On Quality Engineering

Jorge Luis Romeu, Ph.D.
Certified Quality/Reliability Engineer
Senior Member/Director Reg. II, ASQ
http://www.linkedin.com/pub/jorge-luis-romeu/26/566/104
Email: romeu@cortland.edu

Outline

- What is Quality
- Types and Classifications
- Areas and Characteristics
- Assessment and Planning
- Improvement and Control
- Qualitative and Quantitative
- A Roadmap for Quality Change

What is Quality?

- In the eyes of the beholder ...
 - Fitness for use ...
 - Customer satisfaction and loyalty ...
- What and who is a customer?
 - Internal customers
 - External customers
 - Anyone affected by the product/service

Two approaches to Quality

- Little "q"
 - Traditional quality function
 - Reactive, finding issues, manufacturing
 - Control charts, acceptance sampling
- Big "Q"
 - New approach to Quality
 - Proactive, preventing, all services
 - Product as well as Process

Two Dimensions of Q

- Features
 - Affects Income (sales)
 - Reliability, ease of use, appearance, price
 - Refers to Quality of Design
- Freedom from Deficiencies
 - Affects production costs
 - Defects, failures, warranty, waste, etc.
 - Refers to Quality of Conformance

Two Types of Problems

- Sporadic Problems
 - Occur intermittently and randomly
 - SPC, Acceptance Sampling, etc.
 - Restoring the Status Quo
- Chronic Problems
 - Long Term and Costly
 - Continuous Improvement
 - Changing the Status Quo

Some Related Quality Areas (1)

- Quality and Productivity
 - Process assessments lead to
 - Process improvements
 - Help achieve higher efficiency by
 - Identifying time/waste reductions
 - And raise worker productivity
 - By streamlining the process

Some Related Quality Areas (2)

- Quality and Costs
 - Quality improvements imply
 - Less customer complaints
 - Increased sales, and
 - Decreased warranty costs
 - Smaller Inventory, and
 - Higher productivity

Some Related Quality Areas (3)

- Quality and Cycle Time (DFSS/DMAIC)
 - Less time to product development
 - Beats competition to marketplace
 - Bring higher sales and market share
 - Less time to manufacture products
 - Decreases inventory costs
 - Increases worker productivity
 - Brings higher revenues and sales

Three Quality Processes

- Quality Planning
 - Product and Process development; DFSS
- Quality Control
 - Define, Measure, Compare, Act; SPC
- Quality Improvement
 - Continuous improvement process
 - DOE, Lean, Six Sigma/DMAIC

Four Quality Assurance Areas (1)

- Quality Assessment
 - Review and Assessments of the
 - Organization's general "Q" procedures
 - And its "Quality Culture"
- Quality Planning
 - Review and Assessment of the
 - Organization's "Q" planning procedures

Four Quality Assurance Areas (2)

- Quality Control
 - Acceptance sampling
 - SPC procedures
- Quality Improvement
 - Experimental Design/DOE
 - Six Sigma/DMAIC, Lean
 - Continuous Improvement

Quality Assessment

- Cost of Poor Quality (COPC)
 - Appraisal, Scrap, Prevention, Warranties
- Standing in the Market Place
 - Benchmarking, field studies
- Quality Culture of the Organization
- Operation of its Quality Systems
 - ISO 9000; Baldrige

Cost of Poor Quality (COPC)

- Difficult to notice and/or recognize
- Product non conformities (defects)
- Inefficient production processes
- Lost opportunities (sales/revenues)
- Appraisal and Prevention Costs
- As well as Hidden Quality Costs:
 - Downtime, extra inventory, overtime

Reduction of COPC

- Pays for Quality Improvement costs
 - Reduces customer complaints
 - Increases customer loyalty
 - Increases reputation/customer base
 - Reduces warranty costs
 - Reduces production cycle
 - Reduces production costs

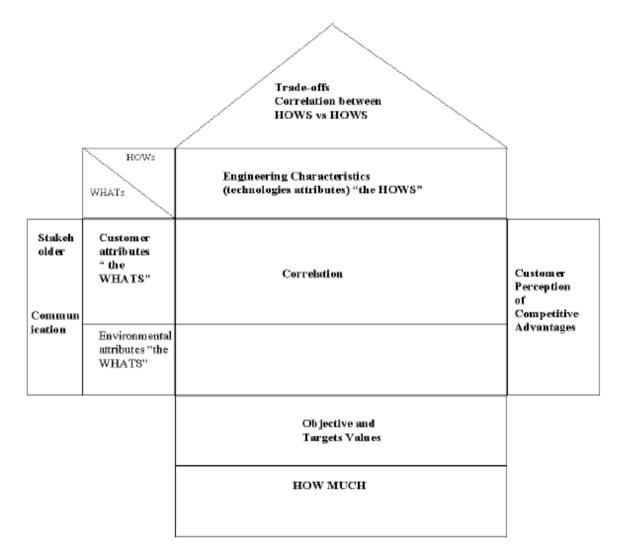
Quality Planning

- Identify Customers and their Needs
 - Benchmarking, surveys
- Develop the Product
 - Quality Function Deployment (QFD)
- Develop the Process
 - Design For Six Sigma (DFSS)
- Develop the Operational Phase

What is QFD?

- The voice of the customer
- A process that interprets and allows understanding of customer needs and expectations and product or service features and functions
- QFD was developed in late 1960's by Professors Shigeru Mizuno and Yoji Akao

Why QFD?


- ➤ To prioritize spoken and unspoken customer wants, and needs
- ➤ To build and deliver a quality product or service by focusing various business functions toward achieving a common goal of customer satisfaction.
- QFD maximizes positive quality (ease of use), where as traditional quality system try to reduce negative quality (defects, poor service)

How QFD works - Methodology

- Quality Function Deployment methodology involves several sequential phases
- During each phase one or more matrices are prepared

Matrices help to plan and communicate critical product and process planning and design information.

A skeleton for a House of Quality

Quality Control

- Addresses Sporadic Problems
 - Acceptance Sampling
 - Supplier Relations
 - Supply Chain Management
 - Metrics and Measurements
 - Gage R & R Studies
 - SPC Charts and Methodology

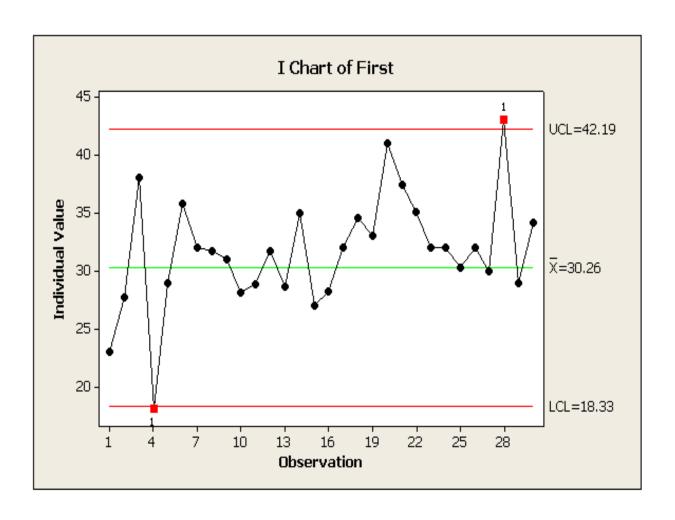
Quality Control Charts

 A systematic plot and analysis of Product and Process Performance Measures (PM)

- Two types of PM in quality control
 - First type is Quantitative (e.g. Speed, Temperature)
 - Charts to analyze these are called Variable Charts
 - Second type is Qualitative (e.g. Pass./ Fail, Good/Bad
 - Charts to analyze these are called Attribute Charts

Types of Control Charts (1)

Variable Charts


- Measurements are quantitative and are taken continuously (e.g. sizes, weights etc)
- Uses summaries: means, variances, ranges etc;
- They are plotted sequentially in time
- Examples of Variable charts
 - Mean and Range Chart
 - Cumulative Sum (CUSUM) Chart

Types of Control Charts (2)

Attribute Charts

- Measurements are qualitative, such as:
 - Defective or not, pass or fail, etc
- Examples of Attribute charts:
 - Percent Defectives Chart
 - Number of Defectives Chart

Control Chart for Number of Errors

J. L. Romeu. Copyright 2010

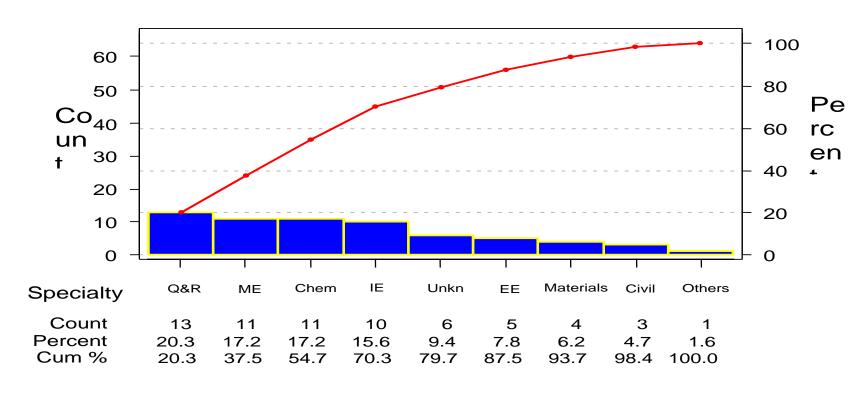
Quality Improvement

- Addresses Chronic Problems
 - Changes the Status Quo
 - Not detected by SPC
 - Design of Experiments
 - Six Sigma Methodology
 - Lean Manufacturing
 - Continuous Improvement

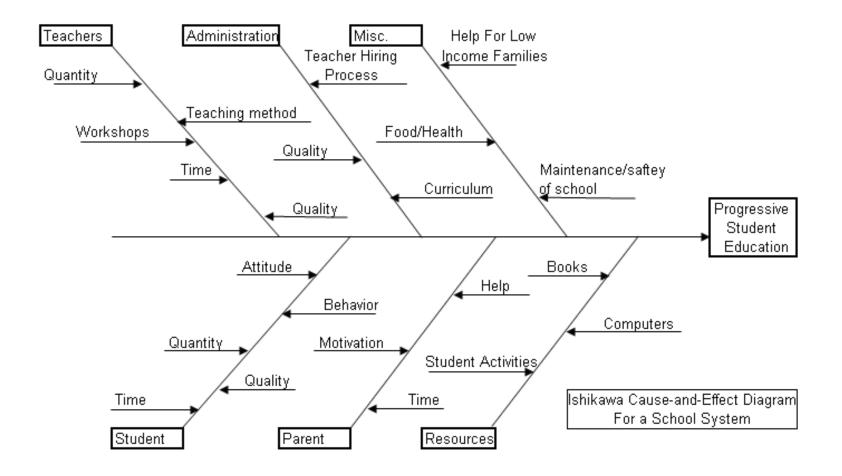
Six Sigma Methodology

- Six Sigma (6σ) is a collection of engineering and statistical concepts and techniques
- Focuses on reducing variation in processes and preventing deficiencies in products
- Accuracy 99.9996% Approximately Four PPM Defectives

Six Sigma Phases


- 1. Define: identify the areas
- 2. Measure: data collection
- 3. Analyze: relevant information
- 4. Improve: selected areas
- 5. Control: manage changes

Main Qualitative Analyses


- Pareto charts
 - Relevant Few
- Ishikawa Charts
 - Factors impacting response
- Affinity Diagrams
 - Groupings of similar
- Check Lists
 - Order and inclusion

Example of Pareto

Pareto Chart for Speciali

Ishikawa or Fishbone Chart

Main Quantitative Data Analyses

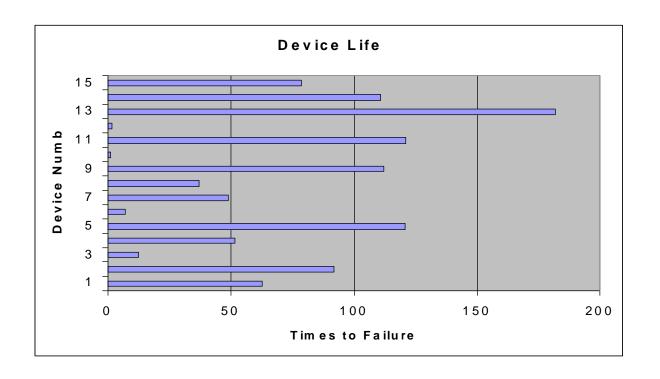

- Statistical analyses
 - Estimation and Testing
 - -Regression, ANOVA,
 - Design of Experiments
- Operations research
 - System performance and optimization
 - Simulation modeling and analysis

Types of Statistical Analyses

- Estimation and Testing
 - -CI, Hypothesis tests, data analysis
- Regression, ANOVA,
 - modeling, estimation, forecasting
- Design of Experiments
 - Factor screening, RSM

DOE Example

A Complete 2³ Factorial Experiment


Operations research analyses

- System performance/optimization
 - Linear/Non Linear/Goal programming
 - Stochastic Models (Queuing/Inventory)
- Simulation modeling/analysis
 - Discrete event simulation models
 - System performance/optimization

Reliability is Quality in Time

- Types of Reliability Analyses
 - Data collection Needs
 - Reliability Assessment
 - Reliability Testing
 - Reliability Estimation
 - Reliability Growth

Example of Life Testing

Reliability Issues/Methods

- Some Relevant Issues
 - Availability
 - Maintainability
 - Survivability
- And Reliability Methodology
 - FMEAs and FMECAs
 - Fault Tree Analysis (FTA)

A Roadmap for Change (Juran)

- Phase I: Decide (assess the status of the organization)
- Phase II: Prepare (goals and objectives; launch pilot plan)
- Phase III: Launching (train, deploy and measure)

A Roadmap for Change

- Phase IV: Expand (modify and review identified problem areas)
- Phase V: Sustain (inspect, audit)
- Result: Successful Integration of Big "Q" into the Organization with higher revenues and productivity.

Summarizing

- The Quality Function Evolution:
 - -Check, Inspection, SPC, Data Anal.
 - -Root Cause Anal., Re-engineering
 - -Lean manufacturing, Benchmarking
 - -Process Flow Revision, Simulation
 - -Supply Chain Management, Design
 - -Continuous Improvement, Six Sigma

Conclusions

- Quality affects everyone
- Quality affects every process
- Quality affects profits/market share
- Quality issues are often unnoticed
- Quality assessments uncover them
- Quality methodology solves them
- Quality improvement pays for itself