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1.0 Introduction 

This second Markov model paper studies Covid-19 Herd Immunization approach which assumes 

that the virus will infect a large percentage of the population, thus preventing further community 

spread.  In our previous paper A Markov Chain Model for Covid-19 Survival Analysis (found in: 

https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-

19_Survival_Analysis) we assumed that there was neither a vaccine nor treatment for Covid-1, 

and that if current infection rates remained unchecked, everyone would eventually die. In the 

present paper we assume that Covid-19 survivors become immune, thence, cannot become re-

infected again, as occurred in our first Markov Chain paper. This creates the Herd Immunity. 

There is much debate about employing Herd Immunity as an alternative solution for Covid-19. 

We implement a Markov Chain model to quantitatively analyze such situation. With the Markov 

model, we will obtain (1) the probability of death or immunization of a Patient; and (2) their 

expected times to death (or immunization), when starting from the different states in the Space. 

We have previously written An Example of Survival Analysis Applied to Covid-19 Data, found in 

https://www.researchgate.net/publication/342583500_An_Example_of_Survival_Analysis_Data

_Applied_to_Covid-19, then Multivariate Statistics in the Analysis of Covid-19 Data, and More 

on Applying Multivariate Statistics to Covid-19 Data, both of which can also be found in: 

https://www.researchgate.net/publication/341385856_Multivariate_Stats_PC_Discrimination_in

_the_Analysis_of_Covid-19   and, as all the already cited, also in our ResearchGate web page:  

https://www.researchgate.net/publication/342154667_More_on_Applying_Principal_Component

s_Discrimination_Analysis_to_Covid-19 These latter statistical methods provide useful tools for 

classification of states, regions, counties etc., according to levels of infection and other metrics. 

We have also written a tutorial on the use of Design of Experiments Applied to the Assessment of 

Covid-19. It provides an example of the use of DOE for assessing and controlling the appropriate 

levels of infection in our states and regions. It can also be found in our ResearchGate web page: 

https://www.researchgate.net/publication/341532612_Example_of_a_DOE_Application_to_Cor

onavarius_Data_Analysis We have written an evaluation of the results of 25 years off-shoring 

tens of thousands American jobs, and its impact on US preparedness to fight the Coronavarus 

Pandemic. It can also be found in: https://www.researchgate.net/publication/341685776_Off-

Shoring_Taxpayers_and_the_Coronavarus_Pandemic And we have written a short study on the 

use of reliability methods in the design and operation of ICU units, that can also be found in: 

http://web.cortland.edu/romeu/
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https://www.researchgate.net/publication/342449617_Example_of_the_Design_and_Operation_

of_an_ICU_using_Reliability_Principles  

All above work is part of our pro-bono collaboration to the American struggle against Covid-19, 

based on our Proposal for Fighting Covid-19 and its Economic Fallout that can be read in: 

https://www.researchgate.net/publication/341282217_A_Proposal_for_Fighting_Covid-

19_and_its_Economic_Fallout Such proposal encourages retired professionals like this author to 

provide pro-bono analyses, based on our long work experience.  

2.0 A Markov Chain Model with Two Absorbing States.  

In this paper we reanalyze the Covid-19 situation using a more complex model. The new Markov 

Chain is defined over a larger (eight element) state space, yielding a more realistic model, one 

which is more flexible and allows for more options. This Markov Chain models a non-recurrent 

process that, moving through a number of Transient states, eventually leads us to one of two 

Absorbing States: Death or Immunization, where patients will remain forever. These new model 

features will introduce several technical differences. 

Because the state space contains both transient and recurring (absorbing) states there is no steady 

state solution. Instead, we obtain (1) the long run probabilities of dying or becoming immunized, 

as well as (2) their expected times, both of these when starting in any of the Transient states. 

Let {Xn; n >= 0} be a Markov Chain over an eight-element State Space defined as:  

(0) Covid-Immunized population (an absorbing state);  

(1) Non Infected persons in the General Population;  

(2) Infected persons (but asymptomatic; i.e. not known to be such);  

(3) Infected persons Detected and Isolated; (after symptoms, or Covid-19 tests positive) 

(4) Hospitalized patients (after becoming ill with Colvid-19);  

(5) Patients in the ICU (very sick);  

(6) Patients in a Ventilator (critical); 

(7) Death (an absorbing state)  

 

The Transition Probability Matrix P for this Markov Chain is: 

 

State;Immune;UnInfected;Infected;Isolated;Hospital;ICU;Ventilator;Dead 

   0   1.0   0.00     0.00      0.0      0.0    0.0    0.0     0.0 

   1   0.0   0.96     0.04      0.0      0.0    0.0    0.0     0.0 

   2   0.2   0.00     0.40      0.2      0.2    0.0    0.0     0.0 

   3   0.2   0.00     0.00      0.6      0.2    0.0    0.0     0.0 

   4   0.0   0.00     0.00      0.1      0.8    0.1    0.0     0.0 

   5   0.0   0.00     0.00      0.0      0.3    0.3    0.3     0.1 

   6   0.0   0.00     0.00      0.0      0.1    0.3    0.3     0.3 

   7   0.0   0.00     0.00      0.0      0.0    0.0    0.0     1.0 
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Figure 1: The State Space Diagram for this Markov Chain is: 

 

The Markov Chain unit time is a day. Transitions refer to the State changes that occur from one 

morning to the following morning. State (0) corresponds to the Immunized population. State (1) 

corresponds to persons not yet infected with Covis-19. The daily rate of infection is 4% (which 

means that 96% remain uninfected). State (2) corresponds to persons that contracted Covid-19, 

but are not identified as infected. They spread the virus in the community (unless community use 

of face covering, social distancing and other preventive provisions are observed). Infected are 

asymptomatic and not aware of their infection. Some then develop symptoms, are tested, and are 

quarantined or isolated at home. If they become very ill, they are sent to the hospital. State (3) is 

Isolation at home. Persons either improve and become Immune, or worsen and are then sent to 

the hospital. State (4) corresponds to hospital patients, receiving Covid-19 treatment in wards. 

They can recover and are sent home, or get worse, in which case they are placed in ICUs. State 

(5) corresponds to patients in ICU.  Of these, 30% improve and are sent back to the Ward; 30% 

are placed on Ventilators, and 10% die. About 30% of those are placed in Ventilators (State (6)), 

improve, and are returned to the ICU or to the ward. Finally, 15% die (the Absorbing State (7)). 
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We obtain, from P, the Sub-Matrix Q, corresponding to the six Transient states: 

Matrix Q of the Six Transient States: 

 

UnInf;Infec;Isol;Hosp;ICU;Ventilator 

0.96  0.04  0.0  0.0  0.0  0.0 

0.00  0.40  0.2  0.2  0.0  0.0 

0.00  0.00  0.6  0.2  0.0  0.0 

0.00  0.00  0.1  0.8  0.1  0.0 

0.00  0.00  0.0  0.3  0.3  0.3 

0.00  0.00  0.0  0.1  0.3  0.3 

 

We then subtract matrix Q from the Identity Matrix, yielding (I-Q),  

UnInf; Infec; Isol; Hosp; ICU; Ventilator 

0.04  -0.04   0.0   0.0   0.0   0.0 

0.00   0.60  -0.2  -0.2   0.0   0.0 

0.00   0.00   0.4  -0.2   0.0   0.0 

0.00   0.00  -0.1   0.2  -0.1   0.0 

0.00   0.00   0.0  -0.3   0.7  -0.3 

0.00   0.00   0.0  -0.1  -0.3   0.7 

 

We invert the above: Matrix inverse S = (I-Q)-1  

 

The Potential Matrix (of which S is a sub-matrix) contains the Long-Run Sojourns (the average 

number of visits) to each of the States (matrix columns), when starting from any other of the 

States, represented by the matrix rows. The Sojourns that occur outside S are either Zero (if the 

states cannot be reached) or Infinite (if it is to an Absorbing state). 

State; UnInfect;Infected; Isolated;  Hospital;  ICU;  Ventilator 

  1      25   1.66667    2.22222   5.5556   0.97222  0.41667 

  2       0 1.66667   2.22222   5.5556   0.97222  0.41667 

  3       0 0.00000   3.88889   5.5556   0.97222  0.41667 

  4       0   0.00000   2.77778  11.1111   1.94444  0.83333 

  5       0  0.00000   1.66667   6.6667   2.91667  1.25000 

  6       0   0.00000   1.11111   4.4444   1.52778  2.08333 

 

Adding the matrix S rows, calculated for any row (State), yields Average time to Death. 

 

For example, the average number of days an uninfected person spends before becoming infected 

is 25 days. The number of days spent in the hospital, is 11.1 days. The number of days a patient 

spends in an ICU unit is 2.92 days. By adding the rows, we obtain the average number of days 

for a person, say initially hospitalized, to go through the ICU, then the Ventilator, until finally 

passing away (dying). The average is: 11.11+1.94+0.83 = 13.9 days. We can do likewise with all 

other rows, and obtain the average times to death, starting from any one of the Transient states. 

 



3.0 Results for the Two Absorbing States  

From the previous section we can extract very useful results, related to patient probabilities of 

Absorption, and the corresponding average times to Absorption (of death or immunization). 

 

Table #1: average times to death from each of the transient states 

Starting State for any Individual Average Time to Pass Away (Die ) 

From Time of Initial Infection (undetected) =1.667+2.22+5.556+ 0.972+0.417=10.83 days 

From the Time of Infection/Isolation =3.889+5.556+0.972+0.4167=10.83 days 

From the Time of Hospitalization =11.11+1.94+0.83 = 13.9 days 

From the Time of entering an ICU =2.91667 + 1.25000 = 4.17 days 

From the Time of entering a Ventilator 2.08 days 

 

We now calculate the probabilities of a patient dying, or becoming immunized, starting from any 

of the transient states. We calculate these probabilities using Matrix B, a sub-matrix of transient 

states. B is constructed by reordering the rows and columns of P, in such way that all transient 

states are placed first, and all absorbing ones are placed last. Then, Matrix B corresponds to the 

rows and columns above the Identity sub-matrix, corresponding to the Absorbing states. 

 

Matrix B: 
 

0.0  0.0 

0.0  0.2 

0.0  0.2 

0.0  0.0 

0.1  0.0 

0.3  0.0 

 

Matrix G = SB; Prob. of Ever Reaching Death/Immunization: 

 

  Death  Inmunization   

0.222222   0.777778 

0.222222   0.777778 

0.222222   0.777778 

0.444444   0.555556 

0.666667   0.333333 

0.777778   0.222222 

 

Matrix G provides the probabilities of ever reaching one of the two Absorbing States (death or 

immunization), from any of the Transient states.



Table #2 Probability of Dying or Becoming Immune, starting from a Transient State 

Starting State Probability of Dying Probability Immunization 

Uninfected 0.222222   0.777778 

Infected/undetected 0.222222   0.777778 

Infected/Isolated 0.222222   0.777778 

Hospitalized 0.444444   0.555556 

In ICU 0.666667   0.333333 

On Ventilator 0.777778   0.222222 

 

We see how the Probability of Dying from Covid-19 is much smaller than the Probability of 

Recovery and of becoming Immunized, for the first four States (up to Infected, when detected as 

such by symptoms or tests, but displaying minor health issues, and in isolation). These two 

probabilities are much closer, when the patient is sick and hospitalized (0.44 v. 0.55). Finally, 

once in an ICU or a Ventilator, which indicates that the patient is very sick, the Probability of 

Dying is much larger than the Probability of Recovering and becoming Immune. 

4.0 Mathematics 

The key section of the Potential Matrix R is (I-Q)
-1

 = S, which provides the Sojourns, or average 

number of times that different Transient states are visited, if coming from other Transient states. 

Adding these up we obtain an average times to Death, when starting at any Transient state.  

Matrix S in turn, provides the relevant part of Matrix F, which contains the probabilities of ever 

reaching an absorption state (Death or Immunization) starting from every Transient State. Other 

Matrix F Probabilities relating Transient and Recurrent states are defined as: (1) Zero, if between 

Recurrent and Transient states (it is impossible to leave an absorbing state) and (2) Unit, the sure 

event (if there is a single absorbing state), or the rows of B add to Unit (if there is more than one 

Absorbing State). This result implies that every person will eventually arrive, independently of 

their initial state, to one of the Absorbing States.  

The probabilities of ever reaching a State, between two Transient states (i,j), which form part of 

Hitting Matrix F, are obtained from sub-matrix S of R, above mentioned, through the formulas:  

F(i, j) =  R(i,j) / R(j,j);  and  F(j,j) = 1 – 1 / R(j,j); 

The above-mentioned performance measures are used to calculate many of the required health 

care facility Logistics. Statistics and mathematical models help evaluate different alternatives, 



and are used in what Operations Researchers call the What If Game (e.g. what would happen if 

infection rate were 9% instead of 4%?). 

Further readings about Markov Processes can be found in the Bibliography Section. 

5.0 Discussion 

Results from the present Markov model, complement results obtained in our previous papers, as 

different models address different aspects of the Covid-19 problem. For example, the survival 

model in Romeu (2020) can be used to evaluate the probability of dying of a patient, given its co-

morbidities, and can be used in Triage situations, when, say, Ventilators are less than patients. 

The present model, due to its specific State Spaces Ej and its transition probabilities (Xij for i,j = 

0, … ,7) is particularly useful to assess the Immunization theory. For example, State (0) defines 

the Immunized population, and State (2) defines the infected but yet undetected one. Through the 

corresponding infection (transition) rates we can study the impact of the different levels of these 

rates on the probabilities of dying or becoming immunized. Differing infection rates depend on 

compliance with public health measures such as face covering, social distancing, etc. Thence, by 

assigning different values to these rates, their impact can then be assessed and compared. 

Similarly, transition rates into and out of States (4), (5) and (6), related to hospitalization, depend 

on the load such hospitals and health care practitioners have, which in turn depend on infection 

rates, which in turn also depend on community compliance with public health measures such as 

face covering, social distancing, etc.. By assigning specific values to these, resulting patient care 

efficiency can be assessed, and subsequent Logistics problems can be addressed. 

Probabilities of dying and immunization, from States Ej, combined with population estimates, 

can help determine the number of cases, of deaths, of immunized population, etc. that result from 

the different scenarios, which are in turn defined by the different transition probabilities or rates. 

Statistics and mathematical models are tools that help answer such health questions, as well as to 

compare the performance of different alternatives, in a more objective, non-partisan way. 

6.0 Conclusions 

The Markov Chain developed in this paper, as well as its transition rates, and its transient and 

recurrent states, were all based on our readings about Covid-19. This author is not a public 

health specialist, but a statistician. Our models were built using our 45+ years of statistical 

experience in modeling and data analysis, in several research and academic organizations. Our 

intent is to place them in the hands of health specialists, so they can redo them with better 

information. 



Results from Markov Chain models, most useful for Covid-19 problems, have to do with the 

probabilities and times to absorption (death and immunization) and are given in Section 3.0. 

By changing the transition rates in the recurrent Markov Chain of Section 2.0, we can study how 

they affect the absorption probabilities (death or immunization) in each state, and compare the 

efficient and inefficient models. This may also help establish an acceptable infection rate. Times 

spent in a State (Sojourn) help estimate the required size of the facilities that will treat patients. 

The results in Section 3.0 are more helpful. The probabilities of ever reaching every other state, 

and the Time spent (Sojourns) in them, may help find logistic parameters to ensure a sufficiently 

well-equipped health care facility, that can serve the public efficiently. 

Combining results from the present Markov Chain Model, with those in our previous Survival 

Model, may provide doctors with more neutral rules to establish Triage procedures, may such 

procedures ever become necessary. 

Finally, our statistical models are not intended to compete with, but to complement and enrich, 

the models developed by Epidemiologists and Public Health professionals. One example
1
: 

The total population is partitioned into eight stages of disease: S, susceptible (uninfected); I, 

infected (asymptomatic or pauci-symptomatic infected, undetected); D, diagnosed (asymptomatic 

infected, detected); A, ailing (symptomatic infected, undetected); R, recognized (symptomatic 

infected, detected); T, threatened (infected with life-threatening symptoms, detected); H, healed 

(recovered); E, extinct (dead). The interactions among these stages are shown in Fig. 1. We omit 

the probability rate of becoming susceptible again after having recovered from the infection. 

Although anecdotal cases are found in the literature27, the re-infection rate value appears 

negligible.  

The reader will recognize how their eight stages of the disease are somewhat similar to our Eight 

Element State Space, and how said article’s Figure 1 is also somewhat similar to our own State 

Space Diagram, presented in Section 2.0. Modeling tools used are definitely different. 

Both models are fine and pursue a similar objective: help study and overcome Covid-19. We are 

allies, not competitors. As George Box once said: all models are wrong; some models are useful. 

Let’s work together to defeat Covid-19.

                                                           
1
 See: https://www.nature.com/articles/s41591-020-0883-7#Sec2 

https://www.nature.com/articles/s41591-020-0883-7#Fig1
https://www.nature.com/articles/s41591-020-0883-7#ref-CR27
https://www.nature.com/articles/s41591-020-0883-7#Sec2
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