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Introduction
Most statistical methods assume an underlying distribution in
the derivation of their results.  However, when we assume that
our data follow a specific distribution we are taking a serious
risk.  If such distribution does not hold, then the results
obtained may be invalid.  For example, the confidence levels
of the confidence intervals (CI) or hypotheses tests imple-
mented [1, 2, and 5] may be completely off.  Consequences of
miss specifying the distribution may prove very costly.  One
way to deal with this problem is checking the distribution
assumptions carefully.

There are two main approaches to checking distribution
assumptions [3, 4].  One is via empirical procedures, which
are easy to understand and implement and are based on intu-
itive and graphical properties of the distribution that we want
to assess.  Empirical procedures can be used to check and
validate distribution assumptions.  Several of them have been
discussed at length in other RAC START sheets [6, 7, and 8].  

There are also other, more formal, procedures to assess the
underlying distribution of a data set.  These are the Goodness
of Fit (GoF) tests, based on statistical theory.  They are
numerically convoluted and usually require specific software
to aid the user through their lengthy calculations.  But their
results are quantifiable and more reliable than those from the
empirical procedure [9] are.  Here, we are interested in those
theoretical GoF procedures, specialized for small samples.
Among them, the Anderson-Darling (AD) and the

Kolmogorov-Smirnov (KS) tests stand out.  This START
sheet discusses the latter of the two; the former (AD) is dis-
cussed in [10].

In what follows we overview some issues associated with the
implementation of the KS GoF test, especially when assess-
ing the Exponential, Weibull, Normal and Lognormal distri-
bution assumptions.  For, these distributions are widely used
in quality and reliability (RMQA) work.  We first overview
some theoretical considerations that will help us better
understand (and use) the underlying statistical theory behind
these GoF tests.  Then, we develop several numerical and
graphical examples that illustrate how to implement and
interpret the GoF tests for fitting several distributions.

Some Statistical Background
Establishing the underlying distribution of a data set (or ran-
dom variable) is crucial for the correct implementation of
some statistical procedures.  For example both, the small sam-
ple t test and CI, for the population mean, require that the dis-
tribution of the underlying population is Normal.  Therefore,
we first need to establish (via GoF tests) such Normality
before we can correctly implement these statistical proce-
dures.

GoF tests are essentially based on either of two distribution
elements: the cumulative distribution function (CDF) or the
probability density function (PDF).  The Chi-Square test is
based on the PDF.  Both, the AD and KS GoF tests, use the
cumulative distribution function (CDF) approach and there-
fore belong to the class of “distance tests”.

We have selected the AD and KS, among the several distance
tests, for two reasons.  First, they are among the best distance
tests for small samples (and they can also be used for large
samples).  Secondly, both AD and KS have computerized ver-
sions in various statistical packages and, because of this, they
are widely used in practice.  In this START sheet, we will
demonstrate how to use the KS test with the Minitab software.

To implement distance tests, we follow a well-defined series
of steps.  First, we assume a pre-specified distribution (e.g.,
Normal).  Then, we estimate the distribution parameters (e.g.,
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mean and variance) from the data or obtain them from prior expe-
rience.  Such a process yields a distribution hypothesis, also called
the null hypothesis (or H0), with several parts that must be jointly
true.  The negation of the assumed distribution (or its parameters)
is the alternative hypothesis (also called H1).  We test the assumed
(hypothesized) distribution using the data set.  Finally, H0 is
rejected whenever any one of the several elements composing the
null hypothesis H0 is not supported by the data.

In the distance tests, when the assumed distribution is correct, the
theoretical (assumed) CDF (denoted F0) closely follows the
empirical, step function CDF (denoted Fn).  This is conceptually
illustrated in Figure 1.  There, the data are given as an ordered
sample {X1 < X2 < ... < Xn} and the assumed (H0) theoretical dis-
tribution has a CDF, F0(x).  Then we obtain the corresponding
GoF test statistic values.  Finally, we compare the theoretical and
empirical results.  If they agree (probabilistically) then the data
supports the assumed distribution.  If they do not, the distribution
assumption is rejected.

Figure 1.  Distance Goodness of Fit Test Conceptual Approach

There is, however, an important caveat to make.  Theoretically,
distance tests require the knowledge of the assumed distribution
parameters.  These are seldom known in practice.  Therefore,
adaptive procedures are used to circumvent this problem, when
implementing GoF tests in the real world (e.g., see [4], Chapter 7).
This is a major drawback of the KS GoF test, which otherwise is
very powerful and general.  In the examples we develop here
some of these adaptive procedures will be used.

Under a Normal Assumption, F0 is normal (mu, sigma).

Fitting a Normal Distribution Using the
Kolmogorov-Simirnov GoF Test
The KS GoF test is widely used in practice.  It is very versatile
(any continuous distribution can be fit with it), works well with
small samples and is included in statistical software packages.
In this section we develop an example using KS for testing
Normality.  In the next section we develop another one for test-

ing the Weibull assumption.  Finally, we develop a counter
example, where the assumption fails the test.

First, we use real data from Section 8.3.7 of MIL-HDBK-17
(1E), Composite Materials.  The data set (Table 1) contains six
tensile strengths, drawn from the same population.

Table 1.  Data for the KS GoF Test

We obtain the descriptive statistics (Table 2) yielding point esti-
mations of the assumed Normal distribution unknown parame-
ters:  sample mean and standard deviation.

Table 2.  Descriptive Statistics of the Data in Table 1

There are several computational methods for the KS [3, 4].
Here, we follow the KS test statistic version in [4] and a well-
defined scheme.  First, sort the data.  Then establish the assumed
distribution (null hypothesis) and estimate its parameters.  Then,
obtain both the theoretical (assumed CDF) distribution (F0) as
well as the empirical (Fn) at each data point.  Since KS is a dis-
tance test, we need to find the maximum distance |F0 - Fn|
between the theoretical and empirical distributions.  Its two basic
functions are defined as:

That is F0(Xi) is the assumed cumulative distribution function
evaluated at Xi and Fn(Xi) is the empirical distribution function
obtained by the proportion of the data smaller than Xi in the data
set size n.

Then, define:  D+ = Fn - F0 and D- = F0 - Fn-1 for every data point
Xi.  The KS statistic is:

D = Maximum of all D+ and D- (> 0); for i = 1, …, n      (1)

The KS logic is as follows:  if the maximum departure between
the assumed (CDF) and empirical distributions is small, then the
assumed CDF will likely be correct.  But if this discrepancy is
“large” then the assumed F0 is likely not the underlying data dis-
tribution.

As an example, we calculate the values for the smallest data
point (294.2) in Table 1.
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an error α', four times the a for which we are testing.  Critical
values are given in Table 4.  

Table 4.  KS CV for α = 0.05 and α' = 0.2 and n = 4(1)10

The KS statistic value (D = 0.155) is less than the corresponding
table value (0.521) for n = 6 and an error α = 0.05.  If the true
Normal parameters were used, the results for a would allow us to
assume the null hypothesis (H0) that the distribution of the pop-
ulation is Normal (315.8; 14.9).  Since the two Normal parame-
ters were estimated from the data, we must use an adaptive test
procedure.  We test at level α = 0.05 but compare the KS statis-
tic with the CV at level α' = 4*α = 4*0.05 = 0.2.  Hence, the
adaptive KS CV for this case would be 0.411, which is still larg-
er than the KS statistic value of 0.155.  

There are software versions of the KS GoF test available.  We
present, in Figure 2, the Minitab graphical version.  Verify how
D+, D- and D (KS Statistics) coincide with the hand calculations

in Table 3.  In addition, the Minitab version of the KS test pro-
vides the approximate p-value = 0.15 > α = 0.05 (also leading us
to assume Normality of the data).  Finally, the KS graph from the
Minitab program shows a linear trend.  This fact lends addition-
al support to the Normality assumption.  

Figure 2.  Computer (Minitab) Version of the KS GoF 
Test for Normality

Hence, since all results coincide, we can assume that the data
comes from a Normal (µ = 315.8; σ = 14.9) population.  The
stepwise KS GoF test procedure is in Table 5.

Which is the assumed normal probability evaluated at 294.2.

Which is the empirical probability at 294.2.

The resulting values are shown in Table 3.  The two columns of
KSINDEX denote Fn and Fn-1, respectively.  Column NormProb
denotes the evaluation of the data using the assumed (Normal)
distribution F0 and the last two columns are statistics D+ and D.
The result of the KS GoF test statistic (1) for this data set and
assumption is:

D = Maximum (D+, D-) = 0.1549

KS tables of critical values (CV) can be found in several texts [3,
4].  These CV are valid when the distribution parameters are
known.  When the parameters are estimated from the data, these
CV are only approximate.  One adaptive procedure uses a CV for
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Row DataSet F0 Fn Fn-1 D+=Fn-Fo D-=Fo-Fn-1
1 294.2 0.072711 0.16667 0.000000 0.093955 0.072711
2 308.5 0.311031 0.33333 0.166667 0.022302 0.144365
3 313.1 0.427334 0.50000 0.333333 0.072666 0.094001
4 317.7 0.550371 0.66667 0.500000 0.116295 0.050371
5 322.7 0.678425 0.83333 0.666667 0.154908 0.011759
6 338.7 0.938310 1.00000 0.833333 0.061690 0.104977

Max:            0.154908       0.144365

Table 3.  Intermediate Values for the KS GoF Test for Normality

Size “n” CV (0.20) CV (0.05)

4
5
6
7
8
9
10

0.494
0.446
0.411
0.381
0.358
0.339
0.322

0.624
0.564
0.521
0.486
0.457
0.432
0.411

For n>10, use the approximation
C.V. (0.05) = 1.36/√n
C.V. (0.20) = 1.07/√n

Approximation Error < 0.02
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Table 5.  Step-by-Step Summary of the KS GoF Test for

Normality
Finally, if we want to fit a Lognormal distribution, we first take
the logarithm of the data and then implement the above KS GoF
procedure on these transformed data.  For, if the original data is
Lognormal then its logarithm is Normally distributed and we can
use KS to test for Lognormality.

Fitting a Weibull Distribution Using the
Kolmogorov-Simirnov GoF Test
We now develop an example of testing for the Weibull assump-
tion, using the data in Table 6.  These data consist of six meas-
urements, drawn from the same Weibull (α = 10; β = 2) popula-
tion.  In our example, however, parameters are unknown and
estimated.

Table 6.  Data for Testing the Weibull Assumption

We obtain the descriptive statistics (Table 7) and, using graphi-
cal methods in [11], also the point estimations of the assumed
Weibull parameters: shape β = 1.3 and scale α = 8.7.  

Using the KS statistic (1) and following the procedures already
discussed in the previous section, we obtain the intermediate KS
results shown in Table 8.

Table 8.  Intermediate Values for the KS GoF Test for Weibull

The step-by-step procedure (Table 9) shows how the KS GoF
test statistic (1) value (0.23) is smaller than the KS table critical
values (0.52 or 0.411) for α = 0.05 and a sample of size n = 6.
Based on these results, we do not reject the hypothesis that the
population from where these data were obtained, is distributed
Weibull (α = 8.7; β = 1.3).  Again, recall that the KS test is the-
oretically used with the true (but usually unknown) distribution
parameters and not their estimations.  Therefore, when imple-
menting KS with parameters estimated from the data, use an
adaptive test procedure (e.g., α' = 4 times Error α), as we have
done in the present case.

Finally, assume we want to assess the data for the Exponential
(or any other continuous distribution) assumption.  In such case,
we obtain the Exponential mean (or any other appropriate distri-
bution parameter) and apply the KS procedure, described in this
section for the Weibull distribution.  But now, we use instead the

Exponential (or other pertinent probabilities) instead of the
Weibull, in Column 2 of Table 8.

Table 9.  Step-by-Step Summary of the KS GoF Test for the
Weibull

11.7216 10.4286 8.0204 7.5778 1.4298 4.1154

Table 7.  Descriptive Statistics

Row DataSet F0 Fn Fn-1 D+=Fn-Fo D-=Fo-Fn-1
1 1.430 0.091176 0.16667 0.000000 0.075491 0.091176
2 4.115 0.314692 0.33333 0.166667 0.018641 0.148025
3 7.578 0.566413 0.50000 0.333333 -0.066413 0.233079
4 8.020 0.593296 0.66667 0.500000 0.073371 0.093296
5 10.429 0.717949 0.83333 0.666667 0.115384 0.051282
6 11.722 0.770846 1.00000 0.833333 0.229154 -0.062488

Max:             0.229154          0.233079  

Variable N Mean Median StDev Min Max Q1 Q2
DataSet 6 7.22 7.80 3.86 1.43 11.72 3.44 10.75

• Establish the (Null Hypothesis) assumed distribution:  Weibull (α;
β).

• Estimate the Weibull parameters:  α = 8.7; β = 1.3.
• Sort the data in ascending order (Col.  1, Table 8).
• Obtain the Theoretical distribution (Col. 2).
• Obtain the Empirical distributions (Cols. 3 and 4).
• Obtain D+ and D- (Cols. 5 and 6).
• Obtain the KS statistic: D =  Maximum (D+, D-) = 0.2331.
• Obtain the KS table critical value(s)  =  0.521 (or 0.411; Adaptive).
• Since D < CV do not reject the Weibull (α = 8.7; β = 1.3).
• Software for Weibull version of KS is not commonly available.

• Establish the (H0) assumed distribution: Normal (µ; σ)
• Estimate the Normal parameters:  µ = 315.8; σ = 14.9
• Sort the data in ascending order (Col. 1, Table 3)
• Obtain the Theoretical distribution (Col. 2)
• Obtain the Empirical distributions (Cols. 3 & 4)
• Obtain D+ and D- (Cols. 5 & 6)
• Obtain the KS Statistic: D = Maximum (D+, D-) = 0.155
• Obtain the KS table critical value CV(α') = 0.411 (Adaptive)
• Since KS < CV assume the data come from a Normal (µ = 315.8;

σ = 14.9)
• When available, use the computer software and the p-value 
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The KS GoF test statistic (1) value (0.463) is now three times
higher than before.  It is larger than the KS test CV for α' = 0.2
(0.411) and smaller than the CV for α = 0.05 (0.52), both for n =
6.  Given that both Weibull parameters were estimated from the
sample, the test error α is different from the one stated and we
have to use an adaptive procedure (i.e., compare with 0.411).
Based on these adaptive KS results, we reject the hypothesis that
the population from where these data were obtained, is distrib-
uted Weibull (α = 350; β = 8).

The entire KS GoF test procedure is summarized in Table 11.

Table 11.  Step-by-Step Summary of the KS GoF Test for the
Weibull

Summary
In this START sheet we have discussed the important problem of
(GoF) assessment of statistical distributions, especially for small
samples, via the Kolmogorov Smirnov GoF test.  Alternatively,
one can also implement the Anderson Darling test [10].  These
tests can also be used with large samples.  We have provided sev-
eral numerical and graphical examples for testing the Normal,
Lognormal, Exponential and Weibull distributions, relevant in
reliability and maintainability studies (Lognormal is a special
case of the Normal).  We have also discussed some related theo-

retical and practical issues, providing several references to back-
ground information and further readings.  

The large sample GoF problem is often better dealt with via the
Chi-Square test [9].  For, it does not require knowledge of the
distribution parameters -something that both, AD and KS tests
do require and affects their power.  On the other hand, the Chi
Square GoF test requires that the number of data points be large
enough for the test statistic to converge to its underlying Chi-
Square distribution -something that neither AD nor KS require.
Due to their complexity, the Chi Square and the Anderson
Darling GoF tests are  treated in more detail in separate papers
[9, 10].
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• Establish the (Null Hypothesis) assumed distribution: Weibull (α;
β).

• Estimate the Weibull parameters:  α = 350; β = 8.
• Sort the data in ascending order (Col.  1, Table 10).
• Obtain the Theoretical distribution (Col. 2).
• Obtain the Empirical distributions (Cols. 3 and 4).
• Obtain D+ and D- (Cols. 5 and 6).
• Obtain the KS statistic:  D =  Maximum (D+, D-) = 0.463.
• Obtain the KS table critical value CV(α')  =  0.411 (Adaptive).
• Since KS > CV reject that data comes from Weibull (α = 350; β =

8).
• Software for Weibull version of KS is not commonly available.

Row DataSet F0 Fn Fn-1 D+=Fn-Fo D-=Fo-Fn-1
1 294.2 0.220598 0.16667 0.000000 -0.053931 0.220598
2 308.5 0.305339 0.33333 0.166667 0.027994 0.138673
3 313.1 0.336435 0.50000 0.333333 0.163565 0.003102
4 317.7 0.369275 0.66667 0.500000 0.297391 -0.130725
5 322.7 0.406793 0.83333 0.666667 0.426540 -0.259873
6 338.7 0.536565 1.00000 0.833333 0.463435 -0.296768

Max:             0.463435          0.220598  

Table 10.  Intermediate Values for the KS GoF Test for the Weibull

A Counter Example
As an example of the use of KS where the assumed distribution
is not true, we now refit the data (recall that these are Normal
data) in Table 1 for the Weibull.  We again estimate, using the

graphical methods given in [11], the two unknown Weibull
parameters:  shape = 8 and scale = 350.  Again, we use formula
(1) and the KS procedures of the previous section and obtain the
intermediate results shown in Table 10.
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