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Introduction

This START sheet discusses some empirical and practical
methods for checking and verifying the statistical assump-
tions of Normal and Lognormal distributions. It presents sev-
eral numerical and graphical examples showing how this is
done with data. The Normal and Lognormal distributions are
addressed together because they are intimately related. A ran-
dom variable (e.g., life of a device) follows the Lognormal
distribution if the natural logarithm (base e) of this variable
(e.g., Log of the device life) follows a Normal distribution.
Hence, by dealing with one distribution, we are also dealing
with the other.

It is important to correctly assess statistical distributions.
Most parametric statistical methods assume an underlying dis-
tribution in the derivation of their results (methods that do not
assume an underlying distribution are called non-parametric
or distribution-free, and will be the topic of a separate START
sheet). The consequences of specifying the wrong distribution
may prove very costly. If such distribution does not hold, then
the confidence levels of the confidence intervals (or of
hypotheses tests) may be completely off. To avoid such prob-
lem, distribution assumptions must be carefully checked.
Presenting practical methods for doing so for the Normal and
Lognormal distributions is the objective of this START sheet.

Two approaches can be used to check distribution assumptions.
One is by implementing Goodness of Fit (GoF) test such as the
Chi Square, Anderson Darling or Kolmogorov-Smirnov.
These are numerically convoluted theoretical tests, based on
statistical theory and usually requiring lengthy calculations. In
turn, these calculations ultimately require the use of special-
ized software, not always readily available. On the other hand,

there also exist practical procedures, easy to understand and
implement, based on intuitive and graphical properties of a dis-
tribution. These properties can be used to check and assess
these distribution assumptions. This START sheet demon-
strates the implementation and interpretation of such assess-
ment procedures for the Normal and the Lognormal, two dis-
tributions widely used in quality and reliability.

lllustrating the Problem

Assume we must estimate the mean life of a device using a
confidence interval (CI). This estimator consists of two val-
ues, the CI upper and lower limits, such that the unknown
mean life p will be in this range, with the prescribed coverage
probability (1-a). For example, we say that the life of a device
is between 90 and 110 hours with probability 0.95 (or that there
is a 95% chance that the interval 90 to 110, covers the device
true mean life p). The actual coverage of such CI essentially
depends on the assumptions of the statistical model used.

Every parametric statistical procedure is based on distribu-
tion assumptions that must be met for it to hold true. For the
sake of illustration, let’s consider that we want to establish a
valid CI for the Mean Life of a device. To achieve this we
need, in addition to a set of good test data, also to assume an
underlying statistical distribution (e.g., Normal, Lognormal,
and Weibull) that actually fits these data and problem.

First assume that the distribution of the lives (times to fail-
ure) of a device is Normal (Figure 1) and then that it is
Cauchy (Figure 2). Figures 1 and 2 were obtained from 5000
data points from each of these two distributions, having the
same mean = 20. The Normal has a Standard Deviation ¢ =
7.6 and the Cauchy has a scale parameter o = 5.
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Figure 1. Normal (u =20, c=7.6)
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Figure 2. Cauchy (u =20, oo = 5)

There are some practical connotations of belonging to one or the
other, of these two distributions. These Normal values are sym-
metric about 20 and concentrated in the range of -2.8 to 42.8 (for,
three standard deviations on each side of the mean, comprises 99%
of the population). Cauchy values, on the other hand, are similar
to the Normal in the centered 50% of the distribution. Notice how
the respective interquartile ranges (between Q1, the 25" percentile
and Q3, the 75" percentile) are very close. For example, IQR
lower quartiles Q1 = 14.8 and 14.9 and upper quartiles, Q3 = 25.1
and 25.3, differ in 0.02 or less. This proximity becomes even more
evident when analyzing the differences between the corresponding
sorted Normal and Cauchy data points (data set Diff).

The Cauchy distribution however, departs from the Normal in the
ranges below QI and above Q3, achieving large maximum
(21607.0) and minimum (-27796.8) values. Such extremes are
highly improbable in a Normal (1 =20, o = 7.6). Hence, to obtain
comparable graphs (Figures 1 and 2) 300 of the higher and lower
original Cauchy values (CauchSel) were discarded. Descriptive
statistics of all these data sets are presented in Table 1.

Table 1. Descriptive Statistics for the Data Sets

Table 2. Small Sample Data Set [from Cauchy (20, 5)]

36.31 21.65 22.41 -0.29 26.13

54.59 22.59 3.590 11.53 23.66

Distribution

Statistics Cauchy Normal CauchSel Diff
N 5000 5000 4466 5000
Mean 17.2 20.087 20.323 -2.9
Median 20.0 20.046 20.137 -0.0
Std. Dev. 518.8 7.6 8.6 517.6
Minimum -27796.8 -8.52 -5.59 -27788.3
Maximum 21607.0 47.58 50.97 21559.4
Ql 14.8 14.9 15.8 -0.5
Q3 25.1 25.3 24.4 0.2

The Cauchy distribution does not have a variance (meaning it is
infinite). This allows the inclusion of unusually large and small
values in the sample, which can seriously bias the estimates. The
present example illustrates how, by miss-specifying a Cauchy
distribution as Normal, we can commit serious errors in param-
eter (CI) estimation.

To further illustrate this situation, we select a small sample of n
= 10 devices, from a Cauchy (20, 5) distribution and obtain a
95% CI for the mean, under the (wrong) assumption that the
sample comes from a Normal (20, 7.6)

The descriptive statistics yield a sample average x=-3 70, a sam-
ple median = 23 and a sample variance s> = 1247°. From these
results we have that:

1. Ifthe original device lives are assumed distributed Normal
(with known o = 7.6), the 95% CI for the mean life m,
based on the Normal distribution is (-374.75, -365.32).

2. If the data are assumed Normal with variance unknown
and estimated from this small (n = 10) sample, the result-
ing statistic distribution follows a Student-t withn-1=9
degrees of freedom. The corresponding CI obtained for
the population mean is then (-1262, 522).

3. Finally, if the device lives are assumed Cauchy, a 95% CI
for the mean life cannot be obtained. For this is a small (n
= 10) sample and the Cauchy has an infinite variance. Our
example includes a large outlier (-3918.92) whose net
effect is to bias the CI.

Since in reality the 10 data points come from the Cauchy distri-
bution, the Normal CI is incorrect and its coverage probability
(95%) is inaccurate. Had we erroneously assumed Normality for
this small sample, the CI true coverage probability (confidence)
would be unknown and policies, derived under such unknown
probability, are at risk.

Statistical Assumptions and Their Implications
Every statistical model has its own “assumptions” that have to be
verified and met, to provide valid results. For example, deriving
the small sample Student-t CI for the mean life of a device
requires two “assumptions:” that the device lives are independ-
ent and Normally distributed. These two statistical assumptions
must be met (and verified) in order for such CI to cover the true
mean with the prescribed probability. If, as in Section 2, the data
does not follow the assumed distribution, the CI is invalid and its
coverage (confidence) may be different from the one prescribed.
Fortunately, distribution model assumptions are associated with
very practical and useful implications - the Normal and
Lognormal distributions are no exceptions.

In practice, the assumption that the distribution of the lives of a
device is Normal means that there are many, independent factors
that are contributing to the final result. An analogy is the intel-
ligence quotient (IQ). A human is the product of his or her
socioeconomic level, upbringing, schooling, nutrition, inherited
genes, health, etc. All these factors contribute to human intelli-
gence. For this reason, IQ is usually Normally distributed, as are
also (and for the same reason) height, weight, etc.

In addition, the Normal distribution has several specific charac-
teristics. It is continuous, symmetric (mean = median = mode)
and standarizable (by subtracting the mean and dividing by the




standard deviation, we always obtain a unique Normal with
mean zero and variance unit). Finally, the ranges defined by one,
two, and three standard deviations above and below the mean
cover 68%, 95%, and 99% of the population, respectively.

In what follows, we will use these statistical Normal distribution
properties and its implications, to check and empirically validate
the Normal assumptions of our data.

Practical Methods to Verify Normal Assumptions

In this section we discuss several empirical and practical meth-
ods for assessing the validity of two important and widely used
distributions: the Normal and Lognormal. We illustrate this val-
idation process via the life test data in Table 3. This sample (n =
45) was taken from the Normal (20, 7.6) process that generated
Figure 1, presented in Section 2.

Table 3. Large Sample Life Data Set (sorted)

Table 4. Descriptive Statistics of Data in Table 3

Statistics |Normal Sample

N 45

Mean 19.50
Median 18.56
Std. Dev. 7.05
Minimum 6.14
Maximum 32.54
Q1 15.06
Q3 25.73

There are a number of useful and easy to implement procedures,
based on well-known statistical properties of the Normal distri-
bution, which help us to informally assess this assumption.
These properties are summarized in Table 5.

Table 5. Some Properties of the Normal Distribution

6.1448 6.6921 6.7158 7.7342 9.6818  12.3317
12.5535 13.0973 13.6704  14.0077  14.7975  15.3237
15.5832  15.7808 15.7851 16.2981 16.3317  16.8147
16.8860 17.5166 17.5449 179186  18.5573  18.8098
19.2541  19.5172 19.7322 219602  23.2046  23.2625
23.7064  23.9296 24.8702 252669  26.1908  26.9989
274122 27.7297 28.0116  28.2206  28.5598  29.5209
30.0080  31.2306 32.5446

In our data set, two distribution assumptions need to be verified
or assessed: (1) that the data are independent and (2) that they
are identically distributed as a Normal.

The assumption of independence implies that randomization
(sampling) of the population of devices (and other influencing
factors) must be performed before placing them on test. For
example, device operators, times of operations, weather condi-
tions, location of the devices in warehouses, etc. should be ran-
domly selected so they become representative of these same
characteristics and of the contexts in which devices will normal-
ly operate.

To assess the Normality of the data we use informal methods,
based on the properties of the Normal distribution. They seem
appropriate for the practical engineer, since they are largely intu-
itive and easy to implement.

To assess data, the first thing we do is to obtain their descriptive
statistics (Table 4). Then, we analyze and plot the raw data in
several ways, to check (empirically but efficiently) if the
Normality assumption holds.

Where Mean is the average of the data and the Standard
Deviation is the square root of:
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n-1
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1. Mean, median, and mode coincide; hence, sample values should
also be close.
2. Graphs should suggest that the distribution is symmetric about

the mean.

3.  About 70% of the data should be within one standard deviation
of the mean.

4.  About 95% of the data should be within two standard deviations
of the mean.

5. About 1% of the data, should be beyond three standard devia-
tions of the mean.

6. Plots of the Normal probability and Normal scores should be
close to linear.

7. Regressions of these probability and score plots should yield
Unit slope.

First, from the descriptive statistics in Table 4 we verify how the
sample Mean (19.5) and Median (18.56) are close, and how the
Standard Deviation is 7.05. This supports the Normality of the
distribution by Property No. 1, in Table 5.

The distribution looks symmetric about mean = 19.5, as sug-
gested by the following Box Plot (plot of minimum, Q1, medi-
an, Q3, and maximum). Observe how the centered 50% of the

data (between Q1 = 15.06 and Q3 =25.73) is dispersed about the
mean.
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The histogram (Figure 3) also suggests some symmetry about
Mode = 18 (center of the interval with the highest frequency in
Figure 3). All of which, by Property No. 2 in Table 5, suggests
the validity of the Normal distribution.
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Figure 3. Histogram of the Normal Data Set (Mode is 18)

The interval defined by one standard deviation about the mean:
(L-o,u+t0)=(19.5-7.05,19.5+7.05)=(12.4, 26.1) includes
28 values (in ranks 7 to 34, of sorted Table 3) representing 62%
of the total data set (close to the expected 68.25%). The interval
(1 - 20, p+ 20) = (5.4, 33.6) includes values in ranks 1 to 45
(i.e., all data) representing 100% of the data set (close to the
expected 95%). There are zero values beyond pu+3c, supporting
the statement that about 1 point (about 1% of the values) would
be outside the interval (1 - 35, i+ 35). All these results support
Properties 3 to 5 of Table 5.

In the Probability Plot, the Normal Probability (P;) is plotted vs.
I/(n + 1) where I is the data sequence order, i.e., [ =1, ..., 45.
Each P, is obtained by calculating the Normal probability of the
corresponding failure data, X; using the sample mean (19.5) and
the standard deviation (7.05). For example, the first (I = 1) sort-
ed (smallest) data point is 6.15:

6.15-19.5

= Normal(-1.89) =0.029
7.05

Pl9.57.05(0:19)= Normal(

The data point is then plotted against the corresponding I/(n + 1)
value, 1/46 = 0.0217 and so on, until done with all sorted sample
elements [ =1, ..., 45.

When the population is Normal, the Probability Plot (Figure 4)
follows an upward linear trend, with unit slope. Hence, the lin-
ear regression of the Normal Probability vs. Data Rank must also
reflect this one-to-one relation, via achieving a unit slope:

NormProb =-0.0228 + 1.01 NormRank
Predictor Coef Std. Dev. T P

Constant ~ -0.02282  0.01192  -1.91  0.062
NormRank 1.00783  0.02076  48.54  0.000
$=0.03933 R-Sq=98.2%  R-Sq(adj) = 98.2%

The regression Index of Fit (R2 = 98.2%) is very high (close to
100%). Also, the P-value (0.0) for the NormRank regression
coefficient T-Test (48.54) is very small, thus suggesting a linear
trend. The regression coefficient (slope) itself (1.00783) is close
to Unit, suggesting the Normal as the data statistical distribution.

This regression slope Unit value serves as the “litmus test” of
this graphical approach to assess Normality.
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Figure 4. Plot of Normal Probability (PI) vs. I/(n + 1);
1 =1, ..., n; Close to Linear, as Expected from a Normal

The Normal scores X; are the percentiles corresponding to the
values I/(n+ 1), for [ =1, ..., n; calculated under the Normal dis-
tribution (using mean = 19.5, std-dev = 7.05). For our example,
the first I/(n + 1) is 1/46 = 0.0217 and the smallest data point =
6.15:

, ) Normal X, -19.5 i 0017
.)=Normal| ———— | ——=0U.
19.5,7.05( 1) 7.05 n+l1
Xi-l9.5

= Percentile(0.0217)=-2.02 =
7.05

Solving in the above equation for scores X; we get the first (I =
1) Normal score:

X;=-2.02x7.05+19.5=-14.24 +19.5=5.26

These Normal scores are then plotted vs. their corresponding
sorted data values (Figure 5). In the above example, score 5.26
is plotted against 6.15 (the smallest data point) and so on, for [ =
1, ..., n. When the data come from a Normal Distribution, the
Normal Scores plot is close to a straight line (Property 6).
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Figure 5. Plot of the Normal Scores vs. the Sorted Real Data
Values, Close to Linear




To assess this, we regress the Normal Scores vs. the correspon-
ding data. The regression, if the data comes from the Normal
distribution, should yield a unit slope:

NormScore = 0.487 + 1.00 NormSamp

Predictor  Coef Std. Dev. T |
Constant 0.4872 0.4554 1.07 0.291
NormSamp 1.00042 0.02199 45.50  0.000
S=1.028 R-Sq=098.0% R-Sq(adj) =97.9%

An Index of Fit R* = 97.9% and a regression coefficient 1.0042,
plus the Normal Probability and Normal Scores plots, suggest
that the assumption of a Normal distribution is reasonable.

Assessing the Lognormal Distribution

The Lognormal distribution is widely used in reliability studies.
Hence, the strong interest in assessing whether a data set comes
from such distribution. The results in the previous sections show
how this is now easy to do. When a random variable (e.g.,
device life) is distributed Lognormal, the Logarithm (base ¢) of
the random variable (e.g., Log life) is distributed Normal. This
property carries on to data sets. When a data set comes from a
Lognormal population, then the Logarithm of these data are dis-
tributed as a Normal.

In practice, to assess the Lognormality of a data set, we take the
Logarithms of the original data and assess the Normality of the
transformed data, as done in the sections above. For example,
the data set in Table 6 comes from a Lognormal distribution with

Descriptive statistics for both the Lognormal data set and its
Logarithmic transformation are given in Table 8. For example,
results for the sample Mean: Ln(65.21) = 4.177 = 4.091. We
now assess the Normality of the transformed data set (LogELN)
by repeating the work discussed in the previous sections. If
these transformed data fulfill the Properties given in Table 5,
then the original data (Table 6) are distributed Lognormal.

Table 8. Descriptive Statistics for the Data and their Normal
Transformation

Statistics Lognormal LogELN
N 45 45
Mean 65.21 4.0911
Median 62.90 4.1416
StDev 27.36 0.4244
Min 24.29 3.190
Max 132.86 4.889
Q1 42.66 3.753
Q3 85.89 4.453

Location parameter 4 and Scale parameter 0.4.

Table 6. Original Data (Lognormal)

67.842 91.030 42.974 42.849 46.459 64.746
55.031 38.326  119.612 62.903 31.778 87.068
58.854  44.790 69.054 69.222 39.334  121.592
90.537 99.651 93.440 31.021 47.152 63.716
92.824 36.030 104.526 62.006 35.605 35.019
32102  24.288 80.420  132.861 48.886 57911
79.527 37.659 63.223 110.359 77.153 84.713
52.391 42.475 65.333

We then transform these data by taking Logarithms of each ele-
ment. For the first data point: Log(67.842) = 4.21718. The

transformed data are shown in Table 7.

Table 7. Transformed Data (LogELN)

4.21718 4.51119 3.76060 3.75769 3.83858 4.17048
4.00790 3.64612 4.78425  4.14159 3.45877 4.46668
4.07506 3.80198 4.23489 4.23732 3.67210 4.80067
4.50576 4.60168 4.53732 3.43466 3.85338 4.15443
4.53071 3.58434 4.64944  4.12723  3.57250 3.55589
3.46892 3.18999 4.38726  4.88930 3.88949 4.05891
437610 3.62857 4.14667  4.70374 4.34579 4.43927
3.95874 3.74891 4.17949

These empirical results help assess the plausibility of the
Normality or the Lognormality assumptions of a given life data
set. If, at such point, a stronger case for the validity of these dis-
tributions is required, then a number of theoretical GoF tests can
be carried out.

Summary

This START sheet discusses the important problem of (empiri-
cally) assessing both the Normal and Lognormal distribution
assumptions of a data set. Several numerical and graphical
examples were presented and some related theoretical and prac-
tical issues were discussed.

Some other, very important, reliability analysis topics were men-
tioned. Due to their complexity, these will be treated in more
detail in separate, forthcoming START sheets.
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