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INTRODUCTION

Regression modeling is probably the most widely used (and misused) sta-
tistical tool in the analysis of data.  Assume that we have two or more vari-
ables, that they are associated (correlated), and that the variable of interest 
is difficult to assess.  However, the other variables are cheaper, easier or 
faster to obtain.  Then, it is appropriate to use regression to find a model 
that expresses the variable of interest, as a function of all the others.

On the other hand, regression is often misused because people forget it is 
based on a two-part methodology.  The first part is purely deterministic.  
The regression line (or surface, if it is multivariate) is obtained through an 
optimization process, minimizing the sums of squares of the distances to 
every data point in the data set.  There is no statistics work in this part.  Its 
results, the point estimators, are therefore always valid.

The second part, however, is purely stochastic.  Once the minimization is 
implemented and the line (or surface) is obtained, we add three statisti-
cal assumptions to the errors (also called residuals, or distances from the 
data points to such line or surface).  We have to assume that such errors 
are independent, Normally distributed and have equal variance (i.e.  ho-
moskedastic).  Only when these three model assumptions are met, can we 
validly implement statistical tests on the regression coefficients and obtain 
confidence intervals for them, as well as for the estimations and forecasts 
done using the regression model.

Unfortunately, many regression users either ignore or overlook the sec-
ond part.  They do not perform tests on the regression residuals to assess 
whether model assumptions are met.  Thence, in many cases, statistical re-
sults are used without knowing whether the regression meets its assump-

tions, or not.  The results obtained with invalid regressions are not only also 
invalid, but often far from correct.  As a result, the regression method cred-
ibility suffers, when in fact the real problem lies in its improper application.

The objective of the present RelTIQUE is to review the application of the 
regression methodology, emphasizing the verification of model assump-
tions.  We begin with an example illustrating the complete implementation 
for simple linear regression.  We then move to multiple regression (more 
than one independent variable) and non-linear or polynomial regression.  
And we then compare several models to select the “best”.

Finally, we discuss the consequences of using regression when assump-
tions are violated.  In such cases we suggest some adaptive solutions that 
circumvent those problems and provide technical bibliography for further 
reading.

DEVELOPING A SIMPLE LINEAR REGRESSION

We review the theory behind regression modeling via the implementation 
of a Simple Linear Regression example.  Here, we have only one dependent 
and one independent variable.  The extension of simple linear regression 
to multivariate (several independent variables) and non linear (i.e.  polyno-
mial) regressions, follows directly from this case.

Assume a manufacturer has a processing machine that works at six different 
speeds (say 1 through 6).  The machine starts overheating after some time 
(given in minutes) and thus has to be stopped.  To better understand and 
manage such machine failures, management collects some data after run-
ning the machine at its six different speeds, until it overheats (and the op-
eration has to be terminated).  The data is given in Table 1 of Spreadsheet 1.

We begin our analysis obtaining descriptive statistics for variable Time:

Lacking any further explanation, variable “machine Time to overheating” 
has a mean of 314.53 and a standard deviation of 17.14 minutes.  However, 
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when we plot Time vs. the machine speed (Figure 1), we immediately see 
an alternative explanation: there is a decreasing and linear trend of the 
variable Time to overheat, on machine Speed:

Figure 1.  Time vs. Machine Speed

Since machine Speed (X) is easy to measure (it is also a controllable factor), 
we can use it to estimate the processing Time (Y) at which such machine 
overheats.  This knowledge allows us to take some appropriate action to 
counter or diminish the failures brought on by such problem.  We accom-
plish this by implementing a Simple Linear Regression:

Y
i
 = β

0
 + β

1 
X

i  
 +  ε

i
  (where “i” runs from 1 to n, the number of pairs of  data 

points)

Regression is simply the line of best fit that runs through the “n” pairs of 
points (Y

i
 , X

i
) given in Figure 1.  Obtaining the point estimators for param-

eters β
0
 and β

1 
corresponds to Part I of the regression implementation (the 

deterministic optimization) discussed in the Introduction (ε
i
 is the error, or 

distance from point to line).

Now, in addition, let’s assume that these “n” values constitute a random 
sample of the overheating Times, for all possible runs of the machine, at 
all its speeds.  Hence, what we obtain from the data are the “estimators” b

0
 

and b
1
 of the unknown regression parameters β

0
 and β

1.  
From our example 

data, such a regression line is:

Point estimators for slope and intercept (b
0
 and b

1
) are obtained by the 

formulas derived in the minimization process mentioned above.  For 
mathematical details, see Reference 1. 

b1 =
(xi − x)(yi − y)

i=1,n
∑

(xi − x)
2

i∑
;b0 = y − b1x

Let’s now assume that these distances, or differences between each point 
and the line of best fit ε

i 
(= Y

i
 - β

0
 + β

1 
X

i
), are also independently and Nor-

mally distributed random variables (r.v.), with mean Zero and the same 
variance σ2.  These assumptions constitute Part II of the regression model, 
already explained in the Introduction.  The above formulas for “statistics” b

0
 

and b
1
 are obtained by minimizing the sums of squares of the data point 

distances: z = f(x,y) = ∑e
i
2, where (e

i  
= Y

i
 - b

0
 + b

1 
X

i
) .  Additional mathemati-

cal details are provided in References 2, 4 and 5.

When the Errors or Residuals (ε
i
) are distributed Normal, regression slope 

estimator b
1
 is distributed as a Student t, with (n-2) degrees of freedom 

(DF).  Only then can we correctly test if such regression slope b
1
is Zero (and 

we say that there is no regression) or different from Zero (and we say there 
is a regression line).  From here, the importance of checking the three as-
sumptions of Normality, equal variance and independence of the Errors.

In the example given, the Student t statistic for slope b
1
 = -7.319 is T = -5.89, 

and has n-2 = 31 – 2 = 29 DF.  We can compare T with the Student t percentile 
(with DF=29 and α/2 = 0.025) which, from the t table is -2.045.  Since |T| > 
2.045 we reject the assertion (H

0
) that true but unknown regression slope β

1
 

is Zero.  However, it is easier to compare the computer generated p-value (= 
0.000) with the nominal test error α (= 0.05).  When the p-value is less than α, 
we reject the null hypothesis that the regression slope is Zero.

The step-by-step procedure for testing a linear regression is:

•	 State the Null H
0
:  β

1 
= 0 (The slope is zero)

•	 State the Alternative hypotheses: H
1
: β

1 
≠ 0 (It is not)

•	 Statistic Distribution (under H
0
) is t

(n-2)

•	 Test Significance level α=0.05; 
•	 Degrees of Freedom = 31-2 = 29
•	 Student t(n-2, α/2) table value = 2.045
•	 Test p-value = 0.000 (almost zero, very highly significant)
•	 Model Explanation (R2): 54%  of the problem  
•	 Decision: the time to overheat is well explained by the regression

To verify that everything that we have done is correct, we must check all 
three regression assumptions, which is done via the analysis of Residuals 
or Errors (e

i 
).  There exist several theoretical tests for Normality (Ref.  9), and 

for equality of Variance (Ref.  6), useful for the experienced practitioners.  
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But, at the very minimum, everyone should graphically check the residual 
plots for the standardized residuals (e

i
/s), where “s” (equal to 11.76 in the 

example) is the regression model standard deviation, which is an estima-
tor of the unknown, theoretical variance σ2.   We illustrate the graphical 
procedure below.

In our example, the model estimations (Fits) and the standardized residu-
als (e

i
 / s) are given in Table 2 of Spreadsheet 1.  Using these Residuals and 

Fits, we check Normality via a Histogram (Figure 2), or a computer-based 
Anderson-Darling Goodness of Fit test (Figure 3) (Ref.  9).

Figure 2.  Histogram of the Residuals (Response is Time)

Figure 3.  Normal Probability Plots of the Residuals (Response is Time)

The above Histogram, as well as the Normal Plot (which should be close 
to a straight line), suggest the Normality of the data.  The production runs 
were also selected at random from many different runs done by the manu-
facturer.  This suggests the independence of the data.  The Error equality 
of the variances, which is usually the most important of the three model 
assumptions, is checked via the plot of standardized residuals vs. regres-
sion fits (Figure 4).

Figure 4.  Residuals vs. the Fitted Values (Response is Time)

When variances are equal, most plot data points above lie between two 
parallel lines at ± 2.  When the plot presents a funnel-like pattern instead 
of homogeneous, there are serious variance problems.  In addition, the ap-
parent randomness (absence of patterns) also points to the independence 
of the data.  Hence, in our case, the three model assumptions appear to 
be met.  Hence, we assume that the regression model results are correct.

The Regression Fit is assessed by the R2 index.  In our case R2 = 54.5% (it is 
given in percentages, even when strictly speaking it is a decimal, between 
zero and unit).  This means that 54% of the problem variation (i.e.  the vari-
ation in times to overheating) can be “explained” by the speed at which 
them machine is running.  However, the remaining 45% of the problem 
variation is explained by factors other than machine speed (e.g.  material, 
humidity, temperature, etc.).  Such factors may later be included in the ex-
perimentation, and may help refine the model.
 
The regression model can also be used to estimate specific values of the 
dependent variable Y (time to overheat).  Formulas for the variance of a 
given forecast:

y
^

0 = b0 + b1x0 .;V (y
^

o) =σ 2 1
n
+

x0 − x( )
2

xi − x( )2∑

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

They can be used to obtain the corresponding confidence intervals CI, for 
a specific value of machine speed.  Fortunately, most regression packages 
compute these values for us.  For example, with 95% confidence, the time 
to overheat at speed Four will be:

yo
^
± t(df ,α /2) V (yo) = 310.51± 2.04 ×11.76 ×

1
31

+
4 − 3.45( )2

89.79

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2
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That is, a 95% CI for the variable in question will be given by:

The first CI above is for an “average” value time to overheat, at speed Four.  
The second CI is for any single or individual value.  For example, with 95% 
confidence, the time to overheat of any run at speed Four will not be less 
than 286 or greater than 335 minutes.  

We can use this information to plan corrective actions and avoid pos-
sible problems.  For example, if we assess that a processing job will take 
less than 286 minutes, we can be very certain (with about 98% confi-
dence) that it will be completed before the machine overheats.  If the 
jobs take over 335 minutes, it is very certain the machine will overheat 
before completing them.  If time estimated is between 286 and 335 
minutes, then chances are that some of them may have problems and 
others may not.

Finally, we can obtain a CI for the true but unknown slope and intercept 
of the regression model.  We can do so by using the formulas below, in 
developing these CI:

V (b1) =
σ 2

xi − x( )
2

∑
=
218.2
89.79

= 1.24( )2

V b0( ) = σ 2 1
n
+

x
2

xi − x( )
2

∑

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
= 4.78( )2

For example, we can obtain a CI for the true regression slope, because its 
estimator is distributed as a Student t:

b1
^
± t(df ,α /2) V (b1) = −7.32 ± 2.045 ×1.242 = −9.86,−4.78( )

This procedure allows us to establish lower and upper bounds for the (lin-
ear) effect of machine speed on time to overheat.  With 95% probability, 
for example, the slope (rate) of change for these variables is between -9.86 
and -4.78.  Hence, these CI lower and upper limits can now be used to pro-
vide optimistic, pessimistic and average estimates of the times to overheat, 
given the machine speed.

DEVELOPING MULTIVARIATE REGRESSIONS

Let’s now enhance the regression model to more than one independent 
variables or factors.  All assumptions discussed for Linear Regression still 

hold here.  Such multiple regression model, for “k” components, is math-
ematically expressed as:

Y
i
 = β

0
 + β

1 
X

i1 
+ β

2 
X

i2
 + ...  β

k 
X

ik
 +  ε

i  
 ;   1 ≤ i ≤ n

Now, we have “n” data vectors, (Y
i
,
 
X

i1
,
 
X

i2
  ...  

 
X

ik
) each with (k+1) elements.  

There are “k” regression coefficients (β
1
, ...  β

k
) one for each independent 

factor in the equation, in addition to the independent term β
0
.  Each co-

efficient must be tested as being equal to, or different from Zero, using 
an individual t-test.  In addition, the equation-wide F-test will determine 
whether the whole equation is significant (i.e.  at least one of the β

i 
coef-

ficients, of the “k” regressors or factors, is non-zero).  If there is “no regres-
sion”, all variable or factor coefficients are zero.  That is, the response Y is 
simply equal to the general average (the constant β

0
).  Let’s see all this 

through a numerical example.

A processing machine is operated in one of three possible speeds (namely 
1, 2, 3) until it overheats and has to be stopped.  To study this problem, 
an experiment is performed.  For each run of the machine, the average 
temperature and humidity are recorded.  These, plus speed, constitute the 
three regressors, factors or independent variables (X

1
,
 
X

2
, X

3
).  Time to over-

heating (Y) is the dependent variable or response, recorded in hours of 
operation.  Management wants (requirement) the machine to operate up 
to 520 minutes continuously, at least 90% of the time, before overheating.  
Regression can be useful in this problem.

An experiment, where the machine operates under all possible scenarios, 
is implemented, and the resulting data (Y

i
,
 
X

i1
,
 
X

i2
,
 
X

i3
; i = 1, … 20) is given in 

Table 3 of Spreadsheet 1:

Lacking other explanation, the machine processing time to overheat (Y) is 
distributed Normally (Ref.  9), with the sample statistics and Box Plot:

Under present conditions, the probability that a machine job has to be 
aborted (a failure), is the probability that the Time to overheat Y, during 
a run, is less than the specified goal of 500 minutes (i.e.  Mission Time).  In 
statistical terms, we state:
 

P (Abort/Failure) = P(Y < 500) = P{Z < (500-511.34)/11.05} =  0.1524
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Figure 6.  Normal Probability Plot of the Residuals (Response is Time)

The Histogram of the multiple regression residuals peaks around zero, and 
the probability plot is close to a straight line.  There is no strong indication 
that non-Normality is present.  

In practice, ideal conditions seldom exist.  When analyzing residuals, we ap-
praise strong vs. the weak violations of each model assumption and strive 
for a working balance.  When some violation occurs, we should report it up 
front, using analysis results with caution and making others aware that our 
results have to be taken with care.

We show next the plot of residuals vs. fits.  It confirms residual equal vari-
ance when it shows most data points within two (imaginary) parallel lines 
at levels ±2.  This plot also shows no apparent pattern that may lead us to 
suspect that non-randomness is present (Figure 7).

Figure 7.  Residuals vs. the Fitted Values (Response is Time)

Therefore we will assume that all regression assumptions have been rea-
sonably met, and we can proceed to use the analyses results in solving our 
reliability problem.

Through multiple regression we assess if any of the factors contribute to 
such overheating and by how much.  This lets us select better alternatives 
to improve the current situation:

The regression is, overall, significant (F statistic is 4.34, with a p-value of 
0.02).  In particular, the first two individual t-tests, for the coefficients of 
independent variables X

1
,
 
X

2
, are significant (their respective p-values are 

0.029 and 0.036).  The third coefficient, for variable “speed” is non-signifi-
cant (p-value = 0.123).  If there is still concern about variable X

3
 having an 

effect on the equipment (current p-value = 0.12 is low) additional experi-
ments should be carried out (i.e.  increase sample size).  Otherwise, we just 
drop X

3
 from the analysis (equation), as it has no significant effect on time.

The three factors, together, explain (R2) about 44.9% of the problem.  Other 
factors not present in the current model (e.g.  operator, material, day of the 
week) would have to be investigated, if the current explanation (R2) is to 
be increased.

Now, just like in the previous section, we need to investigate whether the 
regression model fulfills its assumptions and, hence, the above test results 
are valid –or not.  We do this graphically (see Figures 5 and 6, below), as 
well as analytically (formal statistical tests).

Figure 5.  Histogram of the Residuals (Response is Time)
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For example, the average temperature and humidity are 70° F, and 35%, 
with standard deviations of 9.1° F and 4.7%.  Finding ways to reduce the 
temperature and humidity, at least one standard deviation below their re-
spective averages, can help increase response “Y”.  By pushing up the mean 
of the distribution of Y (i.e.  Time to overheat) to say, 530 minutes, we may 
obtain a significant improvement:

Y = Temp = 595 - (0.547*(70-9.1)) - (1.02*(35-4.7)) = 530.782

Assuming variance of Y remains constant, the probability of failure to com-
plete a job is:

P (Abort/Failure) = P (Y < 500) = P {Z < (500-530.78)/11.05} = 0.0027

If more conservative estimates are desired, instead of using regression co-
efficient point estimators, we can obtain their CI and use their upper/lower 
limits as comparison values.

For example, we show below the CI for time to completion Y of any indi-
vidual job, done under controlled temperature (less than 61° F) and hu-
midity (less than 30 %).  We use the multiple regression equation obtained, 
giving for variables X

1
,
 
X

2
 the above-mentioned values.  Variable X

3
 (speed) 

is considered zero, since the coefficient of this third variable resulted non-
significant (zero) in the regression tests.  Results are given below:

DEVELOPING NONLINEAR REGRESSIONS 

Some times, instead of multiple variables (multivariate regression), model 
response “Y” depends on powers of the same, single independent variable 
“X”.  If such is the case, the resulting equation does not define a line, but a 
non-linear function (polynomial).  If more than a single independent vari-
able, then it does not define a plane, but a general surface.  We illustrate 
below, the first case by reprocessing the data used for the linear model in 
our first example:

Assume we want to include a quadratic term in our regression.  The new 
model becomes:

Y
i
 = β

0
 + β

1 
X

i1 
+ β

12 
X

1
2 + ε

i  
 ;   1 ≤ i ≤ n

We want to assess whether such polynomial regression improves on the 
original solution.

Reusing the data set in Table 1 of Spreadsheet 1, we fit a second degree 
parabola.  The quadratic regression equation is: 

The regression p-values show how the quadratic term introduced is not 
statistically significant (p-val = 0.540).  The addition of a quadratic term 
does not improve the model:

The above ANOVA table is used whenever we have more than a single re-
gressor “X”.  For, in such cases, we use the statistic F only to assess the over-
all regression equation.  In addition we use individual t-statistics, to assess 
each individual regression coefficient.

MODEL COMPARISONS

For completion, we compare the linear and quadratic models.  For, when 
we develop more than one regression model for the same problem, we 
need to select the “best” one.  

The best regression model, just as the best engineering design, is usually 
the simplest model: one that does the work with the minimum complexity.  
In regression, this means the function with the fewest terms (most parsi-
monious) and the best explanation (R2).  

To compare the two (linear and quadratic) regression models, we use their 
respective R2 values, as well as the degrees of freedom (DF) for the residu-
als of the Full and Reduced (FM, RM) Models.  We implement such compari-
son using the formula below:

F =

RFM
2 − RRM

2

ΔDF

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1− RFM
2

DFFM

=

0.551− 0.545
1

1− 0.551
28

=
0.006
0.016

= 0.374

In this example, we gain nothing by using the second degree parabola 
(F=0.37).  Even if the above F comparison showed an advantage (i.e., F test 
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is significant and FM or larger equation is better than RM or simpler one) 
the main condition remains that all regression model assumptions (as per 
graphical analysis at least) are not strongly violated.

 
DISCUSSION 

For an introductory but complete treatment of regression modeling, the 
reader can consult Reference 7.  For a more in-depth, still mainly practical 
approach, see References 2 and 4.

There are two additional regression modeling important topics, among 
many other ones that we have not had space to cover in a single RELTIC.  
We want, at least, to mention them, even in passing.  For, they both deal 
with the important issue of what to do when regression model assump-
tions are violated.

If the violations consist of lack of Normality or heterogeneous variance, 
then a variable transformation may provide a solution.  For example, if 
regression residuals are Binomial, with parameters “n” and “p”, it is known 
that the Mean (Expected Value) is “np” and the Variance is “np(1-p)”.  In 
such cases, the residual variance is a function of the mean and the re-
sidual plot yields the characteristic funnel-like pattern, resulting from:

Variance = np × (1-p) = Mean × (1-p)

A square root, logarithmic or arctangent transformation may resolve the 
issue.  For additional information, the reader should consult the advanced 
References 1, 5 and 6.  

If transformations are not feasible, or do not resolve model violations, and 
the model is a simple linear regression, then non-parametric regression 
procedures may prove useful.

Non parametric methods (also known as distribution free) do not depend 
on assuming a specific distribution.  Hence, the need for residual Normality 

is no longer an issue (and therefore, no longer we require equal variances).  
For an introduction to the use of such linear non-parametric regression in 
a reliability problem, see Reference 8.
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