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Introduction
In this START Sheet we discuss practical considerations
regarding the derivation of reliability estimations in the impor-
tant case when the underlying distribution is Exponential.  For
example, we examine the interpretation and implications of
statements such as “a device is 99% reliable with 90% confi-
dence” or “the failure rate of the device is, with probability
0.95, between 0.07 and 0.1.”  We begin by discussing what is
understood by reliability estimation and addressing the “confi-
dence” that we place in these estimations.

Broadly speaking, reliability is the probability that a device
will function according to its specifications, for a pre-estab-
lished period, sometimes called “mission time”.  If it is a one-
shot device, reliability implies that it fulfills its prescribed
function in the brief but crucial time that the device must
work.  The failure rate, for the exponential case, is the con-
stant rate at which the device is failing, given in some time or
operational domain or context (e.g., in parts per million hours
or per thousand cycles of operations, etc.).

An estimation is a “snap shot” quantification of the present
condition of some entity (e.g., device reliability, failure rate).
We can obtain current estimates of these values either as
“point estimations” (e.g., reliability is 0.99) or “interval esti-
mations” (e.g., reliability of the device is between 0.97 and
0.99, with probability 0.95).  The latter case is called a confi-
dence interval (CI), for there is a “confidence” (probability of
occurrence) associated with the interval given (e.g., the true
but unknown device reliability falls in the 0.97 to 0.99 inter-
val, 95% of the times that we implement this procedure).  In
expressing a “confidence”, we hope that the specified result

obtained is actually one of the (95%) favorable outcomes.
But it may also come from one of the (5%) unfavorable cases.

The confidence level is a crucial performance measure of
interval estimation (References 1, 2, 4, and 6) and can be
illustrated with the following example.  One may estimate the
reliability of a device to be at least 0.95, with probability 0.8
(80% of the times we obtain this estimate, the true reliability
is 0.95 or above).  Another estimate may yield a reliability of
0.90 for the same device, but with probability 0.9 (e.g., 90%
of the times).  Similarly, an interval estimation of the failure
rate of a device may be “between 0.07 and 0.1, with probabil-
ity 0.7” (i.e., with 70% chance).  A second CI may estimate
the device failure rate to be “between 0.5 and 0.12, with prob-
ability 0.99” (i.e., the true failure rate of the device falls with-
in these values, 99% of the times such CI are obtained). 

Even when all of the preceding statements are equally cor-
rect, the second statements in both examples are broader but
more accurate.  The first example provides a lower reliabili-
ty (e.g., 0.90 < 0.95).  The cost we pay for this consists in the
higher confidence level of the second estimations (e.g., 80%
versus 90% of the times).  In the second example, the CI has
a larger coverage (much wider than the first CI).  But this
wider interval is also associated with a larger coverage prob-
ability (99%).  Such trade-offs between estimation precision
and confidence are always present and constitute an impor-
tant factor in confidence interval estimation.

Finally, one should not confuse an “estimation”, which pertains
to a current value, with a “prediction”.  The latter is the fore-
cast of a future condition (e.g., the future reliability of a device,
say under development) obtained at present for a pre-specified
base value (some future time).  General reliability predictions
and forecasts will be the topic of a separate START Sheet.

In this START Sheet, we analyze the important but special
case of reliability estimation when the life of the device is
Exponential.  This distribution has only one parameter, the
mean θ (or equivalently rate λ = 1/θ) and is important because
the failure rate λ is constant.  This results, for example, when
a device is screen-tested before having being placed in opera-
tion and the replacement policy prevents it from operating
beyond “useful life”.  Then, for all practical purposes the
device is considered as having a constant failure rate λ.

The Exponential distribution is also a special case because it has
only one parameter (the mean).  Hence, knowledge about mean
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life (or failure rate) implies knowledge about the corresponding
device reliability.  Then, a CI for the mean life induces an equiva-
lent CI for the reliability or an equivalent CI for the failure rate.

In the rest of this START Sheet, we discuss problems associated
with deriving CI for reliability estimations in the case when
device lives are distributed Exponential and develop several
numerical and graphical examples to illustrate such derivations
and their problems (References 3 and 5).

Reliability Data Analysis
Reliability data analysis includes three components:  the raw
data, the statistic used to synthesize it and the underlying statis-
tical distribution of the variable.  In this START Sheet, such dis-
tribution is assumed Exponential (how to assess this has been
discussed in Reference 6).

The raw data consists of the device lives, or of the test times with
the number of failures that occurred.  Data are then synthesized
into two statistics:  Total Test Time, denoted “T”, and Total
Number of Failures, denoted “n”.  Statistic T, however, can be
implemented as, and interpreted in, different ways, according to
how the original test times were collected.

For example, in reliability testing we can place “n” devices on oper-
ation and then observe them for some pre-specified time (T0) or until
“k” devices fail, where k ≤ n.  The failure times (when known) are
denoted T1, T2, Tk and the Total Test Time statistic is then T = ∑ Ti.
If k = n then we have tested the entire sample, or until all n devices
have failed.  This is the situation treated in this START Sheet. 

On other occasions, we test a set of devices for a pre-specified
time T0 and then count the number “n” of devices that have
failed during this time (but we do not know the exact times when
the failures occurred). 

The importance of knowing which of the two life testing schemes
have been implemented is that the choice determines the “degrees
of freedom” (denoted DF) that the corresponding Chi-Square sta-
tistic will use.  This statistic, in turn, depends on having an under-
lying Exponential distribution for the life data of the devices. 

When the underlying distribution of the lives is indeed
Exponential and the failures are independent, the distribution of
the statistic “twice the Total Test Time divided by the mean life”
i.e., (2*T/θ) is distributed as a Chi-Square with γ = 2n DF.  The
Exponential distribution then allows us (given a pre-specified
probability α) to find the Chi-Square percentile (via a Chi-
Square table value:  χ2

α/2, γ) that defines a relation between the
statistic T and the Exponential mean θ (see Figure 1).

For, if 2T/θ is distributed Chi-Square with DF γ = 2n then the α-
percentile χ2

α/2, γ allows us to obtain a probability bound for the
unknown device mean life θ (or the reliability or the failure rate).
We can estimate or bound θ, using Equation 1. 

Figure 1. The Chi-Square Distribution of 
2*Total Test Time/θ = 2*T/θ

Equation 1

The Chi-Square distribution is readily tabulated and its parame-
ter γ is the corresponding DF.  For a time terminated test, the DF
used are γ = 2n + 2 (twice the number of failures plus two).  In
the case of failure terminated tests, the DF used are γ = 2n (twice
the number of failures observed during this time).

For example, assume we place ten devices on test and want to
construct a 95% CI for the unknown mean θ.  Assume we know
the exact failure times of all ten devices (n = 10).  We need to
look up the upper (1 - α/2) and lower (α/2) percentiles corre-
sponding to DF = 2n, for a confidence 1 - α = 0.95 (95%). Since
we seek a (two-sided) CI, we need to split the 5% error (0.95 =
1 - α = 1 - 0.05) into two halves (α/2 = 0.025 or 2.5%) on each
extreme of the Chi-Square distribution (see Figure 1).  To obtain
the Chi-Square table values, enter the Chi-Square table and find
the columns for 0.025 (lower) and 0.975 (upper) percentiles.  Go
down these two columns until reaching the desired DF:  γ = 2n =
2 x 10 = 20. In the present example we obtain the following
(upper/lower) results (see Figure 1).

If, instead of knowing the exact failure times we had only the
Total Test Time (T) and Total Number of Failures (n) we should
use DF γ = 2n + 2 instead.  Therefore, in the same example
above, now for DF = γ = 2n + 2 = 20 + 2 = 22, we obtain:

All the other Exponential parameters of interest (reliability and
failure rate) are obtained directly from the Exponential mean.
We next illustrate how to obtain CIs for the failure rate and the
device reliability, from the mean, using a large set of life data.
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A Numerical Example for Failure-Terminated
Tests
The life test data given in Table 1 comes from an Exponential
distribution.  These T1, T2, ... Tn failure times correspond to (n =
45) devices D1 … D45, placed on a reliability test as represent-
ed in Figure 2.

Table 1.  Device Life Data

Figure 2.  Representation of the Times to Failure of the “n”
Devices on Test

Using the statistic of total test time, we obtain the following
point estimator of the mean life.

Est. Mean Life = Total Test Time / Sample Size = ∑ Ti / n
= 4495.75/45 = 99.9

The reciprocal of the mean life, yields the point estimate of the
device failure rate:

Failure Rate = 1 / Mean Life = 1 / 99.9 = 0.01001

We first verify whether the statistical distribution of the life of
the device is Exponential and whether the data came from inde-
pendent observations (Reference 7).  We then use appropriate
statistical reliability methods to calculate the CI.  In the
Exponential case we use the Chi-Square (χ2) distribution and the
Total Test Time (T) statistic to obtain a CI for the (true but
unknown) device mean life θ (or rate λ = 1/θ).  The formula to
obtain an Exponential CI for the true, but unknown mean θ, with
a confidence level 100(1 - α)%, is given by: 

In this example: T = ∑ Ti = 4496.75 is the Total Test Time and n
= k = 45 is the (full) sample size.  The test (lives) is failure ter-
minated. Hence, the Chi-Square table value (Χ2

2n, α/2) has DF =
2n = 90.  Confidence coefficient (1 - α) is then selected, accord-
ing to whether our CI requires an 80%, 90%, 95% confidence,
etc.  A 95% confidence (1 - α) yields α = 0.05, α/2 = 0.025 and
1 - α/2 = 0.975.  Therefore, the Chi-Square table values for our
example are:

The corresponding CI for the true mean life θ, with confidence
level of 95% is:

(2 x 4496.75/118.14; 2 x 4496.75/65.65) = (76.13, 136.99)

Since the failure rate λ = 1/θ, an associated CI for the failure rate,
with confidence level of 95%, can also be obtained by using the
reciprocal values of the above CI for the mean:

(1/136.99, 1/76.13)   =   (0.0073, 0.0131)

Such a CI means that, 95% of the times that we derive it from
test data, the true but unknown failure rate (λ) is between 0.0073
and 0.0131 (but 5% of the times it can be elsewhere).

Finally, because the Exponential is a one-parameter distribution,
the device reliability at any given mission time T is also obtained
using the mean as follows: R(T) = P{X > T} = Exp{-T/θ) =
Exp{-λT}.

Then, a 95% CI for the reliability at any mission time T can be
obtained by using the mean or the failure rate CI upper/lower
limits.  For our example and for T = 100, we use the upper/lower
limits of the CI for the failure rate (ρ) and obtain:

R1(T) = P{X > T} = Exp{-T/θ1} = Exp{-λ1T} =
Exp{-0.0073 x 100} = 0.48

R2(T) = P{X > T} = Exp{-T/θ2) = Exp{-λ2T} =
Exp{-0.0131 x 100} = 0.27

Therefore, a 95% CI for the reliability for a mission time T = 100
units is:  (0.27, 0.48).

Such CI means that, 95% of the times we derive it from test data,
the true but unknown reliability for such mission time is between
0.27 and 0.48.

Often, we just need a lower or upper bound on reliability.
Assume we are interested in a 90% reliability lower bound for
the above example and mission time T = 100.  We re-estimate the
failure rate bound, for the error α = 0.1, for only one side.  This
changes the Chi-Square table percentile.  The new Chi-Square
table (1 - α) percentile (corresponding to DF = 90 and α = 0.1)
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is now 107.57 and we use it to obtain the 90% confidence bound
for the Exponential mean (or its reciprocal, the failure rate).

The 90% Lower Bound for the (unknown) mean, induces a fail-
ure rate bound:

Which, in turn, allows us to calculate a 90% Lower Bound for
the reliability “R” of the device, for T = 100, as:

R(100) = P{X > 100} = Exp{-100 x λ) = 
Exp{-100 x 0.01196} = 0.3024

Such a Lower Bound means that, 90% of the times we derive it
from test data, the true but unknown device reliability is at least
0.3024, for mission time T = 100.

Numerical Examples of Confidence Intervals
and Bounds for the Exponential Case
We now construct a 80% CI for the mean of the n = 45 data given
in Table 1.

Chi-Square Percentile (90 DF, α/2 = 0.1) = 73.2911
Chi-Square Percentile (90 DF, 1 - α/2 = 0.9) = 107.5650

Constructing a 80% CI for the failure rate, λ:

Constructing a 80% CI for reliability (T = 100):

R1(T) = Exp{-T/θ1} = Exp{-λ1T} = 
Exp (-0.008*100) = 0.442674

R2(T) = Exp{-T/θ2) = Exp{-λ2T} =
Exp (-0.012*100) = 0.302375

Proceeding likewise, we obtain the CI limits for the mean, rates
and reliability for mission times of T = 50, 30, and 20 hours as

shown in Table 2.  For comparison, the exact reliability values
for lives that are distributed Exponential (100) are also given.

Table 2.  CIs for Mean, Rate, and Reliability

A Numerical Example for Time-Terminated
Tests
Assume we now place only ten devices on test, which are
replaced by similar devices as soon as they fail.  Assume that we
test these m = 10 devices for a time T0 = 20, and observe (as rep-
resented in Figure 2) n = 3 failures, but we do not know the exact
failure times.

Even without knowing the exact times of these failures, we can
still use the Chi-Square distribution with DF = 2n + 2 = 2 x 3 + 2
= 8.  We obtain a “conservative” CI for the mean (or failure rate)
of the underlying Exponential Distribution.  For this, we again
use the total test time T (= mT0 = 10 x 20 = 200) statistic and the
Chi-Square percentile (now with DF = 8) and obtain a CI for the
device true mean life θ (or reliability or rate λ = 1/θ).  We obtain
a conservative CI, for confidence level 100(1 - α)% (say, of 80%,
90%, 95%). The statistic of the CI for the mean is given by:

Figure 2.  Representation of Type I Censoring; 10 Devices
Continuously on Test

We calculate the corresponding upper and lower Chi-Square per-
centiles.  As before, confidence coefficient (1 - α) depends on the
required confidence.  A 95% confidence yields α = 0.05, α/2 =
0.025 and 1 - α/2 = 0.975. The Chi-Square table values are:

The corresponding CI for the true mean life θ, with a 95% con-
fidence is ((2 x 200)/17.54; (2 x 200)/2.18) = (22.81; 183.49).
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Since rate ρ = 1/θ, a CI for the true failure rate ρ, with confidence
level of 95%, can be obtained by using the reciprocal values of
the corresponding CI for the mean: (1/183.49, 1/22.81) =
(0.00545; 0.0438).  Because the Exponential is a one-parameter
distribution, the reliability at any time T is given by:  R(T) = P{X
> T} = Exp{-T/θ) = Exp{-λT}.

Then, a 95% CI for the reliability at any mission time T can be
obtained by using either the mean or the failure rate CI upper and
lower limits.  For example we obtain, using the upper/lower lim-
its of the CI for Rate ρ, and for a mission time T = 10:  

R1(T) = P{X > T} = Exp{-T/θ1} = Exp{ρ1T} =
Exp{-0.00545 x 10} = 0.947

R2(T) = P{X > T} = Exp{-T/θ2) = Exp{-ρ2T} =
Exp{-0.0438 x 10} = 0.645

Hence, a 95% CI for the true reliability, when mission time T =
10, is:  (0.65, 0.95).

Finally, reliability bounds in this time terminated case, are
resolved in the same manner as shown earlier, with the only
change being that now Chi-Square has DF = 2n + 2 instead of DF
= 2n.  For example, a lower 97.5% bound for the reliability, from
the above data is obtained by dropping the upper limit of the
95% CI, or by applying the upper bound of the corresponding CI
for failure rate (-0.0438):

R2(T) = P{X > T} = Exp{-T/θ2} = Exp{λ2T} =
Exp{-0.0438 x 10} = 0.645

An upper 97.5% bound for device reliability is analogously
obtained by:

R1(T) = P{X > T} = Exp{-T/θ1} = Exp{-λ1T} =
Exp{-0.00545 x 10} = 0.947

Thus, the true device reliability is equal to or less than 0.947, and
greater than or equal to 0.645, 97.5% of the times. 

The Case of Hypothesis Testing
It is well known that there is a close relationship between the
derivation of a confidence interval and testing hypotheses.  For
example, let a 95% CI derived from a data set, for the value of
an Exponential MTBF, exclude the value 100.  We can state,
without doubt, that the test of hypothesis performed for the
MTBF = 100, with the same data set and for the same level α =
0.05, will reject the MTBF value of 100.  In the same manner, if
a 95% confidence interval does include the value MTBF = 100
then, we can state without doubt that the hypothesis test, per-
formed with the same data set and for the same level α = 0.05,
will not reject the value MTBF = 100.

Therefore, all the CIs derived in the previous sections can be
converted into tests of hypothesis by stating the hypothesized

value of the MTBF (Exponential mean life parameter θ), denot-
ed as θ0.  Based on Figure 1, we can restate the problem.

Let the underlying distribution of the lives be Exponential and
the failures be independent.  Then, the distribution of the statis-
tic (2*T/θ) is distributed as a Chi-Square and the corresponding
DF = γ will depend on whether the test is terminated at the time
of a failure or not. 

Therefore, instead of estimating the mean life using Equation 1,
we compare the value of the hypothesis test statistic 2T/θ with
the corresponding Chi Square table value (which we denote:
χ2

α/2, γ) obtained using the appropriate DF = γ and α-percentile.
As before, DF will be γ = 2n, if the test is failure terminated and
γ = 2n + 2 if the test is not. We now illustrate this, using the pre-
vious two examples.

First, consider we are testing the assumption that the true mean
life θ is 140 hours (in statistical notation, H0:  θ0 = 140) using the
data in Table 1.  We can see, from the results in the mentioned
section, that the 95% CI derived from such data set (76.13,
136.99) does not include the value 140.  Performing the calcula-
tions for the hypothesis test (with T = 4495.75) we obtain:

Under the assumed hypothesis the above-defined variable (χ2) is
distributed Chi-Square (as illustrated in Figure 1) with DF = 2n
= 90 (for, the test is failure terminated).  Then, with 0.95 proba-
bility (95% chance) the value χ2 (= 64.225) obtained above
should be included between 65.65 and 118.14 the two Chi-
Square table values (test acceptance region):

This value of χ2 is not included in the acceptance region (64.22
< 65.65).  It falls in the “rejection region”.  Therefore, we reject,
with α = 0.05, H0:  θ0 = 140.

Now, consider the time-terminated example.  Here, we test, using
the data from that example, the assumption that the true mean life
θ, is 140 hours.  We can see, from the results in Table 2, that the
95% CI derived from that data set (22.81, 183.49) does include
the value 140. Performing the calculations for this hypothesis
test, using Test Time T = mT0 = 10 x 20 = 200, we obtain:

Under the assumed hypothesis, the above-defined variable χ2 is
also distributed as a Chi-Square (as indicated in Figure 1) with
DF = 2n + 2 = 8 (for, the test is not failure terminated).  Then,
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with 0.95 probability (or error level α = 0.05) the value χ2

obtained above should be included between the two Chi-Square
table values (i.e., in the acceptance region):

Since this χ2 value is actually included:  2.18 < 2.857 < 17.54, we
cannot reject the hypotheses H0:  θ0 = 140.  The probability of
error for such a hypothesis test is less than α = 0.05.

Summary
In this START Sheet, we discussed some problems associated
with confidence interval estimation for device reliability and
failure rate, when the distribution of times to failure is
Exponential, when the testing is done on complete samples.  We
provided numerical and graphical examples and discussed some
related theoretical and practical issues.  In For Further Study, we
give our bibliography and references for additional information. 
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and methods.  Information is distributed through data compilations, application guides, data products and programs on comput-
er media, public and private training courses, and consulting services.  Located in Rome, NY, the Reliability Analysis Center is
sponsored by the Defense Technical Information Center (DTIC).  Alion, and its predecessor company IIT Research Institute,
have operated the RAC continuously since its creation in 1968.  Technical management of the RAC is provided by the U.S. Air
Force's Research Laboratory Information Directorate (formerly Rome Laboratory).

For further information on RAC START Sheets contact the:

Reliability Analysis Center 
201 Mill Street
Rome, NY 13440-6916
Toll Free:  (888) RAC-USER 
Fax:  (315) 337-9932

or visit our web site at:

<http://rac.alionscience.com>
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