PROGRAMMER ‘S EXPERIENCE AS A CLASSIFICATION VARIABLE
IN STATISTICAL ANALYSIS OF SOFTWARE DATA

B
JORGE LUIS ROMEU

[IT RESEARCH INSTITUTE, TURIN RD. NORTH
P. 0. Box 180, ROME, NY 13440

ABSTRACT

This paper addresses the problem of
looking at the intuitive complexity evaluation
of a software job by experienced programmers,
and of wusing it in conjunction with some
statistical techniques. This analysis may
help to identify which variables, if any,
follow the qualitative pattern defined by the
programmer's complexity criteria. Following
this approach, a set of (complexity)
characterization variables may be obtained and
be used to build models for the
control/forecast of the productivity and cost
of the software development process.

1.0 STATEMENT OF THE PROBLEM

The production of a large software system is
a complex activity involving different factors.
Characterizing the complexity of this activity
through the selection of a relevant set of end-
product variables, such as, size, number of
operators and operands, cyclomatic complexity,
function points, s crucial for software
performance evaluation, for estimation of future
costs and schedules, and for trade-offs studies.

In turn, these end-product characterization
variables are themselves determined by multiple
factors (Fig. 1), not all of them known or
gquantifiable. The end-product variables may
correlate highly with the abstract concept of
complexity, but remain poor forecasting
indicators.

However, experienced programmers do have an
intuitive qualitative appreciation of the
programming complexity of a software task, for
complexity definitely exists and varies from one
task to the next. The information stemming from
their practical experience can be very valuable
if it is properly used.

This paper addresses the problem of look ing
at the intuitive complexity evaluation of a
software task by experienced programmers, and of
using it in conjunction with some statistical
techniques. This investigation may help to
identify which variables, if any, follow the
qualitative pattern defined by the programmer's
complexity criteria. Since variability in
complexity is readily present in software, good
predictor variables should vary, reflecting the
same pattern.

Also addressed here is the analysis of the
relationships between the precision of program
specification and the complexity of the
programming task itself, as perceived by the
programner. Program specification s a
controllable activity. If it is statistically
verified that the subjective assessment of
quality of specifications do affect the degree
of subjective assessment of program complexity
in a given direction, it will provide the
software engineer with an additional elements to
deal with the complexity issues.

We believe this paper provides two
contributions. First, it provides an analysis
and some statistical results that may be of
interest to software researchers and
practitioners, and which can easily be followed
up with additional software data analyses for
confirmation in other environments. Second, it
illustrates the advantages in the application of
some statistical techniques developed and used
in other scientific areas to the field of
software engineering, by way of a real life
example.

2.0 METHODS
2.1 The Data
The statistical results presented here were

obtaine in the analysis of the NASA/SEL
dataset! at the Data and Analysis Center for

1 The NASA/SEL dataset consists of software
development data collected by the Software
Engineering Laboratory (SEL) from NASA/SEL

srojects. It contains over 45,000 records,
mainly from component status and run
analysis reports. The remainder is comment
information and change, resource summary and
component summary reports.

Software (DACS). These analyses are conducted
under the DACS Baseline sffort which is aimed at
providing software engineers with some
production baselines. For additional
information about the NASA/SEL dataset and the
Baselines task see (SEL81l), (ROM83a) and
(ROMEB4).

The quantitative variables wused in the
analyses were size, effort, and productivity.
The three programmer's subjective evaluation
classes for module complexity were easy, medium
and hard. The three programmer's subjective
evaluation classes for precision of the
specifications were very precise, precise and
imprecise. All of these variables were obtained
from the Component Summary File (CSF). The
subjective variables were the result of each
programmer evaluating the degree of programming
difficulty and the degree of specification
clarity of each module developed at the start
{stage NEW), as well as at the end (stage
COMPLETE), of their programming task. Specific
units of measurement are irrelevant to the
statistical result of the tests performed.

Modules under analysis were classified into
12 function groups according to the functions
they perform within their corresponding
programs, as shown in Table 1. It was assumed
that different module functions induce different
software characteristics. This post
stratification scheme provides a greater
homogeneity in the data, within groups, and more
easily identifies the software variable
differences, between groups. Not all module
function groups appearing in Table 1 had enough
data to support the analyses reported here.

The two qualitative variables, subjective
evaluation of module complexity and of precision
of the specifications were classified into three
increasing degrees of difficulty. To avoid the
problem of a “grey zone® in the process of
variable selection, the quantitative variables
of size, effort and productivity were compared
only when their corresponding module complexity
evaluation was either ‘hard’ or ‘easy’ (that is,
all 'medium' complexity modules were discarded
for this analysis).

Since subjective or qualitative variables
reflect an order of preference, as perceived
through the programmer's experience, they are
assumed to be given in an ordinal measurement
scale level. The quantitative variables (for
example, size) are also assumed to be given in a
ordinal measurement scale level. The reasons
for this interpretation are discussed in detail
in (ROME3b),

2.2 The Statistical Methods

Several nonparametric techniques were
employed in these analyses with two distinct
objectives: (1) The comparison and selection
of variables that reflect software complexity,
and (2) the study of the relationships between
complexity and precision of the specifications.

TABLE 1: MASA/SEL ENCODING DICTIONARY

MODULE/
COMPONENT

CODE NAME FUNCTION

1 INCLUDE INCLUDE STATEMENTS

2 CONTROL ~ CONTROL STATEMENTS (JCL,
OVERLAY)

3 SYSTEM SYSTEM STATEMENTS (ALC)

4 GESS GRAPHICS STATEMENTS (GESS)

5 DATA DATA STATEMENTS

7 CDR FORTRAN CONTROL /DRIVER MODULE

8 ¢ comwp FORTRAN CONTROL /COMPUTATIONAL
STATEMENTS

9 DTRANS FORTRAN DATA TRANSFER MODULE

10 I0 FORTRAN INPUT/OUTPUT MODULE

17 I0CDR FORTRAN CONTROL/DRIVER MODULE
WITH I/0

18 IOCCOMP FORTRAN CONTROL/COMPUTATIONAL
MODULE W

19 IODTRANS FORTRAN DATA TRANSFER MODULE
WITH I/0

(1) Selection of (end-product) complexity
characterization variables

Assuming the programmer's assessment of the
coding task at completion of module
development (stage COMPLETE) 1is accurate,
there will be a statistically significant
difference between '‘easy’ and 'hard’
subgroups within software characterization
variables (within size, effort, etc.). The
null hypothesis of no difference was tested
against two alternatives:

(a) ‘easy' and 'hard' subgroups differ
in location (that is, that one group
is statistically larger that the
other). This was done through the
Wilcoxon-Mann-Whitney rank-sum test
(LEHM75)

{b) 'easy’ and ‘hard' subgroups differ
in dispersion (that is, that one
group is more variable than the
other). This was done through the
Siegel-Tukey test for dispersion

(SIEGKQ)
(2) Relationships between programmer’s
subjective assessment of module

complexity and his subjective assessment
of precision of the specifications

Verifying that an imprecise specification
induces a complex programming task (or vice
versa) may prove very useful. Under such

conditions, to dedicate more effort to develop
specification standards, design languages,
requirements analysis methods, etc., may well
pay its way handsomely. The null hypothesis of

no association was tested against the ordered

alternative that the Tlower the perceived
precision of the module's specification, the
higher the perceived complexity level of the
coding task. This hypothesis was tested through
ordered alternatives contingency table
procedures (LEHM75). This hypothesis was also
tested both at the initiation (NEW stage) and at
completion (COMPLETE stage) of modu le
development. The statistical results at both of
these (NEW and COMPLETE development stages) were
also compared within each module function.

3.0 RESULTS

Results of the first type of the analyses
are reported in Table 2. The variables size,
effort and productivity are compared at stage
COMPLETE by Module Function. Observe that
across module functions, the variable ‘'size’
(with the exception made of module function 4,
Graphic Statements) exhibits a consistent,
significant difference between complexity
groups. Easier modules yield smaller sizes and
complex modules tend to be larger. This is
consistent with the strong correlation that has
been traditionally found between lines of code
and other complexity indicators. The converse
may alse be true; that is, that some Tonger
modules may be classified erroneously as
complex.

Observe that for variable ‘effort', with the
exception of module functions 4 and 9, ‘easy’
modules indicate smaller development efforts.
This is also consistent with traditional resuylts
and may serve to validate the accuracy of the
programmer's subjective complexity evaluations,
and hence, the other statistical results
presented here.

Differences between complexity groups in the
third variable, 'productivity’ do not show a
definite pattern. In some cases, differences in
productivity are nonsignificant, or the
direction of the significant differences, when
detected, is not consistent. In some cases,
easy is smaller; in others it is larger; and in
yet others; the difference is-not in location
but in variability. These results agree with
traditionally poor results when correlating
sizes with productivity.

The association between programmer's
assessment of complexity and precision of the
specifications is reported in Table 3. This
association has been analyzed both by module
function and by development stage. As above,
the behavior of the variables by module function
and stage is studied in order to contrast the
programmer's expectancies with the project's
realizations. Observe how, with the exception
of module functions 7, 8 and 9, the hypothesis
of association between increasing module

complexity and decreasing precision of the
specification is highly significant. Also,
contrast how at stage NEW (at initiation of the
coding of a module) this test result is usually
nonsignificant, while it becomes significant at
the completion stage. :

Finally, a practical interpretation of Table
3, which reports on the tests for association
between precision of specifications and
perceived complexity, for ordered alternatives,
will be provided through an example. For Module
Function 19 (data transfer with 1/0) the
association between perceived complexity and
precision of specifications was highly
significant at stage Complete (column 3). This
led to the acceptance of the alternative
hypothesis that a decrease in precision of the
specifications is highly associated with an
increase in programming task complexity. The
last three columns of Table 3, report the actual
order in which the complexity classes resulted
after projects were ordered, following a
precision of specifications criteria and then
counted and averaged by perceived complexity
classes.

Notice, in the case of Module Function 19,
the projects having the highest rating of
specification precision also had the Towest
average rank of perceived complexity (easy =
Rank 1; medium = Rank 2; and Hard = Rank 3).

TABLE 2: STATISTICAL RELATION BETWEEK PERCIEVED COMPLEXITY
AND DEVELOPMENT CHARACTERISTICS

MODULE

FUNCTIONS SIZE EFFORT PRODUCTIVITY
MF4 KO RELATION NO RELATION EASY IS
Graphics SMALLER (*)
Statements

7 EASY [S EASY IS ®0 RELATION
Control/Oriver SMALLER (w@) SMALLER (=)

8 EASY IS EASY IS EASY IS
Controt/ SMALLER (*) SMALLER (¥e=) LARGER (¥}
Computaticnal

9 EASY IS HARD IS MORE HARD IS MORE
Data Trensfer SMALLER (%} OISPERSED (*==} QISPERSED (**)
w10 EASY IS EASY IS EASY IS
Input/Qutput SMALLER (#we) SMALLER (www) LARGER (**)
MF17 EASY IS EASY IS EASY IS

Controi/Oriver SMALLER (ww=} SMALLER (=ww) LARGER (*w=)
with [/0

MF18 EASY IS EASY IS EASY S MORE
Control/ SMALLER (®=®) SMALLER (**) DISPERSED (wwwy
Computational

with [/0

w19 EASY IS EASY IS EASY IS MORE
Data Transfer SMALLER (¥®) SMALLER (*) OISPERSED (*=)
w=ith 1/0

Legend
* Test is significant at level @ = 0.05
** Test is significant at level a = 0.01
¢ Test is significant at level! a = 0.001

TABLZ 3: PERCEIVED COMPLEXITY VS, PRECISION OF
SPECIFICATIONS: ORDERED ALTERNATIVES

ASSOCIATION
MODULE DEVELOPMENT TEST AVERAGE RANK ORDER QUTCOME
FUNCTION STAGE OUTCOME EASY MEDIUM HARD
non
L] Significant H/A N/A N/A
MF19
Oata Transfer
with (/0 Highly
c Significant 1 4 3
non
N Signiffcant N/A H/A N/A
MF18
Control/
Computational
with [/0 c Stgnificant 1 2 3
] Stgnificant 1 2 3
MF17
Contral/Oriver
with [/0 Highly
[Significant 2 1 3
Highly
N Significant 1 2 3
#F10
Input/Qutput Highly
[+ Significant 1 2 3
N Significant 1 2 3
M9
Data/Transfer non
c Significant H/A N/A K/A
non
L] Significeat H/A N/A N/A
F8
Control/
Computational noR
[+ Significent H/A K/A K/A
non
L} Stgnificant H/A H/R R/A
7
Control/Driver non
c Significant H/A LTL N/A
non .
] Stgnificant #/A H/A H/A
MFS
Data Highly
Statements [Significant i 2 2
non
N Significant H/A /A H/A
MF4
Graphic Highly
Statements [« Stgnificant 3 1 2
Legend
N/A non applicedle
non
Significant Test is non significant at level @ = 0,05
Significant Test is significant &t level a = 0.05
Very
Stgnificant Test s significant at level @« 0.01
Highly
Stgnificant Test is significant at level e = (3,001

* Average rank order is computad from the ranks of all observations
within each treatment. [t fs sn indicator of the actua! (ordered)
Jutcome of the tast,

4.0 CONCLUSIONS

The dataset ysed in these analyses
represents very specific types of application
and environment. It remains to be seen if the
same results hold for other
applications/environments. In addition, some of
the data from the CSF file were machine
generated or estimated {for example, module
function classification was produced by an
algorithm).

However, the analysis presented in this
paper is not dependent on specific data
characteristics. The statistical results were
obtained with rank-based nonparametric
procedures, whose robust properties are well
known. Finally, several partial results are in
close agreement with previous, well-established
experiences and/or research performed (see
section 3.0, paragraphs 1, 2 and 3). Hence,
statistical results reported here may be
cautiously interpreted and further validated
with additional data, but their conclusions are
regarded as valid.

Overall conclusions:

(1) Size and effort are strong contenders
for characterizing software complexity,
but are insufficient by themselves.

(2) Productivity is a poor characterization
variable for reflecting the complexity
of software.

(3) A similar analysis approach can be
followed with additional software
variables (operators, operands, function
points, cycliomatic complexity) for the
screening and selection of a set of
complexity characterization variables.

(4) There is & strong indication that the
Tess precise the program specifications,
the greater the program or module
complexity {or vice versa), as perceived
by the programmer. The programmer is,
in the final analysis, the one who deals
with the task complexity and consumes
the coding effort.

5.0 ACKNOWLEDGEMENTS

Thanks are due to the NASA/SEL organization
{especially to Mr. Frank McGarry) for furnishing
the data to perform- these analyses; to Mr,
Robert Vienneau (LITRI/DACS), for his
programming; to DACS Program Manager, Thomas
Robbins, for his encouragement and support; and
to many colieagues at IITRI-Rome for their
helpful interaction.

6.0 REFERENCES

(1) (LEHM75) Lehman, E. L. Nonparametric
Statistical Methods Based on Ranks. Holden-
Dey, San Francisco. 1975,

(2) {SEL-8l) MWeiss, D. et al. Software

Engineering Laboratory. SEL-81-002.

September 1981 .

(3) (SIEG60) Siegel, S. and J. Tukey. “A
Nonparametric Sum of Ranks Procedure for
Relative Spread in Unpaired Samples.® JASA,
Vol. 55, pp 429-444. (1960).

(%)

(ROME33a) Romeu, J. L. "An Approach to
Software Baseline Generation." Proceedings
of the 1983 NASA/Goddard Software
Engineering Workshop, Washington, OC.

(ROME83b) Romeu, J. L. and S. Gloss-Soler.
“Some Measurement Problems Detected in the
Analysis of Software Productivity Data and
their Statistical Conseguences."
Proceedings of the COMPSAC'83 Conference.
Chicago, I11.

(ROMEB4) Romeu, J. L. Baselines Effort
Progress Reports Ne. 1, 2 and 3. DACS
(Draft) Reports August 1983, April and
December 1984.

