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A NEW MULTIVARIATE NORMALITY GOODNESS OF FIT TEST
WITH GRAPHICAL APPLICATIONS

JORGE Luis ROMEU*

Department of Mathematics
SUNY Cortland
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ABSTRACT. A new procedure for assessing distributional assumptions of multivariate data, with graph-
ical applications, is presented and illustrated using a real industrial example. The procedure is based
on transforming the multivariate sample into a set of uncorrelated samples and representing the order
statistics of each transformed sample by linked vectors in a two dimensional space.

1.0 Introduction.

Often, the industrial engineer (L.E.) deals with sets of multivariate data and statistical procedures
that require the data follows the multivariate normal distribution (MVN). For example, the L.E. may
have to generate a stream of pseudorandom MVN data. Or the application of a given statistical
model (e.g. regression, discriminant analysis) may require that the data is distributed as multivariate
normal. In both examples, assessment of MVN is performed by submitting the data to one of the
existing Goodness-of-Fit (GOF) procedures.

However, some procedures may handle only a reduced number of p-variates (e.g. Cox and Small
(1978)), or require that the sample size is large (e.g. Hawkins (1981)). Others, may depend heavily
on the underlying and unknown correlation among p-variates (e.g. Royston (1983)), or may require
the calculation of empirical critical values at every instance (e.g. Malkovich and Afifi (1973)). Some
may converge slowly to their asymptotic distribution (Mardia (1970)) or may exhibit algorithmic
and computational problems (Koziol (1982)). Others, may be exclusively graphical and informal
in nature (Andrews et al. (1973)) or may lack graphical capabilities at all, as most above. Or
may exhibit more than one of the mentioned problems. For a state-of-the-art review of MVN GOF
procedures, see Romeu (1990).

Our new MVN GOF procedure, a multivariate extension of the univariate graphical GOF pro-
cedure of Ozturk and Dudewicz (1990), overcomes or alleviates most of the above problems. It is
based on representing the multivariate sample by linked vectors in a two dimensional space. It is
graphical and analytical, and can handle any sample size and any number of p-variates.

In the rest of this paper we discuss our new procedure. In Section 2, we outline our test procedure,
its properties and its implementation via the Choleski Decomposition of the covariance matrix. In
Section 3, we analyze with it, some real industrial data. And in Section 4, we summarize our results.

2.0 Methods.

The univariate procedure of Ozturk and Dudewicz is thus defined:

Let X3.n € X2.p €++- < X,:n be n ordered univariate observations from a continous distribution
F, with g, o the location and scale parameters. Let: Yin = (Xin — X)/s, i=1,...,n, where
X =2"X;/nand s = {7(X: —X)?/(n—1)}3. Also, let min, i =1,...,n, be the expected value
of the i** order statistic from the standard normal. Then, define the 7** linked vector, V;.,, by its
length and direction in the following manner:

(1) length of Vip is: a; = %]Y;:nl, i.e. the length of the i** standardized order statistic, and,
(2) direction of V., is defined by:

Mi:n 1

oo V2w

where §; forms an angle in the range (0, ), with the abscissas axis.

0; =78 (min)=n exp{t?/2} dt
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Then, by beginning the construction of our linked vectors at the origin of the Euclidean plane,
and linking each V.., 1 = 1,...,n, one after the other, we obtain a line vector chart with a resultant

vector -O-ZQ_: . Under the null hypothesis of normality, it follows a certain pattern with endpoint
@n = (Un, V3), and U, and V,, are approximately distributed as a bivariate normal. Therefore, we
can obtain an approximate 100(1 — a)% confidence ellipse for @, (Johnson and Kotz (1970)) with
the quadratic function g:

' U Ve — Vn)?
g(Qn) = g(Un,Vn) = -a—z'l + (_.___.2__")_ ~ X%
U Ty

When testing p > 2 independent samples, the multisample univariate procedure Q,, is imple-
mented in the following way: :

(%) For each sample, standardize and sort separately the data, as if performing the @, procedure
on each sample, individually.

(12) For each sample, calculate the individual Q,, statistic, say Qf, j=1,...,p.

(i#i) Obtain mini<;<p(9(Q7); -- -, 9(Qh)), say 9(Q})-

(iv) Solve, for @, in the equation g(Q%) = —2lna, say o*.

The univariate @ can be generalized to the multivariate case. Let X = (Xi,...,X,) dencte
a multivariate normal random vector with mean p and covariance matrix £. Since ¥ is positive
definite we can define a p x p matrix L such that LL' = . This decomposition of T is not unique,
which makes our multivariate @, test a general procedure.

The multivariate @, (Ozturk and Romeu (1991)) is defined by the following two steps:

(1) perform a linear transformation:
{(X1,.. -, Xp) ~ MV Ny (1, 2)} > {(Z1,...,2,) ~ MV N,(0,1,,)}

where X=CZ+u and CC'=3

(2) test these resulting p independent samples defined by (Zl e Z,,'v), for joint (univariate)
normality using the multisample univariate' @, procedure above explained.

Our implementation of @, is via matrix L, the Cholesky decomposition of the covariance matrix
L.

(1) L is lower triangular
(2) fulfilling: LL' =%
A step-by-step algorithm of Q,, for a p-variate sample of size n, (X1,...,X,) is:

(1) obtain X, the p-variate sample mean vector;

(2) obtain S, the p x p sample covariance matrix;

(38) obtain L*, the decomposition of S, where L*L* = §.

(4) obtain L*~!, the inverse of the decomposition of S

(5) obtain Z; = L*}(X; - X), i =1,...,n, the standardized values;

(6) Apply the multisample univariate Q, procedure to this colection .of p independent samples
of size n. S

(7) If the multisample univariate @, rejects the joint normality of the p univariate samples (i.e.
if there is at least one endpoint lying outside the joint confiderice ellipse for multisample
univariate @), then reject the hypothesis of multivariate normality.

(8) Otherwise, accept the multivariate normality of the sample under study.

Some properties of the multivariate @, are:

(1) it is location and scale independent, allowing the handling of multivariate data expressed in
different scales and making our procedure very general.

(2) it is covariance independent, hence independent of the structure of the covariance or corre-
lation matrices. ‘

(3) it can handle an arbitrary number of p-variates.

3.0 An Industrial Example.

To illustrate the use and power of our @, procedure we analyze the dataset in Zemroch (1986).
The data consists of 12 variables from a petroleum analysis problem, from which we have selected six:
X1: research octane number (RON); X3: sensitivity (=RON - motor oétane number); X3 AR(100)
(=RON - RON of fraction boiling below 100°C); Xs: final boiling point; X7: aromatic content and
Xs: olefinic content. .
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These variables were selected to have enough (p = 6) as to preclude the use of several concurrent
methods. We have a large enough dataset (n = 88) as to make Monte Carlo calculations of critical
values expensive. Finally, the p-variates exhibit low, medium, high, positive and negative correlations
among them. Such correlations affect several other MVN GOF methods (see Table 3.1).

TABLE 3.1: CORRELATIONS.

x-1 Xx-2 x-3 Xx-6 x-17
x-2 0.573
x-3 0.098 -0.053
Xx-6 -0.013 0.085 0.076
x-7 0.286 0.772 0.246 0.251
x-8 0.080 0.460 -0.550 0.014 0.025

We start by looking at the marginals, since a necessary but not sufficient condition for MVN is
that all marginals are univariate normal (Gnanadesikan (1977)). A descriptive analysis shows how
X and X; are right skewed (See Table 3.2) and a formal univariate GOF analysis using Ozturk
and Dudewicz univariate procedure (Figure 3.1) confirms the non-normality of the marginal data.
Corresponding p-values are shown next to the linked vectors endpoints.

TABLE 3.2: DESCRIPTIVE STATISTICS.
vAR. 'MIN Qi ‘MEDIAN MEAN Q3" mAx'
X-1 '88.3"'91.23"'93.60 '94.03 "97.28" " 99.10
X-2 5.2 6.80 7.85 8.40 9.97 12.60
X-3 0.1 4.90 8.60 7.81 10.30 15.20
X-6 160.8 177.90 183.75 193.36 207.00 262.50
X-7 "12.7 26.57 33.95 34.14 41.67 57.20
X-8 0.4 1.13 2.70 4.44 6.60 21.60
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FIGURE 3.1: UNIVARIATE GOF OF THE MARGINALS.
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Figure 3.2 shows the MVN GOF graphical analysis of the data using our Q.. We see how two of
the linked vectors fall way outside the confidence ellipses, thus rejecting the multinormality of the
data.
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FIGURE 3.2: Q, GRAPHICAL MULTIVARIATE NORMALITY GOF.

For comparison, we reanalyze the data using Mardia's Skewness and Kurtosis, Malkovich-Afifi’s,
Hawkins’ and Royston’s MVN GOF tests. The first two converge slowly to their asymptotic critical
values, the next two are empirical and Royston’s showed dependence on correlation among p-variates.

We use the critical values obtained by Monte Carlo, in Romeu (1990). Results are shown in Table
3.3.

TABLE 3.3: MULTIVARIATE ANALYSIS BY DIFFERENT METHODS.

L I B R O I I R I I S I A I A I I I I O A

MVN GOF TEST PVALUE EMPIRICAL . -DECISION:
METHOD STAT. - C.VAL. (0:01) MULTINORMAL
Q(N) N/A 0.36E-6 N/A © REJECT
MAR-SKEW 143.35 N/A 56.77 REJECT
MAR-KURT 0.648 N/A - -2.22/2.24 ACCEPT
MALK-AFIFI 0.874 N/A 0.920 REJECT
HAWKINS 1,571 N/A 1.681 ACCEPT
ROYSTON 159.09 N/A 15.34 REJECT
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4.0 Conclusions.

We have discussed and illustrated the use of our new MVN GOF Qr procedure. We have seen
h(?w it is used where others fail to be applicable and how it succeeds where some applicable ones
fail. In addition, we have shown the use of the empirical (Monte Carlo) critical values obtained

by R.omeu (1990). Empirical critical values are suggested when using MVN GOF methods under
conditions where the asymptotic ones are invalid or unavailable. -
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TABLE 3.4: TABLE OF EMPIRICAL CRITICAL VALUES (ROMEU (19%1)).

ITICAL VALUES FOR THE CASE P = S VARIATES.

n

TABLE NO. C-7 c

» RHO=Q.5% SKEWNESS®
E * LOWER

--!t-n--.-ttan"--------nn--'
90 » 35.29 -
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