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Overview 

• Background: The Customer Requirements 

• Forecasting: 

– Least Squares Regression 

– Non-Parametric Regression 

• Simulation Results 

• Sample Cases 
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Customer Requirement 

• Navy senior management 
– Needed to forecast failure rates for near-term and 

long-term planning. 
• Decision points for action to improve spares situation for 

Naval Air Craft 

– Forecast needed to be in simplest format 

– Forecast was basis for monetary cost avoidance. 
• Forecast became the do nothing model 

• Cost avoidance was based on difference between the actual 
and forecast post reliability implementation. 

– Lead time for analysis was short 

– Analysts with cursory knowledge of forecasting 
methods. 
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Forecasting Methods 

• The agreed upon reliability measure was in the 

format of Failures/(1000 Flight Hours)  

• Initial forecasting method was Least Squares 

Linear Regression 

– Occams Razor: “Use simplest model” 

– Tools are commonly available 

– Problems: 

• Data was often limited to small samples 

• Data showed non-constant variation 

• Data had large outliers 
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Forecasting Methods 

• Examined over 100 data sets 

– Observations: 

• Residual analysis revealed heteroskedasticity 

• Occurrence of outliers 

– Many related to surge in military operations 

• Valid data sets could be small 
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Forecasting Methods 

• Non-Parametric Linear Modeling 

– Because it is based on the median of pair-
wise slopes 

• Less sensitive to skewed data 

• Less sensitive to outliers 

• Less sensitive to small data sets 

– Ranking of slopes moves disconcordant local-
slopes to limits of ranks. 

• Effects from outliers and skewed residuals is 
reduced. 
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Pair-Wise Slopes 
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Shows pair-wise slopes between n=9 and n= 10, 11, 12…16 
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Pair-Wise Slopes 
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Pair-Wise Slopes 
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Pair-Wise Slopes 
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Non-Parametric Method 

• Pair-wise slopes are 
ranked from minimum to 
maximum. 
 

• The extreme values are 
at the ends of the sorted 
slope set. 
– Slopemin is the most 

negative slope and 
Slopemax is the most 
positive slope. 

– Result from outliers and 
data in the long tails of the 
distribution. 
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Non-Parametric Method 

• Median slope is the nominal 
slope. 
 
 

• Slope confidence limits are 
determined from the quantiles 
of the Kendall-Tau test 
statistic. 

• Slope Test: H0: Slope = 0 

– If Slope = 0 is between the 
SlopeLL and SlopeUL, cannot 
reject the hypothesis. 

– Otherwise, reject the 
hypothesis and accept the 
median slope. 
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Simulation 

• Ten data set were simulated 

– Base model: Ysim = 1 + 0.1t + sim 

• sim = the error term 

– Randomly generated based on exponential distribution 

– Increases with dependent variable 

– Increased with each data set to simulate greater degrees of 

skewed variability 

• Applied Least Squares Regression and Non-

parametric regression to ten sets. 
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Simulation Results 
Table 1. Simulation Results 

  Least Squares Regression Non-Parametric Regression 

Simulation Set Slope R2 p-value Slope Confidence Level 

Slope Lower 

Limit 

Slope Upper 

Limit 

1 0.232 33.9% 0.007 0.234 99% 0.073 0.397 

2 0.203 17.5% 0.066 0.203 99% 0.014 0.397 

3 0.175 27.4% 0.018 0.124 95% 0.020 0.256 

4 0.116 8.4% 0.215 0.116 95% 0.034 0.232 

5 0.166 21.9% 0.037 0.167 95% 0.045 0.320 

6 0.231 38.2% 0.004 0.191 99% 0.069 0.395 

7 0.302 27.2% 0.018 0.229 99% 0.026 0.619 

8 0.101 16.3% 0.077 0.119 95% 0.007 0.251 

9 0.230 19.0% 0.055 0.161 95% 0.024 0.326 

10 0.318 20.4% 0.046 0.169 99% 0.037 0.397 

Note: n = 20 for all simulated data sets. 
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Simulation Results 
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The residual plot for simulation set 

1, shows a non-constant variance, 

typical of all the simulations set. 

Least Squares p-value indicated a 

good slope value for this set. 
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Simulation Results 
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– Simulation Set 10 

–Least Squares Model 

– Pulled by outliers 

– Resulting in an over 

estimate in the 

forecast 

–Non-Parametric Model 

– More conservative 

slope 

– Accounts for skewed 

data. 
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Real World Examples 

• Navy Aircraft Servo-Cylinder Device 

• Experiencing increasing failure rates 

• Data showed high variance  

• Least Squares tended to over estimate 
forecast Failures/1000FH. 

– Non-constant variance 

• Non-Parametric model 

– Had a higher rate of change, positive 

– But regression line shifted down 
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Real World Results: 

Navy Aircraft Servo-Cylinder 
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– Least Squares residuals 

showed non-constant 

variance. 

– Violation of assumptions 
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– Non-Parametric model  

• Higher slope 

• Lower intercept 

• Closer confidence 

limits. 
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Comparison 

• Least Squares Methods 

– Readily available in common software tools 

 

• Non-Parametric 

– Less readily available 

• Must write your own programs or formulas 

• Must purchase a more sophisticated software 

package. 
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Conclusions 
• Non-Parametric Methods  

– Less sensitive to high variability 

– Less sensitive to outliers 

– Less sensitive to small data sets 

• Least Squares Methods 

– More sensitive to high variability 

– Very sensitive to small data sets 

– Must meet underlying assumptions 

• Often ignored by analysts 

• Can be subjective 


