QUALITY ASSESSMENT OF PUERTO RICO HURRICANE MITIGATION

TEAM 2 LAKSHMI KAVITA ZHI GAO CHENG LI

Project Background

In this presentation, we will try to determine what were the components for Cost of Poor Quality and Assess the Disaster Mitigation process.

Project Background Puerto Rico Is A Man-Made Disaster

https://www.pbs.org/newshour/show/heres-why-restoring-power-in-puerto-rico-is-taking-so-long

Electrical grid

Power plant 🗢	Capacity 🔹	Energy source \$	Ownership 🗢	Owner 🗢	Operator 🗢	Location 🖨
Costa Sur	990 MW	heavy fuel oil	publicly owned	PREPA	PREPA	Guayanilla
<u>Aguirre Thermoelectric^[18]</u>	900 MW	diesel oil	publicly owned	PREPA	PREPA	Salinas
Palo Seco	602 MW	heavy fuel oil	publicly owned	PREPA	PREPA	Cataño
Aguirre Combined Cycle ^[18]	592 MW	heavy fuel oil	publicly owned	PREPA	PREPA	Salinas
BcoBléctrica ^[19]	510 MW	natural gas	private	Gas Natural Fenosa, International Power	Gas Natural Fenosa	Peñuelas
San Juan Combined Cycle ^[23]	464 MW	diesel oil	publicly owned	PREPA	PREPA	San Juan
ABS Puerto Rico ^[17]	454 MW	coal	private	AES Corporation	AES Corporation	Guayama
San Juan Thermoelectric ^[23]	400 MW	heavy fuel oil	publicly owned	PREPA	PREPA	San Juan
Cambalache	247 MW	diesel oil	publicly owned	PREPA	PREPA	Arecibo
Santa Isabel Wind Farm ^[26]	75 MW	wind power	private	Pattern Energy ^[27]	Pattern Energy	Santa Isabel
Oriana Solar Farm ^[20]	45 MW (58MW(_{DC}))	solar power	private	Sonnedix	Sonnedix	Isabela
San Fermin Solar Farm ^{[24][25]}	27 MW	solar power	private	Uriel Renewables and Coqui Power	Uriel Renewables and Coqui Power	Loiza
Punta Lima	26 MW	wind power	private	Sovereign Bank ^[21]	Gestamp Wind	Naguabo
ABS Ilumina ^[16]	24 MW	solar power	private	AES Corporation	AES Corporation	Guayama
Salinas Solar Park ^[22]	16 MW	solar power	private	Sonnedix	Sonnedix	Salinas
Windmar Ponce ^[28]	4.5 MW	solar power	private	Windmar Renewable Energy	Windmar Renewable Energy	Ponce

Hawaii. Solar power. Wind power. Biomass. Coal. Wave power. Algae fuel.

Flowchart

COPQ

Process	Internal Failure	External Failure	Appraisal	Prevention	Hidden Quality Cost
Fuel generators	Generators fail Bad quality of fuel Not suitable for moving Not suitable for the residents daily use	No knowledge to use them(control generators) Noisy	Stability Motor power	Education Sustaining	Bad delivery Rust Theft Increase in price Due to demand
Build /repair/ Robust shelters/houses	Bad quality of building High cost Too hard to sustain No convenience for their other usages	Too hard to go there flooding	Structural stability (to withstand wind- and water-loads) Reinforcement and shielding of walls, roofs, doors and windows HVAC facilities Sanitary facilities	Sustaining Maintaining	Labor Raw material cost Equipments
Electrical grid (distribution network/substation)	Radial or Network Reconfiguration Cable quality Laying line way Grid base station	Overload Generator breaks Fluctuating voltage frequency	Safety Reliability Economical Adaptability Coordination		Animal Human Natural
Solar Farm	Bad attachment of solar panels Bad design of solar panel for wind stand Bad location of solar farm	Out of sustaining Lack of raw material	Structural stability (to withstand wind-loads)	Sustaining	
Long term (months) private power source (wind & solar) (when fuel is shortage or high price)	High price Not enough power supply Structural stability (to withstand wind- and water- loads)	Out of sustaining Lack of raw material	Safety Reliability Economical Structural stability (to withstand wind- and water- loads)	Sustaining	
Upgrade power plant system (reduce	Conflict between US businesses and the				

LIST OF CONCERN FROM COPQ

- Failure of generators
- Communication system failure
 - Power transmission system failure
- Rescue efficiency
- Quality of equipment

LIST OF CONCERN FROM COPQ (Cont.)

Quality of shelters

Quality of power grid

Quality and availability of communication techniques

No support from US Mainland

Pareto Chart

Pareto Chart

LIST OF PERSONS TO INTERVIEW

Government representative

Electrical company representative

Police Officer

Hospitals and Urgent care CEOs

Experts and Engineers

LIST OF PERSONAL TO INTERVIEW (Cont.)

Victims

Other citizens

Reporters

Volunteers

QUESTIONS AND ANSWERS

Q1. What is the availability of your support team? Police Officer: We are available 24X7 and willing to extend all support from our side

Q2. Are the equipment enough and satisfactory to assist in the extreme conditions?

Experts – We are in short of equipments as it is getting very difficult due to power cut here. We would tend to hopefully receive all equipments by tomorrow morning

Q3. Do you have a plan –B in case of failure?
Police Officer and Experts: We do have another plain if this plan fails

Q4. When will be the power restored? Is there any compensation provided by your company?

Electrical Company representative - We hope power to be restored in three-four days. As the hurricane has hit strong, there has been a lot of devastation. We would discuss with our team, management and come up with our recovery plan at the earliest Q5. What is reaction of normal people for power outage for a longer period?

Victims – We are devastated by the power loss. Though we were prepared for the hurricane, it seems much more worse than our preparation

Q6. Do you have any alternate power sources? Or stand by power supply till power resumes?

Government Representative – Nothing has been arranged yet. We don't think anything will be changing in couple of days. We are trying our best to provide other basic amenities to victims

Q7. Do you have enough of your basic needs?

Government Representative – As of current requirement we have everything. Also, we are afraid that we may run out of it within a day

DIAGNOSTIC OF ISSUES

- Insufficient back up power supply
- No enough volunteers at the venue
- Safety of victims made sure
- Outdated equipments
- Delaying in actions taken by the government
- Insufficient actions taken by power plant
- Poor management of power plant

ROOT CAUSE ANALYSIS

RESULTS OF DIAGNOSTICS AND ROOT CAUSE ANALYSIS

Lack of power disrupts schools, hospitals and offices

Lack of funding and support from US mainland restricts reconstruction

Violent crimes like break-ins and rampant behavior

SOLUTIONS FOR FIXING QUALITY ISSUES

- Power company organization rebuild to remove corruption and inefficiencies, consider privatization
- Recruitment of more emergency security volunteers
- US should take serious actions to support and provide long term solutions
- Quicker response from internal and US Mainland
- Long term strategies to move residents to safer places and providing them sustainable living conditions

MEASURES TO ASSESS IMPROVEMENTS

Monitor new equipment and plant

Use of control charts to assess plant performance

Assess usage of backup power

HR measurements and analysis for various teams at power plant and emergency services

MEASURES FOR SUSTAINING SUCH IMPROVEMENTS

Train and assess emergency personnel and community

Prepare using mock drills

Procedure to track accountability during crisis

Educate the local community at a regular interval.

THANK YOU