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Executive Summary 

 

In this chapter we discuss the use of regression models through the development of four 

case studies in materials data analysis. We use real data sets taken from handbook [6] and 

the RECIPE program Users Guide [5]. We have also modified some of these sets to 

illustrate specific regression procedures of interest. We develop linear and non-linear 

regression models, compare them and select the one that best describes the problem at 

hand. All regression model assumptions are carefully checked, both graphically and 

analytically, via the residual analysis. An example in data transformation is also 

presented, for completeness. Finally, several important caveats regarding the correct 

implementation of regression models are presented and discussed. 

 

Introduction 

 

This is the last technical chapter of this SOAR. It deals with regression analysis of 

materials data. The study of this subject, jointly with that of analysis of variance 

developed in the previous chapter, constitute the main objective of our present work. For, 

both of these modeling approaches are extremely useful and widely utilized in data 

analysis in general and in materials data analysis in particular. 

 

As done in the previous chapter, we follow the analysis road map established in the 

handbooks. This time it is the procedure in Figure 9.6.3 of [6] (herein Figure 7.1). This 

figure describes “General procedures for performing a regression analysis in order to 

calculate design allowables”. We explain the figure procedures in detail, below. 

 

At the start of any analysis, we should obtain the descriptive statistics and plot the data in 

several useful ways, via EDA (exploratory data analysis) techniques, in order to obtain an 

initial idea of their weak and strong points and to form some conjectures about them. 

 

Then, we use these conjectures to guide our first analyses steps toward establishing the 

underlying statistical distribution and its parameters, as well as to assessing whether there 

are any outliers in the data set. We will use, as in previous chapters, the Anderson 

Darling (AD) GoF test to assess the Normal distribution of the data, which is the basic 

requirement of regression analysis models. We will use graphical (e.g. boxplots) and 

analytical (MNR) procedures to detect and assess the presence of outliers. These, in turn, 

should not be removed unless due cause (via the inspection of the data sources or other 

similar strong reason) is present. For, outliers usually convey a great deal of information. 

 



Then, we proceed to fit a simple linear regression model (if there are three or more levels 

of X, the independent or predictor variable). We have explicitly dedicated one case study 

example to highlight the problem of lack of predictor levels in regression analysis. 

 

After the linear regression is implemented, graphical and analytical residual analysis help 

assess whether the model assumptions have been met. In the affirmative case, we proceed 

to use the regression model results. Otherwise, if any model assumption has been rejected 

then we need to resort to data transformations or to alternative procedures. 

 

If the (linear) regression is adequate and significant, we can use it to obtain parameters of 

interest (e.g. allowables). We can also use regression models to assess whether certain 

factors or predictor variables (say temperature, thickness) have an effect on the dependent 

(quantitative) variable (say, tensile strength) and to quantify this effect. Regression 

analysis results may thus be used in theoretical (study) or practical (prediction) work. 

 

If there are four or more levels of the predictor variable(s) then it may be possible to fit 

higher order regression equations (say quadratic or cubic). After these regression models 

are fitted their assumptions must be assessed. If the assumptions are met, then we have an 

interesting situation: several valid models for the same problem. We then need to select 

the best between them, in the sense of better representing or explaining the problem. 

 

Model selection is a complex problem and we will overview it via several case study 

examples. The most important caveat of this chapter is related to the selection problem. 

For example, there may be a model that fits very well the data but that has very little (if 

any) theoretical or experiential support. In this case, it may occur that we are modeling 

the data instead of the problem –which is a very expensive but possible mistake. The best 

advice is then, that practical and empirical models such as regression should follow and 

back the theory and experience –and not the other way around. 

 

Finally, once a satisfactory, parsimonious and valid regression model is obtained, we 

proceed to use it to estimate parameters of interest. We can also use it to forecast, control, 

study or in any other way characterize a given set of data. 

 

Case One. An example in stress-strain curves 

 

The data for this case study are taken from Table 9.3.2.3  of the same numbered section, 

on page 9-67 of reference [6]. It deals with an example of the use of strain departures to 

establish typical stress-strain curves as described in handbook [6]. We have presented 

below three columns from the mentioned table: departure, average stress and total strain: 
 

 ROW  Depart   Avg-T  StrainT 

 

   1       0   42.59     4022 

   2      20   47.91     4544 

   3      40   50.17     4768 

   4     100   53.17     5121 

   5     500   59.21     6092 

   6    1000   61.66     6823 



   7    2000   63.94     8038 

   8    2200   64.25     8267 

 

As usual, we first obtain the descriptive statistics and plot the data in several ways. This 

time, since we are interested in obtaining a regression model, we include the correlation. 

For, we want to establish a first diagnostic about the data that helps us better achieve our 

objective of deriving a regression function for tensile stress, based on strain. 
 

                N     MEAN   MEDIAN   STDEV   MIN    MAX    Q1     Q3 

Depart          8      733      300     911     0   2200     25   1750 

Avg-T           8    55.36    56.19    8.08 42.59  64.25  48.47  63.37 

StrainT         8     5959     5606    1616  4022   8267   4600   7734 

 

          Depart    Avg-T 

Avg-T     0.860 

StrainT   0.971    0.958 

 

We see there is a high correlation between average stress and total strain (0.95). We will 

explore further this relation graphically. But first, the distribution also has to be tested for 

bivariate Normality. This is a model requirement for the correct implementation of the 

Pearson correlation, a measure of linear association between two Normal variables 

(alternatively, we could use Spearmann’s or other non-parametric correlation test).  

 

We apply AD GoF test to each variable (e.g. stress and strain) individually. For, if the 

data are bivariate Normal, then their marginal distributions (each variable, individually) 

are also (univariate) Normal. The AD results for stress and strain above are, respectively, 

0.29 and 0.32, with p-values of 0.51 and 0.45. We then assume each is, individually 

(marginally) Normal and also jointly bivariate Normal (there are specific GoF tests for 

bivariate Normality but they lie outside the scope of this SOAR). We then accept Pearson 

correlation results as a valid measure of linear association between the two variables and 

proceed to estimate the linear regression that describes this relation. We start with their 

bivariate plot, shown below: 
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The bivariate plot shows a positive association between the two variables, that we will 

model via a simple linear regression. The estimated regression line is shown below: 
 

Avg-T = 26.8 + 0.00479 StrainT 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant      26.816       3.609       7.43    0.000 

StrainT    0.0047902   0.0005871       8.16    0.000 

 

s = 2.511       R-sq = 91.7%     R-sq(adj) = 90.4% 

 

The above strain regression coefficient (predictor) is 4.79x10
-3

 highly significant (p-value 

is practically zero). The index of fit (100R
2
 = 91.7) describes over 90% of the variation of 

the data. The model standard deviation is 2.51. The ANOVA table is: 
 

SOURCE       DF          SS          MS         F        p 

Regression    1      419.65      419.65     66.58    0.000 

Error         6       37.82        6.30 

Total         7      457.47 

 

The regression equation has a residual sum of squares (SSR) of 37.82 and a very high F-

statistic value (66.58) for the entire regression model, also highly significant. Since this is 

a simple a linear regression, predictor (coefficient) and model significance are equivalent. 

In the next analysis, using a quadratic model, we will realize the difference. However, 

before we implement the quadratic model, we need to check the validity of the current 

model assumptions. We start by plotting the standardized residuals vs. the fitted values. 
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The residual plot shows a clear concave down pattern. The reader can compare this one to 

the random patterns obtained in our previous regression and ANOVA residual analyses. 

This is characteristic of models that have not captured the totality of the problem 

structure and a first indication that this linear regression model is not yet satisfactory. 

However, residuals are symmetric about zero, as shown by the boxplot below: 
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This example shows how is it useful to look at all aspects of the residual analysis and not 

only to part of it. In this case, the Normality of the residuals is not suspect. The problem 

here is the lack of fit of the model. To try to solve this latter problem, we proceed by 

fitting a quadratic regression to the data. The quadratic regression equation is: 
 

Avg-T = - 21.1 + 0.0212 StrainT -0.000001 StrTSq 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant     -21.141       2.530      -8.36    0.000 

StrainT    0.0212096   0.0008554      24.80    0.000 

StrTSq   -0.00000132  0.00000007     -19.27    0.000 

 

s = 0.3170      R-sq = 99.9%     R-sq(adj) = 99.8% 

 

Comparing the above results with the simple linear regression ones presented before, we 

notice several improvements. First, the quadratic equation yields highly significant test 

statistics  for all its coefficients. In addition, the new model index of fit (R-sq) describes 

over 99% of the problem. This improvement is also evident in the ANOVA table: 
 

SOURCE       DF          SS          MS         F        p 

Regression    2      456.97      228.48   2273.18    0.000 

StrainT       1      419.65      419.65 

StrTSq        1       37.32       37.32 

Error         5        0.50        0.10 

Total         7      457.47 

 

Notice how the overall model F-statistic = 2273.18 is even more significant than before, 

as are also the two (linear and quadratic) strain coefficient terms. In addition, the residual 

sum of squares has been reduced to 0.5. Let’s analyze this model improvement via the 

model comparison test, described in chapter five.  

 

The full model is now the quadratic regression and the reduced model is the simple linear 

regression. The null hypothesis states that both models equivalently describe the problem. 

We compare the error sum of squares from the linear (SSRL) with that of quadratic 

(SSRQ) regression. They have, respectively, DFL=6 and DFQ=5 d.f. Their difference 

(divided by the reduction in d.f. and divided by SSRQ / DFQ) provides a measure of the 

improvement obtained when moving from one model to the other. The test statistic is: 

 

              (SSRL – SSRQ)/(DFL-DFQ)         (37.82-0.5)/(6-5) 

     F = ----------------------------------- = ---------------------------  =  373.2 

                    (SSRQ / DFQ)                                  0.5/5 

 



Comparing it with the F-Table (critical) value F(=0.05, dfnum=1, dfden=5) = 6.61 we 

see that the F-test result is highly significant. Therefore, the quadratic equation improves 

significantly our model. However before adopting it, we still have to assess the residuals,. 
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This time, the pattern of residuals vs. model fits looks more random. In addition, the AD 

test for Normality yields 0.092 with p-value=0.99 and an almost perfect (straight-line) 

probability plot. The runs test for residual randomness yields p-value=0.12, too high for 

rejecting this assumption. The box and normal scores plots are also shown below. 
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The quadratic regression model has not only improved on the percent explanation of the 

problem, but also on the regression model assumptions, which are now better met. From 

the above plots the residuals appear random and Normally distributed about zero and 

their pattern does not suggest any variance problems. Thus, we adopt the quadratic model 

as an acceptable description of the structure of the problem under study. 

 

Next, and just for comparison, we implement a data transformation. We take the natural 

logarithm of the predictor variable total strain and then regress average stress on it. 
 

The regression equation is:    Avg-T = - 199 + 29.4 LnStrT 
 

Predictor       Coef       Stdev    t-ratio        p 

Constant     -199.36       21.00      -9.49    0.000 

LnStrT        29.410       2.424      12.14    0.000 

 

s = 1.728       R-sq = 96.1%     R-sq(adj) = 95.4% 

 

The regression on the transformed data has also improved on the index of fit (model 

explanation) and is highly significant. However, the residual analysis is still problematic, 

as shown by the pattern in the plot of residuals vs. regression fits, below: 
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The concave down residual pattern remains. The previous (linear regression) problem has 

been alleviated but not resolved with this (unsuccessful) data transformation. Therefore 

we select the quadratic regression model for modeling this problem and data set. 

 

Case Two. Surface Damage Example revisited: modeling the data. 

 

We briefly revisit the data set used in chapter five to introduce regression. For, it poses a 

frequent and difficult problem in statistical analysis: that of modeling the problem vs. 

modeling the data. This (fictitious) data set is composed of variables surface damage and 



tensile strength (matstr). We have also obtained the squares (dam-2) and cubes (dam-3) 

of variable “damage”. We describe them again, below, for completeness: 
 

                N     MEAN   MEDIAN   STDEV   MIN    MAX     Q1     Q3  

matstr         31   305.66   307.72   19.67 270.02 344.78 291.04 319.60 

damage         31    3.452    3.000   1.72    1.00   6.00   2.00   5.00 

dam-2          31    14.81     9.00   12.38   1.00  36.00   4.00  25.00 

dam-3          31     71.4     27.0   77.00   1.00 216.00   8.00 125.00 

 

In chapter five we plotted and analyzed them, fitting two regression models: one linear 

and the second quadratic. Then, we performed a model comparison and found that there 

was no significant difference between the explanations provided (100R
2
=45%) by either 

of the regression models. Hence, we selected the most parsimonious: linear regression. 

 

In this section we will fit a cubic regression to the data. A cubic function is suggested by 

the residual plot, whose undulating pattern reminds us of such a sinusoidal form. 
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The results of fitting a cubic regression to these data are shown below: 
 

matstr = 406 - 96.7 damage + 28.7 dam-2 - 2.67 dam-3 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant      406.04       18.94      21.44    0.000 

damage        -96.74       21.33      -4.53    0.000 

dam-2         28.662       6.812       4.21    0.000 

dam-3        -2.6736      0.6444      -4.15    0.000 

 

s = 11.89       R-sq = 67.1%     R-sq(adj) = 63.4% 

 

Notice how all regression coefficients are now highly significant (the p-value is 

practically zero) and the index of fit, or model explanation, has increased to 67%. This 

improvement is also evident from the ANOVA table for the regression, shown below: 
 

 



 

SOURCE       DF          SS          MS         F        p 

Regression    3      7786.0      2595.3     18.35    0.000 

damage        1      5277.6      5277.6 

dam-2         1        73.7        73.7 

dam-3         1      2434.7      2434.7 

Error        27      3818.4       141.4 

Total        30     11604.4 

 

 

The overall (now Full Model) cubic regression F-statistic (18.35) is highly significant (p-

value is practically zero) and the residual sum of squares SSRc=3818.4. We now test for 

the best model fit by comparing the previously selected (linear) and the current (cubic) 

regressions. We compare the linear regression residual sum of squares (SSRL=6326.7) 

with that of the cubic SSRc regression. Their d.f. are respectively, DFL=29 and DFQ=27. 

Their difference and ratio provide a measure of improvement gained by moving from one 

model to the other. In our case, the F-test statistic to assess such improvement is: 

 

              (SSRL – SSRc)/(DFL-DFQ)       (6326.7-3818.4)/(29-27) 

     F = ----------------------------------- = --------------------------------  =  8.87 

                    (SSRc / DFc)                                  3818.4/27 

 

Comparing 8.87 with the F-Table (critical) value F (=0.05, dfnum=2, dfden=27) = 4.21 

we see that the F-test result is highly significant. Therefore, the cubic equation provides a 

better explanation than the linear model. In principle the cubic model would be accepted. 

 

However, is there a fundamental reason for this cubic model to describe this problem? Or 

is it just an artifact of the data on hand? If the second answer were correct, then we would 

be modeling the data and not the problem. The objective of statistical data analysis is not 

to model a particular data set but the problem mechanism or structure that generates the 

data. Hence, if there is no good justification for a specific functional form to fit a set of 

data, we must be extremely careful when postulating it as a model.  

 

This is an important criterion that helps in assessing and selecting which model to adopt. 

Therefore, in the present case, before adopting the cubic model a thorough engineering 

analysis that justifies this cubic regression should be successfully undertaken. 

 

Case Three. Ex3.dat revisited: regression data constrains 

 

We again discuss Ex3.dat data set, which we analyzed in chapter six using ANOVA. This 

data set was also analyzed in the RECIPE program Users Guide [5] and in the handbook 

[6] (section 8.3.7.7, page 8-61) using regression. The data is composed of 11 tensile 

strength observations, taken at two different temperatures, 75 and –67 degrees Farenheit, 

all from the same batch. For completeness, we present again below, the scatter plot of 

tensile strength vs. temperature. 
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In both of the above-mentioned references, regression analyses were implemented. They 

clearly and correctly illustrate the use of the RECIPE program for the derivation of 

allowables as well as the step-by-step implementation of regression analysis and of the 

allowable calculations. In [6] (page 8-61) a note clarifies that “a linear relationship 

between strength and temperature is not appropriate for all temperature ranges”. We 

would like to expand on this important caveat, regarding such regression analyses. 

 

We must repeat what we said in the previous case study example regarding statistical 

modeling. In statistical analysis, there is always a risk of modeling the data and not the 

problem. This is especially dangerous in a situation where we have only two predictor 

measurement levels, as is the case in the present example. 

 

For illustration and comparison, we refer the reader to the scatter plot of the raw data in 

the previous case study (surface damage) example, which was initially presented in our 

introduction to regression of chapter five. If we had only taken the two end-point values 

in the abscissas, from this surface damage example, we would observe a downward linear 

trend. When we add the middle range of the abscissa observations, we then see how an 

oscillating trend is present, instead. 

 

This is the main caveat we want to raise with the present example. The two temperatures 

(75 and –67) are widely separated. Therefore, one can question whether these two points 

may be signaling a linear trend, or rather a concave up (or concave down) or oscillating 

trend. The safest way to resolve this important question is to include at least a third 

intermediate temperature (this is why handbook [6] suggests three or more levels of the 

predictor). But most importantly yet, is to always keep in mind that the statistical 

(regression) model is empirical and should follow a logical or theoretical explanation –

not lead it. If there is no basis for assuming that a linear (or cubic or other) trend is 

legitimate, then we run the risk of modeling the data and not the problem, as in the 

previous case study. This can lead to inefficient conclusions since, if we model the data 

but not the problem, another data set may have a completely different functional form. 



 

Case four. A small but more complex data set.  

 

We now present Ex5.dat, from the RECIPE program Users Guide [5], also discussed in 

section 8.3.7.9 (page 8-68) of the handbook [6]. This data, presented below, consists of 

15 tensile strength observations, from five batches and two different manufacturers: 
 

   ROW  manufac  batch  strength 

 

   1        1      1      75.8 

   2        1      1      78.4 

   3        1      1      82.0 

   4        1      2      68.8 

   5        1      2      70.9 

   6        1      2      73.5 

   7        1      3      74.5 

   8        1      3      74.8 

   9        1      3      78.8 

  10        2      4      81.3 

  11        2      4      87.7 

  12        2      4      89.0 

  13        2      5      88.2 

  14        2      5      91.2 

  15        2      5      94.2 

 

The statistical problem consists in determining whether this is a homogeneous data set 

and what are its measures of central tendency, dispersion and others, that characterize it. 

We also want to know what is the underlying distribution and its parameters –and if there 

are possible outliers in the set. If the data are not homogeneous, then we want to know if 

they vary by manufacturer or by batch or both. If such variation exists, we then want to 

know if there are reasons for this (e.g. they are caused by a trend on some other factor). 

We can later use this additional information, say, for validating or forecasting one tensile 

value, given the ancillary information. This case study summarizes everything we have 

seen. As usual, the first thing we do with a data set is to obtain its descriptive statistics: 
 

                N     MEAN   MEDIAN   STDEV  MIN    MAX     Q1     Q3    

strength       15    80.61    78.80   7.860 68.80  94.20  74.50  88.20 

 

Then, we plot the data in various useful ways (pooled, by groups, etc.) to obtain a first 

diagnostic about how they are similar or about how they differ: 
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The boxplot of the combined data set shows a flat and symmetric population, with heavy 

tails. The median and mean are close and the data are spread out, as shown by the 

extended upper/lower quartiles. We then break down the data by manufacturer and some 

reasons for the data variability becomes apparent: 
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The above boxplots signal that there are differences in the tensile strengths of the two 

(manufacturers) groups, which is also clearly apparent in the scatter plot below. We need 

to explore further this manufacturer’s difference: 
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The descriptive statistics, obtained by manufacturer’s group, confirm such difference: 

 
 

                N     MEAN   MEDIAN   STDEV MIN    MAX     Q1     Q3    

manuf-1         9    75.28    74.80   4.07 68.80  82.00  72.20  78.60  

manuf-2         6    88.60    88.60   4.30 81.30  94.20  86.10  91.95  

 

 

We want, in addition, to investigate if there are also batch differences,  within the two 

manufacturers –or whether they are internally homogeneous. We present the batch scatter 

and box plots, below. 
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It is apparent from these plots that batches also differ by manufacturer. We will explore 

this situation analytically after establishing the underlying distributions of the two groups.  

 

We perform the AD GoF tests for Normality for the entire data set obtaining AD=0.33 

with a p-value=0.47, too high for rejecting Normality as a plausible data distribution. The 

boxplots do not suggest the presence of outliers in the combined group, either. We then 

implement the AD GoF test for each manufacturer, obtaining AD values of 0.15 and 0.28 

respectively, with p-values of 0.93 and 0.50. With such results we don’t reject Normality, 

a convenient distribution for the implementation of (two-sample and ANOVA) 

comparison tests between groups, that require the Normality assumption. 



 

We then compare the two (manufacturers) groups via two-sample t-tests. For, the two 

group variances are (see descriptive statistics) very similar and, hence, assumed equal. 

 
         N      MEAN     STDEV   SE MEAN    

manuf-1  9     75.28     4.07       1.4 

manuf-2  6     88.60     4.30       1.8 

POOLED STDEV =       4.16 

95 PCT CI FOR MU manuf-1 - MU manuf-2: ( -18.1,  -8.6) 

TTEST MU manuf-1 = MU manuf-2 (VS NE): T= -6.07  P=0.0000  DF=  13 

 

Results show that the two groups differ. The second manufacturer has a tensile strength 

mean between 8.6 and 18.1 units higher, than that of the first, with 95% confidence. For 

illustration, we also perform the ANOVA test for (only) two (manufacturers) groups. 

Notice below how the ANOVA results are equivalent to those of the two-sample t-test 

above. This is no surprise, since the distribution of the (ANOVA) F-test, for only two 

groups, is the square of that of the t-test for the two-sample case (i.e. F(1, m) = [ t(m) ]
2 

) 

where m are the degrees of freedom of the t-test statistic or the d.f. of the denominator of 

the F-statistic (here, the F-test statistic value 36.87 is the square of the t-test -6.07). 

 
ANALYSIS OF VARIANCE ON strength 

SOURCE     DF        SS        MS        F        p 

manufac     1     638.9     638.9    36.87    0.000 

ERROR      13     225.3      17.3 

TOTAL      14     864.2 

                                   INDIVIDUAL 95% CI'S FOR MEAN 

                                   BASED ON POOLED STDEV 

 LEVEL      N      MEAN     STDEV  ----------+---------+---------+----- 

     1      9    75.278     4.073  (----*----)  

     2      6    88.600     4.302                        (-----*-----)  

                                   ----------+---------+---------+----- 

POOLED STDEV =    4.163                   78.0      84.0      90.0 

 

Within each of the two manufacturers groups we already observed some differences. We 

will explore them now, analytically, via ANOVA. For manufacturer #1 we detect that 

there is a statistical difference between batches. ANOVA results are presented below: 
 

SOURCE     DF        SS        MS        F        p 

bat-1       2     90.74     45.37     6.48    0.032 

ERROR       6     42.00      7.00 

TOTAL       8    132.74 

                                   INDIVIDUAL 95% CI'S FOR MEAN 

                                   BASED ON POOLED STDEV 

 LEVEL      N      MEAN     STDEV  ------+---------+---------+--------+ 

     1      3    78.733     3.113                  (------*-------)  

     2      3    71.067     2.354   (------*-------)  

     3      3    76.033     2.401             (------*-------)  

                                   ------+---------+---------+--------+ 

POOLED STDEV =    2.646               70.0      75.0      80.0     85.0 

 



For manufacturer #2, however, the two batches appear to come from the same population. 

This result may indicate that their production process is more homogeneous (controlled) 

than that of manufacturer #1. Further investigation, with more batches, is suggested. 
 

SOURCE     DF        SS        MS        F        p 

bat-2       1      40.6      40.6     3.12    0.152 

ERROR       4      52.0      13.0 

TOTAL       5      92.5 

                                   INDIVIDUAL 95% CI'S FOR MEAN 

                                   BASED ON POOLED STDEV 

 LEVEL      N      MEAN     STDEV  ----------+---------+---------+----- 

     4      3    86.000     4.122  (-----------*-----------)  

     5      3    91.200     3.000             (----------*-----------)  

                                   ----------+---------+---------+----- 

POOLED STDEV =    3.605                   85.0      90.0      95.0 

 

For illustration also, and since the scatter plots show an increasing trend among tensile 

strength batches, we will perform a regression analysis on the combined data set. We will 

regress tensile strength on the five batches. Results are presented below: 

 

The regression equation is: strength = 68.6 + 3.99 batch 
 

Predictor       Coef       Stdev    t-ratio        p 

Constant      68.647       3.306      20.77    0.000 

batch         3.9867      0.9967       4.00    0.002 

s = 5.459       R-sq = 55.2%     R-sq(adj) = 51.7% 

 

Analysis of Variance 

SOURCE       DF          SS          MS         F        p 

Regression    1      476.81      476.81     16.00    0.002 

Error        13      387.40       29.80 

Total        14      864.21 

 

There is an increasing effect of batch. The index of fit (100R
2
) is 55%; the model 

explains over half of the data variation. The t and F regression tests are highly significant 

(p-values are practically zero). Again, there are two important caveats. First, look at the 

residual plot. Second (and more important) does this result have a sound basis? 

 

The residual plot (below) shows a distinct pattern as opposed to the randomness expected 

from a well-fitted regression model. Such pattern signals that our model has not yet 

captured the structure of the problem. In addition, unless there is some specific reason in 

both manufacturers processes (e.g. they have been using sequentially aged raw material, 

that produces an increasing effect on tensile strength) there is no reason to suspect that 

batches should produce such trend in the response. This example shows how, in addition 

to serving for purely statistical purposes (e.g. checking the validity of the assumptions) 

the residuals also help in the complex process of validating the conceptual models. 
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Finally, and also for the purpose of illustrating some problems of applying regression 

models to materials data, we transform the Ex5.dat data set into the set “newc3.dat”. We 

do it in the following way: we decrease in twelve units all tensile strengths coming from 

the first batch of the first manufacturers. The resulting (newc3) data set is shown below: 

 
63.8   66.4   70.0   68.8   70.9   73.5   74.5   74.8   78.8   81.3   

87.7   89.0   88.2   91.2   94.2  

 

We obtain the descriptive statistics and basic plots for the new tensile data set (newc3): 
 

                N     MEAN   MEDIAN    STDEV MIN    MAX     Q1     Q3   

newc3          15    78.21    74.80    9.80 63.80  94.20  70.00  88.20 
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           +---------+---------+---------+---------+---------+----batch    

        0.80      1.60      2.40      3.20      4.00      4.80 
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                       ------------------------------- 

          ------+---------+---------+---------+---------+--------+newc3    

             66.0      72.0      78.0      84.0      90.0      96.0 

 

 

Let’s assume now, for illustration, that the factor “batch” is instead a material “thickness” 

level specification, to which the product has been manufactured. This last assumption 

tries to provide some physical meaning to the stress problem that we will now analyze: 
 

The regression equation is: newc3 = 59.0 + 6.39 thickness 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant      59.047       1.847      31.96    0.000 

thickness     6.3867      0.5570      11.47    0.000 

 

s = 3.051       R-sq = 91.0%     R-sq(adj) = 90.3% 

 

Analysis of Variance 

SOURCE       DF          SS          MS         F        p 

Regression    1      1223.7      1223.7    131.47    0.000 

Error        13       121.0         9.3 

Total        14      1344.7 

 

Both the regression and ANOVA tables above indicate that this new regression is highly 

significant (the t and F statistics have p-values practically zero). The new model explains 

(index of fit) over 90% of the variation in the data. We still need to check the residuals to 

assess the validity of the model assumptions. Residual and box plots are shown below: 
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The scatter plot of residuals vs. fits seems plausibly random and the residual boxplot 

seems symmetric about zero. The AD GoF test for Normality yields a value AD=0.45 

with a p-value of 0.24. In addition, the runs test yields 10 runs out of an expected 8.47, 

with a p-value of 0.40. We thus assume the Normality of the residuals. Since all other 

regression assumptions have been met, we proceed to use the regression model results, 

namely that material “thickness” does increase tensile strength, as per the equation above. 

 

However, thickness levels were implemented by two different manufacturers. Therefore 

we also want to assess whether there is a manufacturers effect in this problem, too. There 

are three ways in which such an effect may appear in the regression model. First, the 

level (independent term of the regression) may differ by group. Secondly, the rate (the 

slope of the regression) may be different. Finally, both level and rate effects may be 

different (in which case, two totally different regression models apply). 

 

We first test the hypothesis that the two manufacturers do not differ in level. We compare 

the above regression model with another one where we introduce Ei as an extra “dummy 

variable” (full model). This dummy variable has value 0, if the observation comes from 

the first manufacturer and 1, if it comes from the second. The model functional form is: 

 

Yi  00  11 Ei  1 Xi1   i   ;   1  i  n 
 

The null hypothesis is H0  11=0. If it is true, both regressions (and both manufacturer 

processes) are statistically equivalent. However, if we reject H0 then all variables from the 

above regression are statistically significant (different from zero). Then, an estimation 

from the first manufacturer would be obtained using the regression equation: 

 

Yi  00   1 Xi1   i   ;   1  i  n 
 

Whereas, an estimation for the second manufacturer would be obtained using the second 

regression equation, that now has a different (sum of) independent term(s) shown below: 

 

Yi  (00  11 )  1 Xi1   i   ;   1  i  n 

 

The regression results for the current fictitious example are given below: 

 
newc3 = (61.8 + 5.42 dumlevel) + 4.76 thickness 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant      61.758       2.253      27.41    0.000 

thickness      4.760       1.025       4.64    0.000 

dumlevel       5.422       2.959       1.83    0.092 

 

s = 2.807       R-sq = 93.0%     R-sq(adj) = 91.8% 

 

Notice how the model explanation (index of fit) has barely increased a couple of 

percentage points (from 91 to 93%). The coefficient of the “thickness” factor (4.76) 

remains highly significant. But the coefficient for the dummy variable (dumlevel) has a 



p-value=0.092. This result is statistically significant only if we were willing to assume an 

error  (risk of wrong decision) of 10%. This  may be too high, especially for such a 

small (n=15) data set. The ANOVA table for the regression is shown below. 

 
Analysis of Variance 

SOURCE       DF          SS          MS         F        p 

Regression    2     1250.15      625.07     79.34    0.000 

thickness     1     1223.69     1223.69 

dumlevel      1       26.46       26.46 

Error        12       94.54        7.88 

Total        14     1344.69 

 

Below we present the plot of residuals vs. fits. Notice the random pattern that supports 

the validity of the regression model assumptions of Normality and equality of variance. 
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The residual boxplot (below) and the AD GoF test results (AD=0.45 with p-value=0.24) 

also point toward Normality and randomness. Therefore, we accept the above regression 

model as valid and proceed to use its results, namely that variable Ei is not significant. 
 

                               -------------------------- 

              -----------------I         +              I------  

                               -------------------------- 

          --+---------+---------+---------+---------+---------+---SRES3    

        -2.10     -1.40     -0.70      0.00      0.70      1.40 

 

Therefore, since we do not reject the (null) hypothesis, both above regressions have the 

same and unique 00 intercept (since 11=0). Hence, we can use the pooled regression 

results. Had we opted to reject the null (at 10% risk of stating, erroneously, that 11 was 

not zero) then we would have to use the two different regressions above: one for the first 

manufacturer and the second for the other. Their difference would be in 5.42 units, 

corresponding to the new 00  11 intercept (due to the added coefficient from the 

dummy variable “dumlevel” to the second equation).  



 

Finally, and also for illustration, we investigate the alternative that both manufacturers 

differ, in level and in rate. This implies that the alternative (full) regression model is: 

 

Yi  00  01 Ei  10 Xi1  11 (Ei Xi1) + i   ;   1  i  n 

 

The null hypothesis that both regression models (manufacturers) do not differ is now 

expressed as: H0 01=11=0. The alternative hypothesis (H1) is that at least one of the two 

(dummy variable) coefficients, 01 or 11 differs from zero, i.e. that both regressions 

differ in level (intercept), or in rate (slope) or in both.   

 

The above regression model results are shown below. Variable “interdum” corresponds to 

the interaction (or product) of the dummy variable and the material thickness (Ei Xi1).  

 
newc3 = 62.0 + 4.65 thickness + 3.2 dumlevel + 0.55 interdum 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant      61.978       2.581      24.02    0.000 

thickness      4.650       1.195       3.89    0.003 

dumlevel        3.22       11.12       0.29    0.777 

interdum       0.550       2.671       0.21    0.841 

s = 2.926       R-sq = 93.0%     R-sq(adj) = 91.1% 

 

Notice here too, how the index of fit (model explanation) has barely increased by 2% 

(from 91 to 93%) and that only the variable “thickness” is now statistically significant. 

The coefficients of the remaining two variables (“dumlevel” and “interdum”) have 

unacceptably high p-values (0.77 and 0.84), something also suggested by the regression 

ANOVA table results, shown below. Hence, these two variables are assumed zero.  

 

Such a situation of having a significant full regression equation (F=48.69) with some 

non-significant individual coefficients (the t-ratio statistics) suggests that there are 

redundant variables in the model. 
 

 

Analysis of Variance 

SOURCE       DF          SS          MS         F        p 

Regression    3     1250.51      416.84     48.69    0.000 

batch         1     1223.69     1223.69 

dumlevel      1       26.46       26.46 

interdum      1        0.36        0.36 

Error        11       94.18        8.56 

Total        14     1344.69 

 

 

As usual, before using the regression model results, we check the validity of the model 

assumptions via the residual analysis. Below, we show several plots. The plot of residuals 

vs. fits look random and show no variance problems. The residual boxplot and the AD 

GoF tests for Normality are also acceptable. We thus assume that the regression model is 

valid and use the results, namely that we do not reject the above stated null hypothesis. 
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Since we accept as valid the regression model results, it means that we do not have 

enough grounds to reject the null hypothesis. Hence the regression of tensile strength on 

thickness, for both manufacturers, does not differ either in level or in rate or in both. 

 

Consequently, we assume that a single regression model (the first one above) acceptably 

represents the problem situation for both manufacturers. Therefore, we can use a single 

regression  to estimate tensile strengths on material thickness, for both manufacturers. 

 

Summary and Conclusions 

 

In this chapter we have developed four materials analysis case studies that illustrate how 

regression models are used and some times even misused. Some of these regression 

models were linear and others were quadratic and cubic. We presented ways of 

comparing them in order to select the model that best captures the structure of the 

problem under study. Finally, and most important, we presented detailed ways of 

checking, via the residual analysis, graphically and analytically, the validity of the three 

main regression model assumptions. These are that residuals are Normal, independent 

and homoscedastic (have equal variance). 

 

Several important caveats regarding statistical modeling in general and regression 

modeling in particular were discussed. The most important caveat is that the statistical 

model should always follow reality and not the other way around. If care is not taken, 

then we may end up modeling the data and not the problem. The only thing we will have 



accomplished, at that stage, is to make things worse. For, the next data set, from the same 

problem area, may have little in common with the work we have performed, nor with the 

results we have obtained before. 
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