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Introduction

The actual sample size “n” required in testing and confidence interval (CI) 
derivation is of tremendous importance for practitioners. For example, 
sample size carries with it a price tag in time, resources or both. In indus-
trial applications, neither of these is plentiful. 

When samples are taken all at one time, it is called single sampling. The 
problem of calculating the sample size for deriving a general CI has been 
discussed in Reference 2. Samples for acceptance testing were presented 
in Reference 3. Censored samples have been discussed in Reference 4. All 
of these cases, however, only treat the situation where fixed samples of 
pre-determined sizes are taken, all at one time.

An alternative consists in taking the samples in multiple stages and assess-
ing their results at each stage. This allows the possibility of stopping the 
process and reaching an early decision, if certain conditions are met. For 
example, if the start data are clear-cut in favor of (or against) the hypoth-
esis, then curtailing the test can save significant time and resources. Such 
is the case where samples are taken in successive stages, according to the 
assessment of results obtained from the previous sampling stages. This is 
known as “multiple sampling”.

In Reference 1, double sampling plans were discussed and then extended 
to higher dimension sampling plans, namely sequential tests. However, 
only the case of dichotomous variables (i.e. those that have only two out-
comes, e.g. pass or fail) was discussed. Such types of sequential plans are 
based on the discrete Binomial distribution. In this paper, the discussion 
is extended to sequential testing plans and continuous random variables 

(r.v.), especially those distributed exponentially. The same approach as that 
used in Reference 1 is applied.

In the remainder of this paper, several numerical examples of Sequential 
Probability Ratio Tests (SPRTs) for the Exponential case are presented, us-
ing the example of risks α = β = 0.128 and a “discrimination ratio” (DR) = 
2. The cumulative failure times of the device under test are first used to 
build the SPRT. The cumulative number of failures, and the Poisson distri-
bution (which is related to the Exponential distribution), are then used to 
construct an equivalent SPRT. Some issues related to the calculation of the 
Average Sample Number (ASN) and Expected Test Times (ETT), two perfor-
mance measures that evaluate the efficiency of SPRTs, are then discussed 
and the reader is introduced to the problem of test truncation. Finally, the 
results of the presented sequential testing approaches are discussed: (1) 
SPRTs for the continuous case developed in this paper, and (2) SPRTs for 
the discrete case, discussed in Reference 1, then contrasting their respec-
tive advantages and disadvantages. 

Sequential Tests (SPRTs) for Continuous 
Random Variables

A good way to introduce and illustrate the theory behind SPRTs for contin-
uous r.v. is via a numerical example. The same SPRT example given in Refer-
ence 1 is re-developed in this paper for exponentially-distributed life tests.

Assume that we want to test that the acceptable mean life of a device 
(MTTF or μ) is 200 hours or more (i.e., the null hypothesis H0: μ ≥ 200) ver-
sus that it is 100 hours or less (the alternative hypothesis is H1: μ ≤ 100). 
The same example presented in Reference 1 is reused here to establish 
comparisons and stress the differences in SPRT performance and efficiency 
when these hypotheses are used with discrete distributions. 

Assume that the r.v. “life of a device”, denoted “X”, follows a continuous dis-
tribution with mean μ. Its cumulative density (CDF) and probability density 
(pdf ) functions under the two hypotheses Hi: μ = μi, for i = 0,1 are given by: 

P{X T } = Fµi
(T ) = fi (x)dx

0

T

 .
Therefore:

P{Life.Under.Hi} = Pµi
{Device.Lives.up.to.Time :T } = Pµi

{X T } = Fµi
(T );i = 0,1

In the case where the distribution of life “X” is exponential, the above re-
duces to:
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Fµi
(t) = fµi

(x)dx =
0

t
1 e

t
µi ; fµi

(t) = 1
µi

e
t

µi ;i = 0,1;µ0 = 200;µ1 =100

Now, place “n” independent devices sequentially on test, one at a time, un-
til they all fail. Then, the Probability Ratio (PR) that the sequence of such 
“n” life tests, r.v. X1,…, Xn , have actually experienced failure times of 
t1,…,tn , under hypotheses H0 and H1, is defined by: 

P{UnderH1}
P{UnderH0}

=
Pµ1

(X1 t1, ,Xn tn )
Pµ0

(X1 t1, ,Xn tn )
=

Pµ1
(X1 t1)…Pµ1

(Xn tn )
Pµ0

(X1 t1)…Pµ0
(Xn tn )

=
Fµ1

(t1) Fµ1
(tn )

Fµ0
(t1) Fµ0

(tn )

Since the X’s are now continuous r.v., the substitution of CDFs with pdf’s 
yields:

qn (t1, ,tn ) =
fµ1

(t1) fµ1
(tn )

fµ0
(t1)… fµ0

(tn )
In the specific case where device “lives” (X) are exponentially distributed, 
this becomes:

qn (t1, ,tn ) =

1
µ1

exp( t1

µ1

) 1
µ1

exp( tn

µ1

)

1
µ0

exp( t1

µ0

) 1
µ0

exp( tn

µ0

)
=

1
µ1

n

exp ti

µ1i=1

n

1
µ0

n

exp ti

µ0i=1

n

As done in Reference 1, both hypothesis test errors, α (Producer’s Risk, or 
the probability of rejecting a device having an acceptable life), and β (Con-
sumer’s Risk, or the probability of accepting a device with unacceptable 
life) are defined as: α = β = 0.128. Then, two values, “A” and “B” can be found 
such that, at any SPRT stage “n” (having tested “n” devices sequentially (one 
at a time) and having obtained failure times ( t1,…,tn ), the probability of 
the “qn” function can be determined, just as occurred in the discrete distri-
bution case in Reference 1, fulfills: 

P{qn > A} = P

1
µ1

n

exp ti

µ1i=1

n

1
µ0

n

exp ti

µ0i=1

n
> A = ;

P{qn < B} = P

1
µ1

n

exp ti

µ1i=1

n

1
µ0

n

exp ti

µ0i=1

n
< B =1

Hence, we again define S (B, A) is again defined as the SPRT, via the above 
equations, that compares qn with A and B at every stage “n”, and supports 

a decision to either (1) accept H0, if qn < B; (2) accept H1, if qn > A; or (3) 
continue testing, if B < qn < A. However, as with the discrete SPRT, such a 
formulation is not easy to work with. It can be improved by defining the 
natural logarithm (ln) of the qn above, denoted “zn”, as:

zn = ln(qn ) = ln µ0

µ1

n

Exp 1
µ1

1
µ0

tii=1

n
= n ln µ0

µ1

1
µ1

1
µ0

tii=1

n

The “zn” is a linear function that depends on the number of stages (n), or 
devices tested, on the two parameters (or MTTFs) μ0, μ1 on test, and on the 
actual failure times: t1,…,tn . The “continuation region”, defined by zn, is 
now bounded by the logarithms of A and B:

ln(B) < zn = an + b tii=1

n
< ln(A);with :a = ln µ0

µ1

;b = 1
µ1

1
µ0

As in Reference 1, coefficients “a” and “b” are just functions of test param-
eters μi, i = 0, 1, and constants A and B can be approximated by (References 
5 through 9): 

A (1 ); B
1

Hence, for any SPRT stage “n” (corresponding to having tested “n” devices 
sequentially, one at a time, and having obtained failure times: t1,…,tn 1

) the function “zn” will meet:

P{zn > ln(A)} = P n ln µ0

µ1

1
µ1

1
µ0

tii=1

n
> ln(A) = ;

P{zn < ln(B)} = P n ln µ0

µ1

1
µ1

1
µ0

tii=1

n
< ln(B) =1

Thus, the SPRT denoted S (B,A) and defined by the above equations, com-
pares “zn” with the logarithms of A and B, at every stage “n”, and supports a 
decision to either (1) accept H0 if zn < ln(B); (2) accept H1if zn > ln(A); or (3) 
continue testing if ln(B) < zn < ln(A). The discrimination ratio is = μ0 / μ1 = 
200 / 100 = 2.0.

For example, assume we are at stage “ten”, having placed the tenth (n = 
10) device on test. Also, assume that failures occurred at times 99.9, 210.8, 
166.2,  77.8, 105.3, 193.7, 170.1, 256.3, 327.4 and 219.3 hours with a Total 
Test Time (T) = ΣTi = 1827.2. Since μ0 = 200, μ1 = 100, n =10, α = β = 0.128, 
and since the SPRT coefficients “a” and “b” can be calculated and values “A” 
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and “B” can be approximated, we obtain the following results: 

a = ln µ0

µ1

= ln 200
100

= ln(2.0) = 0.693147

b = 1
µ1

1
µ0

= 1
100

1
200

= 0.01 0.005( ) = 0.005

A (1 ) = (1 0.128)
0.128

= 6.813; ln(A) = ln(6.813) =1.919

B
1

= 0.128
1 0.128

= 0.147; ln(B) = ln(0.147) = 1.919

In the example, the value zn = -2.204 (Table A) obtained at the tenth stage 
is compared with the values for ln(A) = 1.919 and ln(B) = -1.919, which also 
yield the plot boundaries of the SPRT continuation region. Since zn is small-
er than ln (B), and falls below the lower bound of the continuation region, 
the decision is made to stop testing and to accept the null hypothesis (H0) 
that the exponential MTTF (μ) is 200 hours or more. A plot of this example 
is shown below. Notice how the path of zn for all stages up to the tenth falls 
inside the plot continuation region delimited by ±1.919. As soon as zn falls 
outside the continuation region (stage 10, or n = 10), testing is stopped 
and the corresponding decision regarding the test hypotheses is made:

z10 = a 10 + b tii=1

10
= 0.693147 10-0.005 1827.18 = 2.2044 < 1.919

Improving the SPRT Calculations
As was done with the discrete SPRT (Reference 1), the implementation of 
the test procedure can be improved upon by finding some convenient 
boundaries to compare T = ΣTi (Total Test Time) directly. This is obtained, as 
before, by isolating T in the above inequalities:  

ln(B) < zn = an + b tii=1

n
< ln(A);but :b < 0

h0 + sn = ln(B)
b

a
b

n > tii=1

n
> ln(A)

b
a
b

n = h1 + sn

with :h0 = ln(B)
b

;h1 = ln(A)
b

;s = a
b

The above results yield, in the numerical example, the following SPRT 
boundaries:

h0 = ln(B)
b

= 1.919
0.005

= 383.8;h1 = ln(A)
b

= 1.919
0.005

= 383.8;

s = a
b

= 0.6931
0.005

=138.63;T = tii=1

n
;for.the.nth .stage;

rn = h1 + sn = 383.8 +138.63n > T > 383.8 +138.63n = h0 + sn = an

By letting the number of “stages” “n”, run from 1, 2, … , we obtain the SPRT 
decision “boundaries” (or “acceptance and rejection numbers” ( an;rn )) for 
Total Time on Test T: 

109876543210

2

1

0

-1

-2

Sequential Test Example (n=10) Table A

Stage FailTime     Z(n)

   1    99.929   0.19350
   2   210.820  -0.16745
   3   166.270  -0.30565
   4    77.855  -0.00178
   5   105.325   0.16474
   6   193.720  -0.11071
   7   170.170  -0.26841
   8   256.300  -0.85677
   9   327.400  -1.80062
  10   219.380  -2.20437

Rejection Region;
MTTF ≤ 100 hours

Acceptance Region;
MTTF ≥ 200 hours

Trials: n

-1.919

1.919

Z = an + bT

Continuation Region;
Test another sample

Stage “n”

CumTime 
 

Reject Device
MTTF < 100 hrs 

Accept Device:
MTTF > 200 hrs

Continue 
Testing

y = 383.8+138.6n 
 

y= -383.8+138.6n 
 

n=10

1002 

1770 
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Parameters for our current example are: 
h0 = 383.8; h1 = -383.8; s = 138.6

Notice how it is impossible to reject the device (H1: MTTF μ1 ≤ 100 hrs.) until 
at least n = 3 devices have been tested with a cumulative or Total Test Time 
of less than 32.1 hrs. After that, a device at any stage “n” can be rejected if 
the Total Test Time is less than its Rejection Bound “rn”. We can accept the 
device (H0: MTTF μ0 ≥ 200 hrs.) at any stage “n” if its Total Test Time is larger 
than its Acceptance Bound “an”. The probability of an erroneous decision 
is, at most, α = β = 0.128. In the example, an accept decision at stage 10 is 
made because cumulative time for 10th device is T = 1827.2 ≥ a10 = 1770.1.  

As in the discrete case discussed in Reference 1, both boundary line equa-
tion parameters (the slope and the intercepts) depend only on the SPRT 
errors α, β, and on the test MTTFs μ0, μ1:

h0 =
ln

1
1
µ1

1
µ0

;h1 =
ln (1 )

1
µ1

1
µ0

;s =
ln µ0

µ1

1
µ1

1
µ0

Also discussed in Reference 1, an SPRT can be applied to an SPC/Quality 
Control problem. For example, assume that there is interest in assessing a 
batch of incoming devices, and that the acceptable quality level (AQL) is 
defined by some minimum performance (say, μ ≥ 200 hrs). Also, assume 
there is an unacceptable quality (Lot Tolerance Percent Defective - LTPD) 
below which the batch will be rejected (say, if the mean life is less than 
100 hrs). 

Now assume that, for procedural ease, cost, or any other practical reason, 
it is decided to test the lot by taking one item at a time and testing each 
one sequentially, instead of drawing a single sample of fixed size “n” at one 
time, and placing them all on a life test.

Then, for the acceptance sampling problem described above, all of the 
previously described SPRT derivations and results are also applicable, with 
the pertinent modifications.

The relationship between the Exponential 
and Poisson Distributions

Readers familiar with MIL-HDBK-781A and sequential testing may have 
seen the equations above derived from the Poisson distribution using “r” 
(cumulative number of failures) instead of cumulative test time “T”, as was 
done here. Both derivations are equivalent, given the statistical relation-
ship between the Exponential and Poisson distributions:

Assume the device life “X” follows the exponential distribution. Then, if it 
has not failed by time T:

Pµ {Device.Outlives.T } = Pµ {X > T } = e
T

µ

This is equivalent to stating that the r.v. “number of failure events by time 
T”, or N(T), (which follows the Poisson Distribution) has undergone zero 
events by time T: 

Pµ {No.Events.By.T = 0} = Pµ {N(T ) = 0} =
e

T
µ T

µ

N (T )

N(T )!
=

e
T

µ T
µ

0

0!
= e

T
µ = Pµ {X > T }

Hence, using the above formulation the Probability Ratio (PR) can alter-
nately be found that the sequence of “n” independent Poisson life tests has 
actually experienced “r” failures, in a cumulative test time “T” = Σti, under 
both SPRT hypothesis H0 and H1: 

P{N(T ).Events.UnderH1}
P{N(T ).Events.UnderH0}

=
Pµ1

(N(T ) = r)
Pµ0

(N(T ) = r)
=

e
T

µ1
T
µ1

r

r!

e
T

µ0
T
µ0

r

r!

= µ0

µ1

r

Exp T 1
µ1

1
µ0

Stage   Reject    Accept  CumTime

   1    -245.2     522.4     99.9
   2    -106.5     661.1    310.7
   3      32.1     799.7    477.0
   4     170.7     938.3    554.9
   5     309.3    1077.0    660.2
   6     448.0    1215.6    853.9
   7     586.6    1354.2   1024.1
   8     725.2    1492.8   1280.4
   9     863.9    1631.5   1607.8
  10    1002.5    1770.1   1827.2
  11    1141.1    1908.7   Accept     
  12    1279.8    2047.4         
  13    1418.4    2186.0         
  14    1557.0    2324.6         
  15    1695.6    2463.3         
  16    1834.3    2601.9         
  17    1972.9    2740.5         
  18    2111.5    2879.1         
  19    2250.2    3017.8         
  20    2388.8    3156.4         
  21    2527.4    3295.0         
  22    2666.1    3433.7         
  23    2804.7    3572.3         
  24    2943.3    3710.9         
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Average Sample Number, Average Test Time, 
and Test Truncation
The main advantage of sequential tests over fixed time tests is the reduc-
tion of “long run” or average sample size, and of the test time required to 
arrive at an accept/reject decision. But “SN” (the “sample number”) is a 
probabilistic outcome (r.v.). Hence, its “Expected Value” (or “Average Sam-
ple Number” – ASN) depends on the true (but unknown) value of the un-
derlying test parameter, be it MTTF “μ”, percent defective “p”, or any other. 

The ASN is obtained following the traditional definition of Expected Value, 
i.e., by multiplying each SPRT stage “n” (the number of samples taken so 
far) by the probability of arriving at a decision (be it H0 or H1) at that stage. 
The ASN depends on both the true parameter “μ”, as well as on not having 
made a decision earlier in the test process. That is, “T” has followed a path 
inside the SPRT “continuation region”, up to the present stage:

ASN(µ) = Eµ {SN} = SN Pµ {Decision.at.Stage.SN .But.not.before}
SN 1

Once the ASN is calculated, the Expected Test Time (ETT) can also be ob-
tained, since it is known that the distribution of life “X” is Exponential. Cal-
culation of values for ASN and ETT for SPRT tests fall beyond the scope of 
the present paper. Readers interested in such advanced topics may consult 
References 5, 6, 7, 8 and 9. 

Some SPRTs may require many stages. In such cases, their main advantage 
(saving time and sample size) vanishes. Hence, it is often of interest to es-
tablish a maximum number of stages and Total Test Time at which the SPRT 
is terminated and a decision is made based on the results available at the 
appropriate time and stage. This is known as “test truncation”.

An efficient method to establish the SPRT truncation stage and time is via 
Type I and II errors (α and β) and the DR = μ0 / μ1. For exponentially-distrib-
uted lives, the statistic 2T/μ is distributed as a Chi Square with “2r” degrees 
of freedom (DF). Hence, the Chi Square table is searched for the smallest 
DF such that the ratio corresponding to its two Chi Square percentiles, at 
probabilities (1 - α) and β, fulfills: 

Minimum
2r

1 ,2r
2

,2r
2

1
DR

= µ1

µ0

In the current example, the SPRT parameters are α = β = 0.128 and DR = 
200 / 100 = 2:

D. F. “2r” 22 23 24 25
Χ2 

0.872, r 14.77 15.59 16.43 17.26
Χ2 

0.128, r 29.62 30.79 31.96 33.12
Ratio 0.499 0.505 0.51 0.52

 
Taking logarithms, as before, but re-arranging now for the “number of 
events” N(T) = r:

ln(B) < ln µ0

µ1

r

Exp T 1
µ1

1
µ0

= r ln µ0

µ1

T 1
µ1

1
µ0

< ln(A)

h0 + sT = ln(B)
b

+ a
b

T < r < ln(A)
b

+ a
b

T = h1 + sT

with :h0 = ln(B)
b

;h1 = ln(A)
b

;s = a
b

;a = 1
µ1

1
µ0

;b = ln µ0

µ1

This is equivalent to the previous derivation, now assessed based on the 
number of failures “r” instead of on the cumulative test time “T”. This is the 
familiar form used in MIL-HDBK-781, where time “T” is on the horizontal 
axis and failures, “r”, on the vertical. Here, the upper and lower bounds are 
defined by equations h0 + sT and h1 + sT, both functions of time T. The rest 
of the derivations are all carried out in the same manner as done in the 
previous section.

As an illustration, the acceptance and rejection (
an;rn ) number of fail-

ures “r” corresponding to the numerical example given previously, with 
Total Time T = 1827.2, are calculated:

h0 = ln(0.147)
0.693

= 2.76;h1 = ln(6.81)
0.693

= 2.76;s = a
b

= 0.005
0.693

= 0.007;

a = 1
200

1
100

= 0.005;b = ln 200
100

= 0.693; Hence :

a10 =10.02 = 2.76 + 0.007 T < r < 2.76 + 0.007 T =15.56 = r10

The Figure shows how, for n = 10, the cumulative time T = 1770 is the maxi-
mum time acceptable, for a failure to occur and still continue testing.

Since the tenth (r 
=10) failure occurs 
at time “T” = 1827.2 
we accept H0. Such 

cumulative time 
fails to fall inside the 
Continuation Region. 

It would require a 
minimum number of 
failures r = 10.02. But 
the result “r = 10” is 

smaller: T falls in the 
Acceptance region.

CumTime T

Stage “n”

Accept Device:
MTTF > 200

Reject Device:
MTTF < 100 hrs

Continue Testing

r = 2.76+0.007 ×T

r = -2.76+0.007 ×T

1770

1827

1002

r = 10
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Hence, the Chi Square percentiles ratio meeting these conditions corre-
sponds to DF = 23:

1 0.128,2r
2

0.128,2r
2 = 0.872,23

2

0.128,23
2 = 15.59

30.79
= 0.505 100

200
= 0.5

The Truncation Stage “r” is then: 2×r = 23 => r ≈ 12 stages. From here, the 
Truncation Time T* can also be obtained, since the distribution of 2T/μ is 
Chi Square, with DF = 2r = 24:

T * = 1
2

µ0 1 ,2r
2 = 0.5 200 16.428 =1642.8

Therefore, the SPRT should terminate (be truncated) at the 12th stage (fail-
ure) or at a Total Test Time of 1642.8 hours, whichever comes first. If the 
last stage results are such that the 12th failure occurs before 1642.8 hours, 
the null hypothesis H0 is rejected, but if the Total Test Time reaches 1642.8 
hours before the 12th failure occurs, then the null hypothesis that MTBF ≥ 
200 is accepted.  
  
Comparing SPRT Approaches 

In this and the Reference 1 paper, sequential methods for testing the “life” 
of a device, assuming such life is distributed exponentially, have been de-
veloped. Life, errors α and β, and the hypotheses H0, H1were used in both 
papers. Their corresponding SPRT test performances and characteristics 
are now discussed.

In Reference 1, a test time of duration T was pre-defined. Then, devices 
were tested, one at a time, for that time. Finally, an investigation was made 
into whether each device survived or failed its test, and the number of suc-
cesses (or failures) out of the total “n” devices placed on test was counted. 
This process represented the binomial SPRT.

In the example in this paper, the devices were allowed to run until they 
failed. Then, either the Cumulative Test Time, or at the cumulative number 
of failures that occurred during the testing were evaluated. This process 
represents the continuous time, exponential (or equivalently, the Poisson) 
SPRT. The continuous time test is always more efficient, since no informa-
tion is lost. 

The efficiency of the binomial SPRT depends on the length of time allot-
ted for each trial. The longer this time is, the better the SPRT. Test time also 
affects the average number of “stages” required to arrive at a decision (the 
ASN), as well as the ETT.

For example, the binomial SPRT in Reference 1 used T = 20 hours, for α 
= β = 0.128, and MTTF μ0 = 200, μ1 = 100. If T increases, the SPRT perfor-
mance improves.  Shown below are the binomial SPRT slopes, intercepts, 

DR and proportions p0, p1, obtained for increasing values of the pass/fail 
test length T. The MTTFs μ0 = 200, μ1 = 100, remain fixed:

P/F Test Time T = 20 T = 30 T = 40 T = 50
Proportion p

0
0.905 0.861 0.819 0.779

Proportion p
1

0.819 0.741 0.670 0.607
Discr. Ratio 1.105 1.162 1.222 1.283
Intercepts ±2.578 ±2.489 ±2.404 ±2.323
Slope 0.866 0.805 0.749 0.697

Notice how the SPRT parameters depend on the pass/fail (P/F) test time. 
As T increases, intercepts are closer, the slope becomes smaller and the 
DR = p0 / p1 increases. Letting the test run for a longer time provides more 
information and, hence, better discrimination.

Conclusions

An overview of sequential tests for the continuous case have been provid-
ed for the exponential distribution. SPRTs are widely used in practice, and 
are included in MIL-HDBK-781A, “Reliability Testing for Engineering Devel-
opment”. Sequential tests are also used in Quality Control and acceptance 
sampling, when batch items are tested, one at a time, to assess the quality 
of a lot, instead of testing a fixed sample size all at one time. The problems 
of assessment of SPRT test plans, via the ASN and the ETT, as well as of es-
tablishing test truncation procedures, were also highlighted.

SPRTs are very useful tools. By the same token, they are theoretically com-
plex. In this paper, and in Reference 1, the discussion has been kept simple 
and focused. Hence, there are several important SPRT variants that were 
not covered. Some will be mentioned below. The interested reader can 
pursue more detail in References 5 through 9.

For example, the equation for the SPRT constant “A” differs from that used 
in MIL-HDBK-781A, which uses a correction factor of (DR+1)/2*DR; this 
paper does not. The purpose of such a correction factor is to reduce the 
differences between “nominal” and “achieved” risks, α and β, that appear 
when an SPRT is truncated. In the presented non-truncated example of 
this paper, the true SPRT risks are 0.128. Once the SPRT is truncated, these 
risk values change.

In the truncated SPRT Plan III-D of MIL-HDBK-781 (which is comparable to 
the presented example) the nominal risks α and β are 0.1. The reader will 
notice that both Plans have identical slopes (0.007213). However, the in-
tercepts, truncation stages and maximum test times differ somewhat. MIL-
HDBK-781 usage of a “correction” factor for the constant “A”, is the reason 
for these differences.
 
SPRT stages can also include more than one unit on test. Moreover, all of 
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the units can be placed on test at the start. In such cases, the individual 
sequential times to failures are monitored, but their respective Cumulative 
Times to size-adjusted SPRT acceptance and rejection boundaries should 
be compared. The derivations are similar to the ones presented here, with 
the pertinent modifications.

In addition, the lives of many repairable systems are approximately expo-
nentially distributed. For this reason, SPRTs are widely used to test repair-
able systems. In such cases, MTBF instead of MTTF becomes the SPRT per-
formance measure of interest.

Finally, using the same numerical examples as in binomial SPRTs (Refer-
ence 1) allowed a comparison between the efficiencies of two options: (1) 
letting each device reach its natural end-of-life, versus (2) limiting the bi-
nomial P/F test to a maximum time, T0, and observing whether each device 
passed or failed the test. Letting a device reach its natural life always yields 
more information and, hence, improves the test efficiency.
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