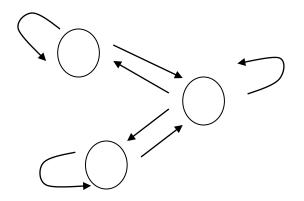
Markov Chain Models in the Study of Covid-19

Jorge Luis Romeu, Ph.D. Emeritus, State University of New York

romeu@cortland.edu; http://web.cortland.edu/matresearch


GSS/SSS/ASA Practicum on Blended Data

October 22, 2020 session from 1:00 p.m. – 2:30 p.m. EST.

Topics Included in Papers:

- https://www.researchgate.net/publication/34 3021113_A_Markov_Chain_Model_for_Covid-19_Survival_Analysis
- https://www.researchgate.net/publication/34 3345908_A_Markov_Model_to_Study_Covid-19_Herd_Immunization
- <u>https://www.researchgate.net/publication/34</u> <u>3825461 A Markov Model to Study Colleg</u> <u>e Re-opening Under Covid-19</u>

Simple Markov Chain over a three-element state space: (0) Non-infected, (1) Infected and (2) Hospitalized population.

Transition Probability Matrix P for Three State Markov Chain

 $\Pi = Limit_{T \to \infty}(\Pr{ob\{X(T) = 0\}}, \Pr{ob\{X(T) = 1\}}, \Pr{ob\{X(T) = 2\}}) = (\Pi_1; \Pi_2; \Pi_3)$

Comparisons of two-systems performance measures:

Case (Rates)	Long-run	Not Infected	Infected Home	Hospitalized	
Efficient (5%)	Probabilities	0.545	0.273	0.182	
Efficient (5%)	Times Between	1.834	3.667	5.50	
Inefficient (10%)	Probabilities	0.387	0.322	0.290	
Inefficient (10%)	Times Between	2.583	3.099	3.444	

<u>Efficient system</u>: transition probability (infection) is 0.05 and of remaining in the Hospital (State 3) is 0.7. <u>Ineficient system</u>: transition probability (infection) is 0.1 and of remaining in the Hospital (State 3) is 0.8.

For Efficient System: $T_0 = 1/\pi_0 = 1/0.545 = 1.834$; $T_1 = 1/\pi_1 = 3.667$; $T_2 = 1/\pi_2 = 5.50$;

Markov Chain over five states

Pop;	Infect	Hosp	ICU	Dead	
0.93	0.07	0.00	0.00	0.00	(1); Non-Infected population
0.05	0.80	0.10	0.05	0.00	(2): Infected (isolated at home or hospital)
0.00	0.15	0.80	0.05	0.00	(3): Hospitalized (after becoming ill);
0.00	0.00	0.05	0.80	0.15	(4): In the hospital ICU (or ventilators);
0.00	0.00	0.00	0.00	1.00	(5) Dead (absorbing state; no return)

Matrix inverse (I-Q)⁻¹ of Transient States: Sojourns in Tr. States Before Absortion.

<u>Populat</u>	Infectd	Hospital	ICU
26.1905	16.6667	10.0000	6.66667
11.9048	16.6667	10.0000	6.66667
9.5238	13.3333	13.3333	6.66667
2.3810	3.3333	3.3333	6.66667

Average times to death from all transient states

Starting State for any Individual	Average Time to Pass Away (Die)
From Initial Time of Consideration	26.19 + 16.66 + 10.00 + 6.66 =
	59.52 days
From the Time of Infection/Isolation	16.67 + 10 + 6.67 = 33.34 days
From the Time of Hospitalization	=10.00 + 6.66 = 16.66 days
From the Time of entering	= 6.66 days
ICU/Ventilator	
Average Time, before becoming	26.19 days
infected	

Probabilities of a patient dying, starting from any of the transient states

Starting	State	Two Days	Four	Eight	Sixteen
			Days	Days	Days
From	(Healthy)	0.000	0.002	0.018	0.098
Initial					
From	of Infection	0.007	0.036	0.118	0.282
Time					
From	Hospitalizat	0.007	0.038	0.127	0.307
Time	ion				
From	ICU/Ventila	0.270	0.444	0.636	0.780
Time	tor				

Probability of a person ever reaching any state from another

	Healthy	Infected	Hospitaliz	ICU/Vent.	Death
			ed		
Healthy	0.96	1.0	0.75	1.0	1.0
Infected	0.45	0.94	0.75	1.0	1.0
Hospitaliz ed	0.36	0.8	0.92	1.0	1.0
ICU/Vent.	0.09	0.2	0.25	0.85	1.0
	0.07				1.0
Death	0.0	0.0	0.0	0.0	1.0

Markov Chain for Herd Immunization Over an eight-element State Space:

(0) Covid-19 Immunized population (an absorbing state); (1) Non Infected persons in the General Population; (2) Infected persons (but asymptomatic; i.e. not known to be such); (3) Infected persons Detected and Isolated; (after symptoms, or Covid-19 tests positive) (4) Hospitalized patients (after becoming ill with Colvid-19); (5) Patients in the ICU (very sick); (6) Patients in a Ventilator (critical); (7) Patient *Death* (an absorbing state)

Markov Chain State Space Diagram

Markov Chain Transition Probability Matrix

State	;Immune	;UnInfected	;Infected	l;Isolated	;Hospita	l;ICU;V	entilat	or;Dead
0	1.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0
1	0.0	0.96	0.04	0.0	0.0	0.0	0.0	0.0
2	0.2	0.05	0.40	0.2	0.2	0.0	0.0	0.0
3	0.2	0.05	0.00	0.6	0.2	0.0	0.0	0.0
4	0.0	0.00	0.00	0.1	0.8	0.1	0.0	0.0
5	0.0	0.00	0.00	0.0	0.3	0.3	0.3	0.1
6	0.0	0.00	0.00	0.0	0.1	0.3	0.3	0.3
7	0.0	0.00	0.00	0.0	0.0	0.0	0.0	1.0

Average times to death from each of the transient states

Starting State for any	Average Time to Pass Away
Individual	(Die)
From Time of Initial	=1.667+2.22+5.556+
Infection (undetected)	0.972+0.417=10.83 days
From the Time of	=3.889+5.556+0.972+0.4167=
Infection/Isolation	10.83 days
From the Time of	=11.11+1.94+0.83 = 13.9 days
Hospitalization	
From the Time of entering an	=2.91667 + 1.25000 = 4.17
ICU	days
From the Time of entering a	2.08 days
Ventilator	

Probability of Dying or Becoming Immune, Starting from a Transient State

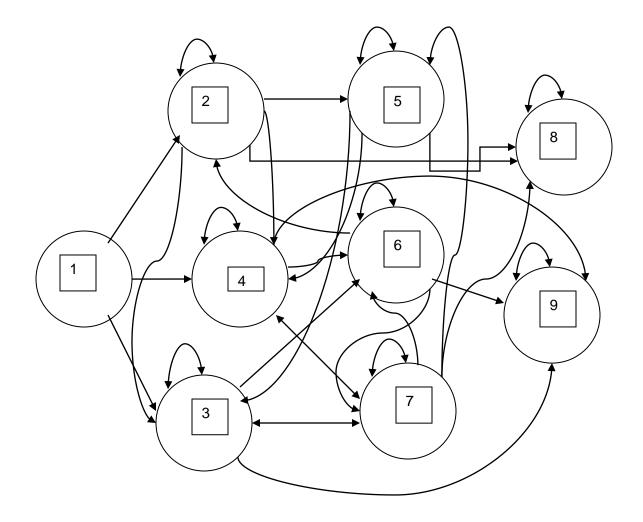
Starting State	Probability of	Probability
	Dying	Immunization
Uninfected	0.222222	0.777778
Infected/unde	0.222222	0.777778
tected		
Infected/Isola	0.222222	0.777778
ted		
Hospitalized	0.44444	0.555556
In ICU	0.666667	0.333333
On Ventilator	0.777778	0.222222

Our statistical models are not intended to compete with, but *enrich and complement* the *models developed by Epidemiologists* and Public Health professionals. One Public Health model example:

https://www.nature.com/articles/s41591-020-0883-7#Sec2

The <u>total population is partitioned into eight stages</u> of disease: S, susceptible (uninfected); I, infected (asymptomatic or paucisymptomatic infected, undetected); D, diagnosed (asymptomatic infected, detected); A, ailing (symptomatic infected, undetected); R, recognized (symptomatic infected, detected); T, threatened (infected with life-threatening symptoms, detected); H, healed (recovered); E, extinct (dead).

<u>The interactions among these stages are shown in Fig. 1 of said</u> <u>article.</u> We omit probability rates of becoming susceptible again after having recovered from infection. Although anecdotal cases are found in literature, re-infection rate values appear negligible.


Markov Chain for College Reopening over a nine-element State Space

- (1) Arrival to Campus and Covid-19 testing;
- (2) Infected students go into Isolation units;
- (3) Some students are placed in *Presential* courses;
- (4) Other students are placed in *Distance Learning* courses;
- (5) Some students who violated Code are placed in Suspension;
- (6) Some students become infected with Covid-19,

but are *not detected* as such;

- (7) Some students violate code but are not detected;
- (8) *Absorption*: Some students are Expelled from College
- (9) Absorption: Other students Complete their Semester

Markov Chain State Space Diagram

Markov Chain Transition Probability Matrix

<u>St.</u>	1	2	3	4	5	6	7	8	9.
1	0	0.05	0.35	0.6	0.00	0.00	0.00	0.00	0.0
2	0	0.70	0.20	0.0	0.05	0.00	0.00	0.05	0.0
3	0	0.00	0.80	0.0	0.00	0.05	0.05	0.00	0.1
4	0	0.00	0.00	0.8	0.00	0.05	0.05	0.00	0.1
5	0	0.00	0.10	0.1	0.70	0.00	0.00	0.10	0.0
6	0	0.50	0.00	0.0	0.00	0.30	0.00	0.00	0.2
7	0	0.00	0.00	0.0	0.70	0.10	0.00	0.20	0.0
8	0	0.00	0.00	0.0	0.00	0.00	0.00	1.00	0.0
9	0	0.00	0.00	0.0	0.00	0.00	0.00	0.00	1.0

Probability of Expulsion or Completion, Starting from a Transient State

Starting State	Probability of	Probability of
	Expulsion	Completion
Arrival	0.216839	0.783161
Infected	0.384030	0.615970
Presential	0.208039	0.791961
Distance	0.208039	0.791961
Learning		
Suspension	0.472026	0.527974
Infected but	0.274307	0.725693
undetected		

Conclusions

The *Markov Chain models developed in this paper*, its transition rates, and specific transient and recurrent states, were *built based on our readings about Covid-19* and *our 45+ years of statistics and O.R. experience* in modeling.

Our intent is to place the models in the hands of the specialists, so they can redevelop them with better information.

Models can be improved by those having better information by modifying the state space, the transition rates and/or transition directions, among other modifications.

Alternatively, models can be used as an illustration, if building their own; or to assess and improve public health plans, or by *faculty and students* to assess their risks when participating in such *plans*,

Changing transition rates in the Markov Chain helps study how they affect absorption probabilities and thus compare efficient and inefficient plans, as well as to help establish an acceptable community infection rate