Analysis

Gage R&R--XBar/R Method

4. MSA and Gage R&R Analysis

Attribute Agreement Analysis for Result

Sample	Attribute	inspector	Result
1	go	1	go
2	no	1	no
3	no	1	no
4	no	1	no
5	no	1	no
6	no	1	no
7	no	1	no
8	no	1	no
9	no	1	no
10	no	1	no
11	no	1	no
12	no	1	no
13	no	1	no
14	no	1	no
15	go	1	go
16	go	1	go
17	go	1	no
18	no	1	no
19	go	1	go
20	no	1	no

Sample	Attribute	inspector	Result
1	go	1	go
2	no	1	no
3	no	1	no
4	no	1	no
5	no	1	no
6	no	1	no
7	no	1	no
8	no	1	no
9	no	1	no
10	no	1	no
11	no	1	no
12	no	1	no
13	no	1	no
14	no	1	no
15	go	1	go
16	go	1	go
17	go	1	no
18	no	1	no
19	go	1	go
20	no	1	no

Sample	Attribute	inspector	Result
1	go	2	go
2	no	2	no
3	no	2	no
4	no	2	no
5	no	2	no
6	no	2	no
7	no	2	no
8	no	2	no
9	no	2	no
10	no	2	no
11	no	2	no
12	no	2	no
13	no	2	no
14	no	2	no
15	go	2	go
16	go	2	go
17	go	2	no
18	no	2	no
19	go	2	go
20	no	2	no

Sample	Attribute	inspector	Result
1	go	2	go
2	no	2	no
3	no	2	no
4	no	2	no
5	no	2	no
6	no	2	no
7	no	2	no
8	no	2	no
9	no	2	no
10	no	2	no
11	no	2	no
12	no	2	no
13	no	2	no
14	no	2	no
15	go	2	go
16	go	2	no
17	go	2	go
18	no	2	no
19	go	2	go
20	no	2	no

4. MSA and Gage R&R Analysis

Attribute Agreement Analysis for Result

Attribute Agreement Analysis for Result

Within Appraisers

Assessment Agreement

Appraiser	#	Inspected	#	Matched	Percent	959	% CI
1		20		20	100.00	(86.09,	100.00)
2		20		18	90.00	(68.30,	98. 77)

Matched: Appraiser agrees with him/herself across trials.

Fleiss' Kappa Statistics

Appraiser 1 2	go no go	1. 0000 1. 0000 0. 6875	0. 223607 0. 223607 0. 223607	4. 47214 4. 47214 3. 07459	0. 0000 0. 0011
	no	0.6875	0. 223607	3.07459	0.0011

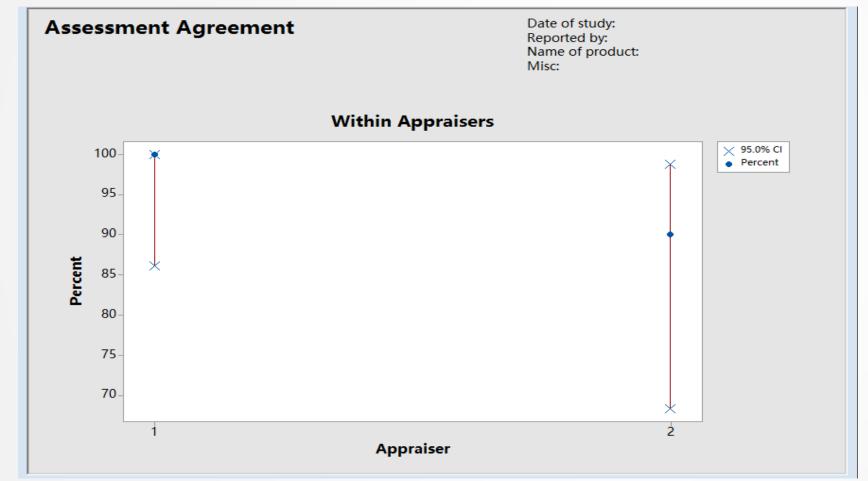
Between Appraisers

Assessment Agreement

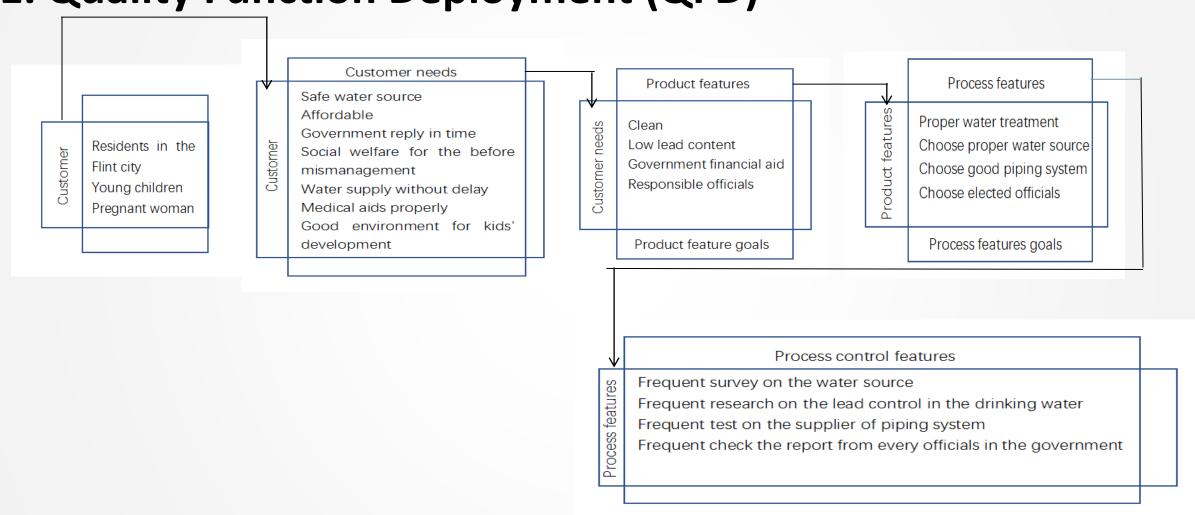
```
# Inspected # Matched Percent 95% CI 20 18 90.00 (68.30, 98.77)
```

Matched: All appraisers' assessments agree with each other.

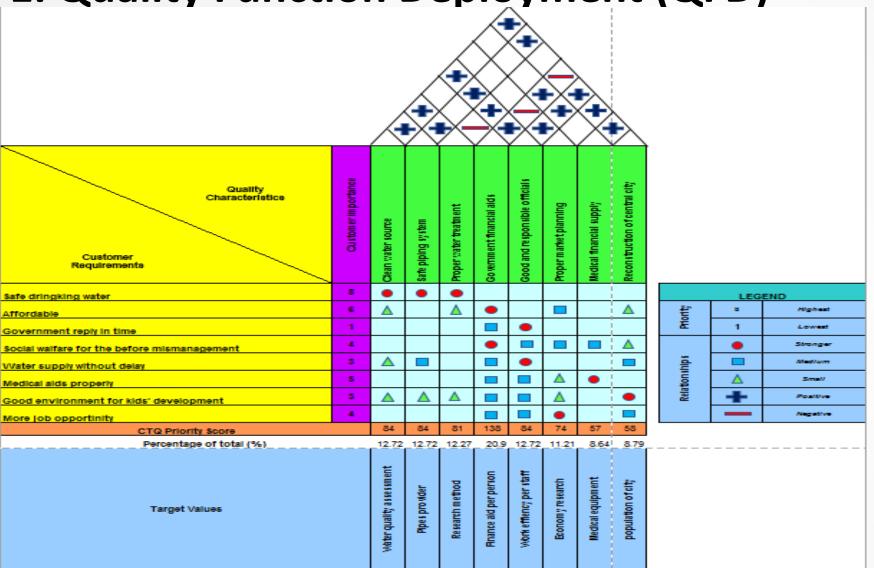
Fleiss' Kappa Statistics


Response	Kappa	SE Kappa	Z	P(vs > 0)
go	0.84375	0.0912871	9. 24282	0.0000
no	0.84375	0.0912871	9. 24282	0.0000

Attribute Agreement Analysis


4. MSA and Gage R&R Analysis

Attribute Agreement Analysis for Result



1. Quality Function Deployment (QFD)

1. Quality Function Deployment (QFD)

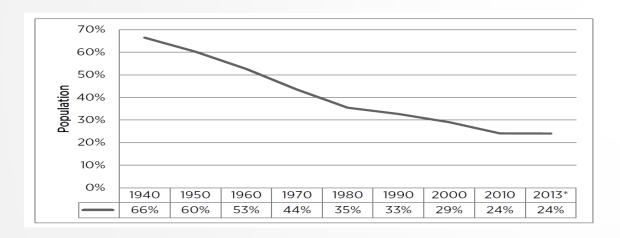
House of Quality

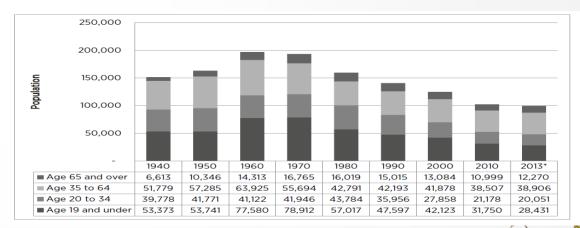
2. Root Cause Analysis

Government Part

The City of Flint was incorporated in 1855. The present charter, adopted in 1974, provides for a strong mayor-council form of government. The city council consists of nine members, each representing a ward and serving four-year terms. The mayor, also elected to a four-year term, is the chief executive officer. The mayor appoints a city administrator, as well as principal officials and department heads. The county and its elected officials also serve as regional problem solvers.

Emergency managers are accountable to the governor. In Flint's case, this was a governor who did not receive a majority of the vote from the city's residents. Flint was being ruled by an official who was not elected by or responsible to Flint's residents.

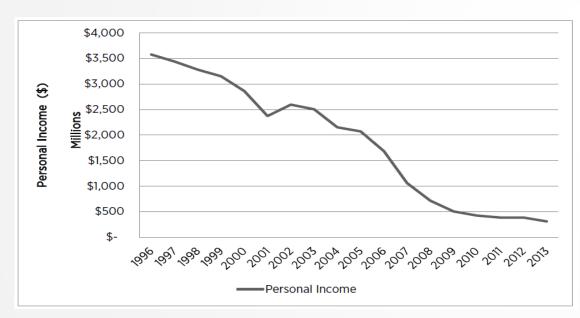

When rulers are not accountable to their subjects, they have an easier time making decisions that defy the preferences and even best interests of those people.

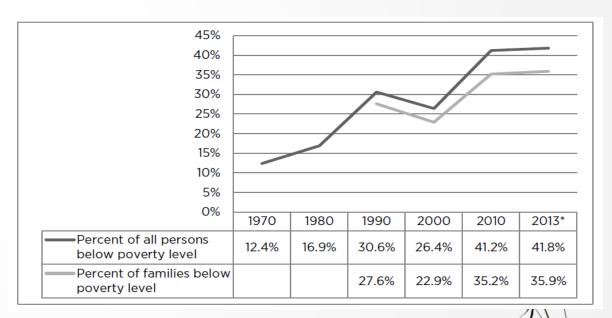

Who was in charge? This overlapping structure of governments, with both appointed and elected officials, makes it possible for problematic decisions to slip through the cracks and makes it easy to shift blame.

2. Root Cause Analysis

Population Part

Flint's population has been decentralizing and aging over the past several decades which should be blamed for one of the causes of the Financial burden in the Flint city.

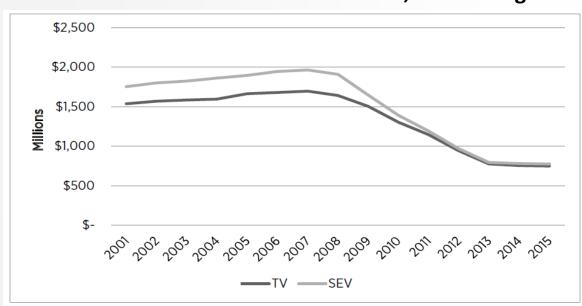

Flint City Population as a Percent of MSA

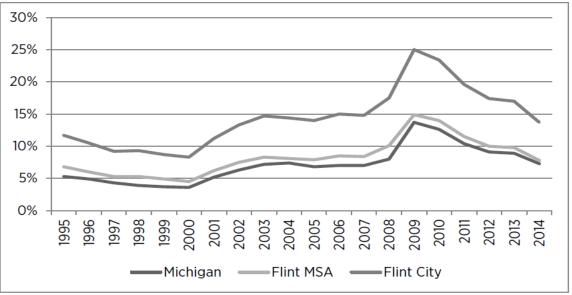

Age of Flint Population

2. Root Cause Analysis

Personal Poverty

While the economic climate in the 1990s and 2000s worsened the city of Flint's employment and income trends, many decades of above average poverty rates signal long-term fiscal stress.

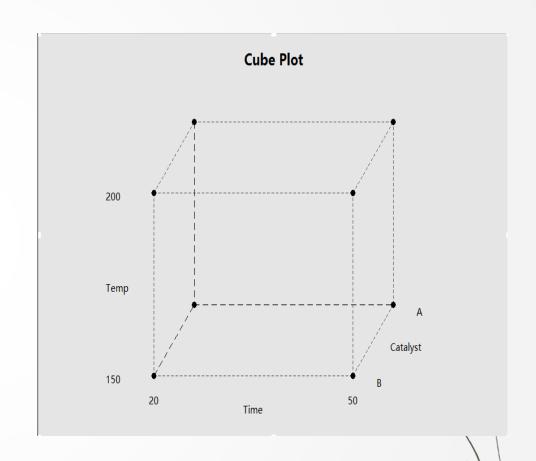

Flint Personal Income


Population of Flint Below Poverty Level

2. Root Cause Analysis

Economy Problem

The jobless rate rose during the 2001 recession and did not see sustained recovery until after the Great Recession ended in 2009; however, absolute unemployment rates tend to be higher in the city compared to the MSA and the state as a whole. While there has been a drop in unemployment in the city of Flint since the end of the Great Recession, it is still higher than pre-2001 recession levels



State Equalized Value (SEV) and Taxable Value (TV) – Flint

Flint Jobless Rate

Factor	Low Level (-1)	High Level (+1)
Time	20	50
Temp	150	200
Catalyst	В	A

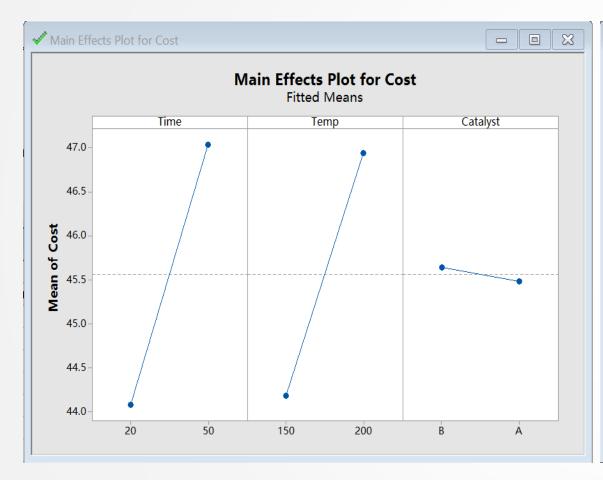
1.DOE (Design of experiment)

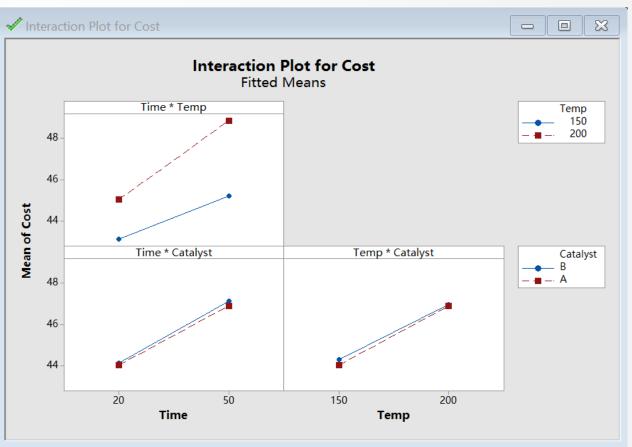
				Easterial	Evnorimo	nto 242 /F	OE 460	١		Bun Boou	lto.	
_		_			-	ents 2^3 (E		•		Run Resu	_	
Run		Α	В	С	AB	AC	BC	ABC	Y1	Y2	Avg.	Va
	1	-1	-1	-1	1	1	1	-1	43.39	43.06	43.228	(
	2	1	-1	-1	-1	-1	1	1	45.60	45.15	45.376	(
	3	-1	1	-1	-1	1	-1	1	44.71	45.33	45.019	(
	4	1	1	-1	1	-1	-1	-1	49.20	48.67	48.938	(
	5	-1	-1	1	1	-1	-1	1	42.76	43.30	43.031	(
	6	1	-1	1	-1	1	-1	-1	44.76	45.39	45.076	(
	7	-1	1	1	-1	-1	1	-1	45.19	44.89	45.041	(
	8	1	1	1	1	1	1	1	48.47	49.06	48.766	(
TotSum									364.09	364.86	364.47	
SumY+		188.16	187.76	181.91	183.96	182.09	182.41	182.19	_			
SumY-		176.32	176.71	182.56	180.51	182.39	182.06	182.28	Pa	ireto cha	rt of fact	ors
AvgY+		47.04	46.94	45.48	45.99	45.52	45.60	45.55	4.00 —			
AvgY-		44.08	44.18	45.64	45.13	45.60	45.52	45.57	4.00	-		
Effect		2.96	2.76	-0.16	0.86	-0.07	0.09	-0.02	2.00 —			
Var+		0.155	0.140	0.142	0.130	0.157	0.095	0.154	0.00			
Var-		0.109	0.125	0.122	0.135	0.107	0.170	0.111	1	2 3	4 5	6
F		0.705	0.890	0.861	1.043	0.684	1.788	0.722	-2.00 —			

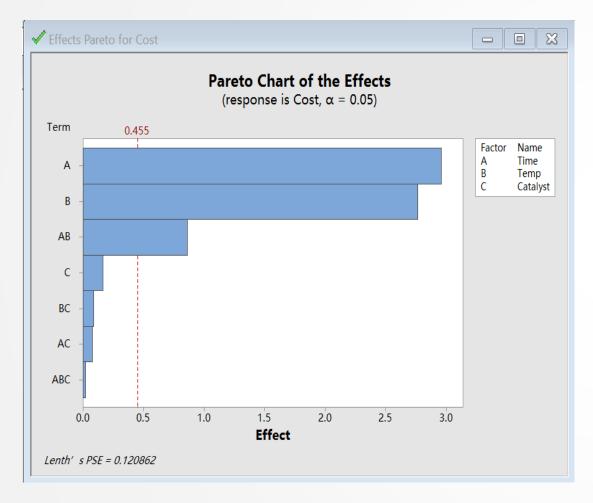
Var.

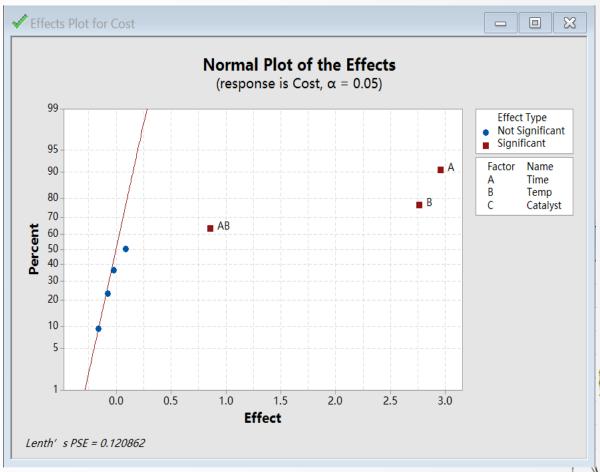
0.055 0.099 0.193 0.142 0.143 0.201 0.046 0.179

1.06

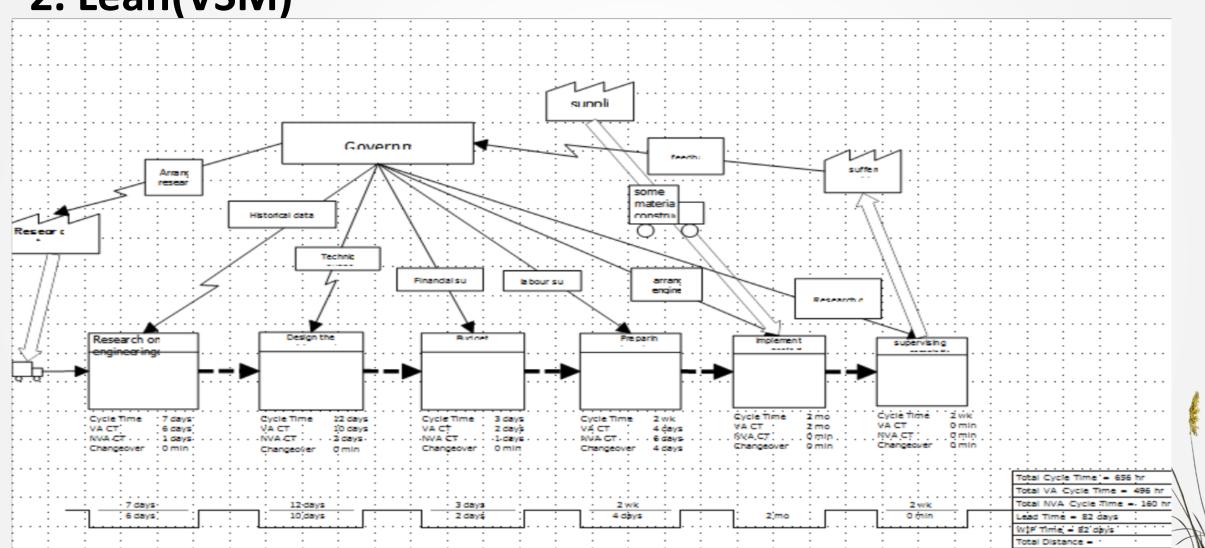

C 1	C2	C3	C 4	C5	C6	C 7	C 8	C9	C10	C11 _
Run	Time	Temp	Catalyst	AB	AC	ВС	ABC	Y1	Y2	Avg.
1	-1	-1	-1	1	1	1	-1	43.39	43.06	43.228
2	1	-1	-1	-1	-1	1	1	45.60	45.15	45.376
3	-1	1	-1	-1	1	-1	1	44.71	45.33	45.019
4	1	1	-1	1	-1	-1	-1	49.20	48.67	48.938
5	-1	-1	1	1	-1	-1	1	42.76	43.30	43.031
6	1	-1	1	-1	1	-1	-1	44.76	45.39	45.076
7	-1	1	1	-1	-1	1	-1	45.19	44.89	45.041
8	1	1	1	1	1	1	1	48.47	49.06	48.766



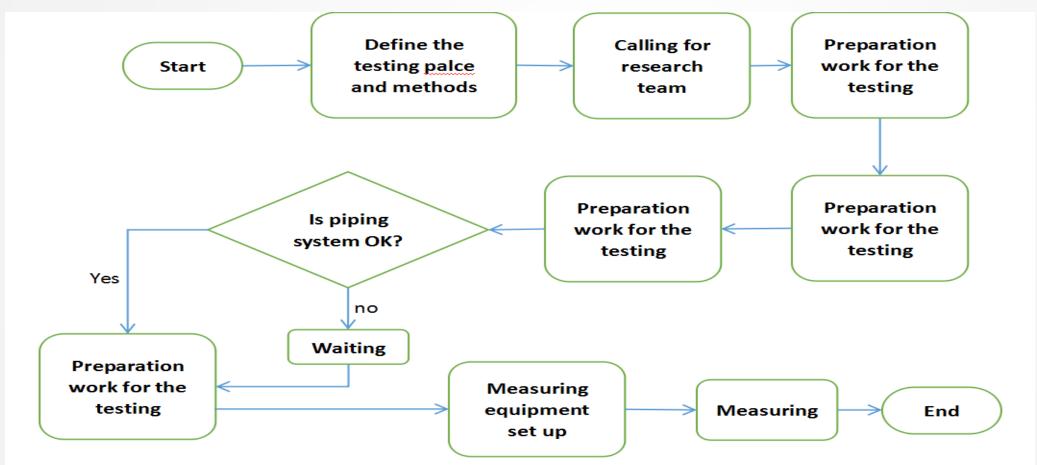

Term Constant	Effect		SE Coef 0.0337		P-Value 0.000	VIF
Time	2.9594	1.4797	0.0337	43.97	0.000	1.00
Temp	2.7632	1.3816	0.0337	41.05	0.000	1.00
Catalyst	-0. 1618	-0.0809	0.0337	-2.40	0.096	1.00
Time*Temp	0.8624	0.4312	0.0337	12.81	0.001	1.00


Factor	Has Effect?
Time	Yes
Temp	Yes
Catalyst	No
Time * Temp	Yes
Time * Catalyst	No
Temp * Catalyst	No

1.DOE (Design of experiment)

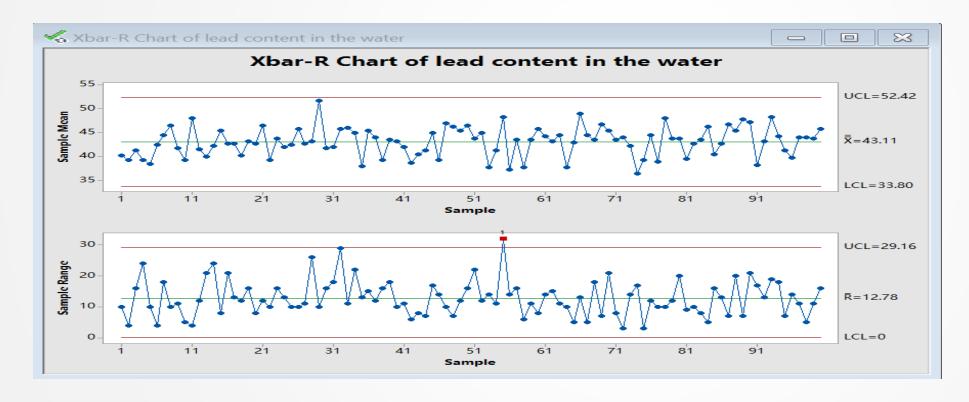

Factor	Has Effect?
Time	Yes
Temp	Yes
Catalyst	No
Time * Temp	Yes
Time * Catalyst	No
Temp * Catalyst	No

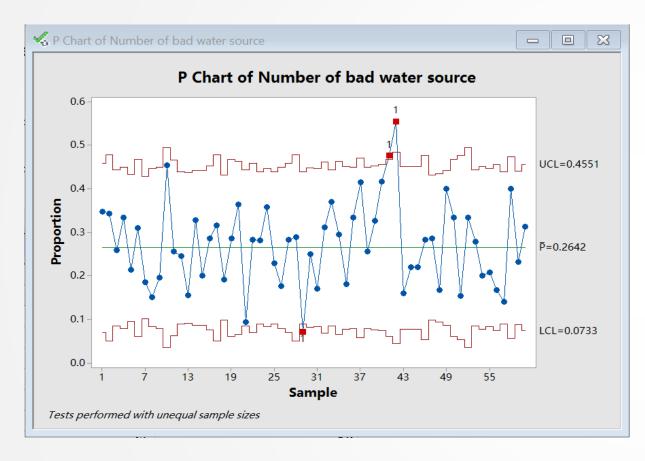
Term	Coef
Constant	45.5592
Time	1.4797
Temp	1.3816
Time*Temp	0.4312

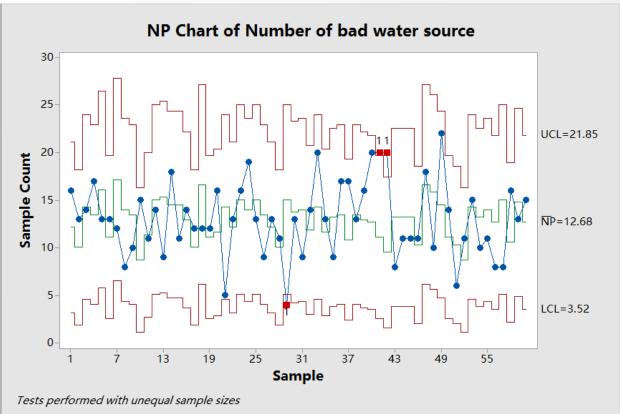

Y = 45.5592 + 1.4797A + 1.3816B + .4312AB

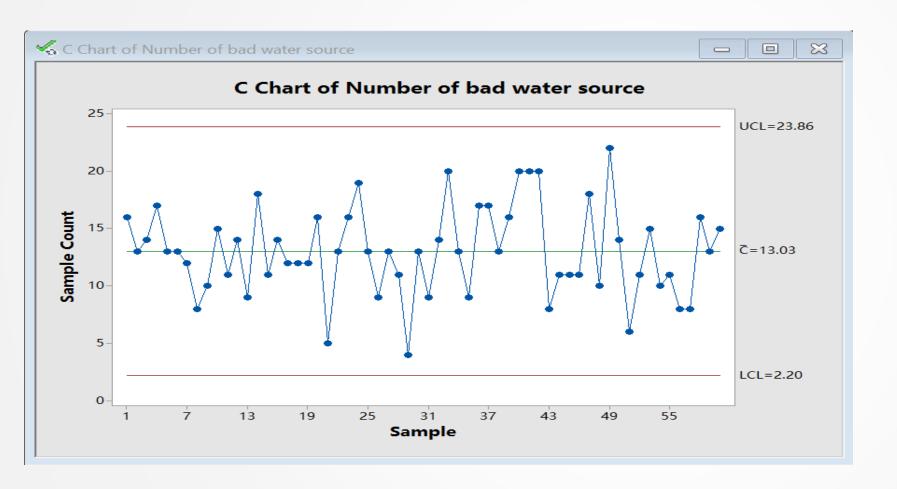
2. Lean(VSM)

1. SPC Control Chart


Control Chart Guideline


2. X-bar Chart


We used the data of the Flint water lead concentration in 4 different groups which each group has 100 data points


2. Attribute Chart

3. C Chart

4. Control plan

Government Part: Democratic election

Population Part: Reconstruction of center

Personal Poverty: Increasing job opportunity

Economy Problem: Broaden their marketing area (Difficult)

References

- [1] http://www.cnn.com/2016/03/04/us/flint-water-crisis-fast-facts/
- [2] Lindsey Bever, Amid Flint crisis, Walmart, Coca-Cola, Nestlé and PepsiCo to donate millions of water bottles, Washington Post (January 26, 2016).

https://www.washingtonpost.com/news/post-nation/wp/2016/01/26/in-flint-walmart-coca-cola-nestle-and-pepsico-will-donate-millions-of-water-bottles-to-schoolchildren/?utm_term=.f14292a383ea

[3] "State unveils big plans for Flint recovery after water crisis". The Flint Journal. Michigan Live. March 21, 2016. Retrieved March 21, 2016.

http://www.mlive.com/news/flint/index.ssf/2016/03/state_unveils_actions_plans_fo.html

- [4] Flint water has fallen below federal lead limit The Associated Press via MLive.com, January 24, 2017
- [5] Officials say it may take 3 more years to replace Flint's water pipes The Flint Journal via MLive.com, January 25, 2017
- [6] The Flint Fiscal Playbook Mary Doidge2, Eric Scorsone, Ph.D., Traci Taylor, M.S., Josh Sapotichne, Ph.D., Erika Rosebrook, Danielle Kaminski
- [7] http://www.upworthy.com/flints-massive-water-poisoning-all-started-with-an-innocent-enough-wte-at-city-council
- [8] https://www.washingtonpost.com/news/monkey-cage/wp/2016/02/08/heres-the-political-history-that-led-to-flints-shocking-water-crisis/?utm_term=.b53e466bfb63

