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Executive Summary 

 

Statistical distributions are used to describe the random outcomes of varying processes, to 

better understand them and work with them. In this chapter we discuss the meaning, 

interpretation and philosophy of random variables, of their statistical distributions (patterns) 

and of their parameters. Three specific distributions, Normal, Lognormal and Weibull, that 

are at the heart of materials data analysis and design, are discussed in detail. The special 

problem of analysis, detection and treatment of sample and distribution outliers (or extreme 

values) is also discussed. Illustrative numerical examples are presented and discussed. 

 

Statistical Distributions 

 

Generalities 

 

Statistics deals with the study of phenomenons and processes that (i) yield more than one 

outcome and (ii) occur in a random fashion.  These process outcomes (observations, data), 

resulting from the (conceptual) random process under observation (stress, strain, loads) are 

called random variables (R.V.).  We denote such conceptual R.V. with a capital letter, say 

X; their specific outcomes are called “events”; and the set of all possible R.V. outcomes is 

called the “sampling space” [8, 10].  For example, from the process of rolling two dice and 

taking their sum, we observe X, the random variable “resulting sum”. From the process of 

testing a given metallic specimen, under specific conditions, we observe X, the random 

variable “maximum crack length”.  In the dice example, the sampling space consists of 

integers 2 through 12, an event is {X=4} (rolling a sum of four) which occurs with 

probability P {X=4} = 3/36 (see Table 1).  For the crack length example, the sampling 

space consists of all positive reals, an event is {X<3.5} (observing a crack of length less 

than 3.5 inches) for which we can also obtain a probability. 

 

The reason statistics is so important to the materials engineers is that processes such as 

stress, strain, load, deformation, etc., that take place on materials, are stochastic and not 

deterministic. Therefore, a fixed parameter such as the mean is not very informative. For, a 

large percentage of the population of all possible stresses, strains, loads, etc. that a specific 
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material can be subjected to, may be very different than this parameter. Thus, we also need 

information about its variability. 

 

A or B basis allowables, instead, are very informative values and hence can be used for 

design. For, a prefixed percentage of the population outcomes are assured, with a given 

probability, to be above A or B basis values. From here, we can realize the importance of 

correctly identifying the pattern (or statistical distribution) of such (strain, stress, load, etc.) 

stochastic or random processes. This is the main topic of this chapter. 

 

The (graphical) frequency or pattern of occurrence of specific random outcomes (e.g. Figure 

3.1) provides an intuitive way to understand what is the statistical distribution of a R.V. X 

(e.g. the stress, strength, load, strain, or other random process of interest to the materials 

engineer).  Such graph presents, in the abscissa axis, the sampling space of X (i.e. all 

possible outcomes of such stress, strength, load, strain, etc.) and in the ordinates, a value 

proportional to the frequency of occurrence of such outcomes.  A standardized version of 

such graph of outcomes pattern (so that the area under it is unit) is called the probability 

density (when the sampling space of X is continuous) or mass (when discrete) function.  

The Distribution function of a R.V. X, denoted F, is non-decreasing, between zero and unit, 

and defined using the mass/density function, in the following way: 

 

 F (a) = P {X a} where “a” is any feasible value in the sampling space of X 

 

These probability mass/density functions (patterns) provide useful, objective and precise 

ways to describe the probabilistic mechanism governing the random processes of stress, 

strengths, load, strain, etc. that produces them.  For example, contrast the (equiprobable) 

flat pattern from rolling an honest die, where the occurrence of any of its six sides is equally 

likely, with that of the sum of two dice (shown in Figure 3.1), where a sum of 7 is more 

likely than that of a 12.  Such patterns (distributions) can be numerically described by a set 

of fixed numbers called parameters.  In the sum of two dice example, the set (1/36, 2/36, 

3/36, ... 1/36) of frequencies associated with the possible sums, uniquely describe its 

distribution (pattern).  Thence, all random variables have a distribution, uniquely described 

by (one or more) parameter(s).  Statistics is about investigating those distributions and 

parameters.  In this chapter we discuss three special quantitative (as opposed to qualitative) 

R.V. They correspond to the Normal, the Lognormal and the Weibull distributions, which 

are frequently used to describe the patterns of materials processes of interests.  

 

Quantitative R.V. are those whose numerical outcomes exhibit mathematical properties of 

order and distance (and some times even have an absolute zero). They are said to have a 

“stronger” measurement scale level, which allows the implementation of certain statistical 

methods, not always appropriate for qualitative variables. Some of such methods include 

regression and ANOVA, which will be discussed in further chapters,. 

 

Statistical distributions can be discrete or continuous, according to whether their 

corresponding sampling space outcomes are discrete or continuous.  The dice sum is an 

example of discrete, and the crack length is an example of continuous, R.V.  Their 
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corresponding (graphical) patterns yield step or continuous mass/density functions.  

Discrete R.V. allow calculation of (event) probabilities for individual outcomes (e.g. getting 

a sum of two) while continuous R.V. only allow calculation of probabilities for ranges (e.g. 

of getting the probability of a fracture of less than three inches long, on a given material, 

under a specific load).   

 

Specifically, the calculation of the probability of “obtaining exactly a sum of three, when 

rolling two dice” (denoted P {X=3}) or of “observing a fracture of less than three inches 

long” (denoted P {X<3}) is obtained by adding (or integrating) the discrete (or continuous) 

mass/density function (patterns) discussed above.  This illustrates the one-to-one relation 

between distributions and their corresponding mass/density functions, upon which 

statistical work is based. Hence, if we know the distribution of a R.V., we know its density. 

This also illustrates the importance of correctly characterizing (finding a good Fit for) the 

distribution of the random process (of say loads on a given material) under study. 

 

In addition to being discrete or continuous, distributions can also be symmetric or skewed, 

according to whether their mass/density functions are/are not symmetric with respect to one 

point in their sampling space.  This can be useful, for if the distribution is symmetric about 

a point, say the mean, its practical value rises considerably. For, the process under study 

will behave as if it departed at the same rate from this center of symmetry. 

 

Distributions can also be unimodal or multimodal, according to whether their mass/density 

functions have one (or more than one) local maximum (e.g. they cluster about these points). 

For example, the distribution of R.V. “sum of two dice” in Figure 3.1, is symmetric and 

unimodal.  Its mean and mode is 7, about which the distribution is symmetric and clustered. 

If one had to choose three numbers with the highest wining probability, these should be 6, 7 

and 8. Unimodality is useful because one will have small ranges of values, where large 

percentages of the phenomenon under study tend to concentrate. Next section presents an 

example where large percentages of all possible tensile strength values, from a given 

material and under specific conditions, fall within a small interval with a high probability. 

 

As one can imagine, the number of statistical distributions that can arise in real life is 

infinite, which poses a difficult problem.  In order to practically deal with it, well known 

and thoroughly studied “families” of statistical distributions, with a small and easy to 

interpret number of parameters, have been developed.  Two examples of discrete families of 

distributions (and their respective parameters) are, the Binomial (with number of trials n 

and probability of success of any trial, p) and the Poisson (with rate of occurrence ).  Two 

examples of continuous distribution families are the Normal (with mean  and standard 

deviation ) and the Weibull (with scale  and shape ). We refer to them as “families” 

because different patterns can be obtained, that describe different process behaviors, by 

varying their parameters. We will study continuous distributions in the next section. 

 

The (exact) distribution of a process of interest (say the stress of a material) may be 

satisfactorily approximated by a well-known distribution (by finding some parameters that 

provide a similar pattern). If so, we will work with the latter as if it were the exact (but 
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unknown) underlying distribution.  We approximate the true distributions (and we say, that 

we find a good Fit to them) by estimating suitable parameters (say, ) that allow a member 

of the well known family of distributions (say, Normal or Weibull) to satisfactorily describe 

the pattern of the process outcomes (say, tensile strength variability).  

 

In other words, we can neglect the difference between the exact probability of the 

occurrence of say, a specific strength on the material under study and its approximation by 

one of these distributions, say the Weibull. Much statistical work is spent in the (i) selection 

of a specifically suited family of distributions, (ii) estimation of adequate parameters, (iii) 

verification (testing) that such selection is correct and (iv) obtaining usable probabilistic 

results with them.  We will see more of this type of work in the following chapters. 

 

The above discussion shows the importance of understanding the concepts of R.V. (e.g. 

process outcomes such as strength, loads on a wing, etc.), their distributions (e.g. the pattern 

of such outcomes) and their corresponding parameters (fixed values that provide a good 

distribution Fit). These distributions then provide objective and precise ways of describing 

or prescribing the random phenomenon under study.  Activities (i) to (iii) above are 

performed on a given data sample following, say, MIL-HDBK-5 & 17 procedures. The 

distribution and parameters found are then used to obtain A and B basis values.  

 

Then, materials engineers or designers use these values to obtain (iv) practical and useful, 

probabilistic statements on “events” of interests. For example, “what stresses, does 90% of 

the population from which this sample of metal sheets comes from, can withstand?”  Or, 

conversely, what pre-specified probabilities (given a specific distribution and its 

parameters) should be required by the engineering designers as performance measures (say, 

in the form of percentiles for a given metal characteristic). Finally, such values can also be 

used as benchmarks, against which samples of incoming materials and their test results are 

screened and assessed for acceptance in the data base. 

 

Three Distributions of Interest in Materials Data Analysis 

 

There are three main distributions of interest in MIL HDBKs 5 and 17: the Normal, the 

Lognormal and the Weibull. They are well studied because they actually fit many materials 

processes or because, for physical reasons, some process outcomes follow such patterns. 

 

We will illustrate our discussion of these distributions using an example. We have selected 

it from problem 6 (pages 8-47 and 8-57 of [7]) because it deals with real life tensile strength 

measurements, having a mean of 330 and a standard deviation of 5. We have simulated 

population and sample data from several distributions with these parameters, for discussion 

and comparisons. For all these distribution results are close and signal out the importance 

and difficulties of determining the correct underlying distribution and parameters. 

 

The Normal Distribution 
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A process or R.V. X (say, stress on a sheet of metal) follows a Normal distribution, with 

mean  and standard deviation  (i.e. N(, )) if its density function can be written as: 

 

                              1 

 f(x) =  -------------  exp {–(x - )
2  

/ 2 
2  

}        for values       x   ;   0 

                         (2)   

 

One of the greatest problems with using the Normal distribution to characterize materials 

data is the fact that the X values can conceptually be negative (which is not possible for 

strength, loads, stress, etc.). It does not matter how small the standard deviation  is or how 

large is the mean .  There is always a (perhaps very small) probability of occurrence of a 

negative value (e.g. strength). In practice, however, this probability is usually negligible. 

 

The Normal distribution is unimodal and symmetric about the mean , where values tend to 

concentrate. Its mean, median and mode coincide. It is also standardizable, i.e. there is one 

distribution, the Normal Standard, N(=0; =1) that provides all probabilities. Any Normal 

value X can be “standardized” by the process: Y = (X-)/. After this, “Y” is Normal 

Standard i.e. has mean unit and standard deviation one. Hence, there is only one probability 

table for the Normal Distribution: the Standard Normal table. Any of the textbooks given in 

the references provides additional information and the tables for the Normal distribution. 

 

We present below a dot plot for 3000 data points generated from a Normal with =330 and 

=5. Verify how it is unimodal and symmetric about 300, which is also its median value. 

Each plot point represents 11 tensile strength data values, from this population. 
 

 

                                   ..:. .:: 

                                  ::::::::: 

                                .:::::::::::: 

                               .:::::::::::::::. 

                            . .:::::::::::::::::. 

                            :::::::::::::::::::::: 

                         :.:::::::::::::::::::::::::. 

             . ........:::::::::::::::::::::::::::::::::.... . 

          -------+---------+---------+---------+---------+--------Tensile       

             315.0     322.0     329.0     336.0     343.0     350.0 

 

The Lognormal Distribution 

 

 A process or R.V. Y (say stress on a sheet of metal) follows a Lognormal distribution, e.g. 

 if the logarithm of this process, say X = Log (Y) follows the Normal distribution. 

The Lognormal density (Figure 3.2) has the following functional form: 

 

                            1 

 f(y) =  --------------- exp {–(ln y - )
2  

/ 2 
2  

}      for values     0   y   ;   0 

                         (2)  y 
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The Lognormal distribution does not take negative values. Therefore, it is more realistic in 

this sense than the Normal. It is not symmetric, but usually skewed (i.e. one tail is longer 

than the other). Its mean or expected value, does not coincide with either its mode or its 

median. Its expected value and variance are, respectively: 

 

 E(Y) = exp{  + 
2
/ 2}       and     V(Y) = exp{ 2 + 

2
} ( exp { 

2
 } – 1 ) 

 

We don’t need tables for the Lognormal since one can obtain its probabilities by taking 

logarithms and using the Normal tables, e.g. P(Y  a) = P(X  ln(a)). An excellent 

treatment of the Lognormal distribution is found on pages 264 and following, of [11]. 

 

We present below a dot plot for 3000 data points generated from a Lognormal (ln()=5.8 

and 0.02) that yield mean of 330 and standard deviation of 6.6. It is somewhat flatter than 

the previous Normal (notice length of the tails). Each plot point represents 13 data values. 

 
                                 .  . 

                                .::::. 

                             ...:::::::.. 

                             ::::::::::::. 

                          .::::::::::::::::: 

                         .:::::::::::::::::::: 

                      ...:::::::::::::::::::::... 

             .........:::::::::::::::::::::::::::::.......... 

          -----+---------+---------+---------+---------+--------+ Tensile       

             310       320       330       340       350       360 

 

 

 

Weibull Distribution 

 

A process or R.V. X (say strain on a sheet of metal) follows a Weibull Distribution, if the 

density function (where  is the shape and  is the scale parameter) has the following form: 

 

                                x
-1        

           x 
 

 f(x) =  ----   ------    exp -{ ----- }           for values of  x, ,   0 

                                  
-1

                
 

 

As in the Lognormal, this is a more realistic distribution since all values x have to be 

positive. Also, in addition to providing an empirically good fit, the Weibull has a physics 

basis for its use in reliability and materials analysis. For, it is the asymptotic distribution of 

the smallest values from certain other distributions. Weibull is not symmetric, but skewed 

(one tail is longer) and its mean (expected value) median and mode do not coincide, either. 

As with the Lognormal, it is very flexible and can accommodate a large number of pattern 

shapes (Figure 3.3). Its mean and variance are: 

 

  E(X) =    ( 1 + 1/)        and        V(X) = 
2
 [( 1 + 2/) - 

2
(1 + 1/)] 
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Probabilities are obtained directly by the formula. An advanced treatment of the Weibull 

can be found on pages 184 and following of [11]; a basic treatment is found in [12]. 

 

We present below a dot plot for 3000 data points generated from a Weibull, with shape 

parameters, 60 and 330. The mean is 327 and standard deviation 6.8 (similar to the others). 

It is left skewed (notice the length of the left tail). Each plot point represents 15 data values. 
 

 

                                                  . 

                                                : :: 

                                             :..::::. 

                                          .::::::::::.. 

                                        ..::::::::::::: 

                                       ::::::::::::::::. 

                                   .:::::::::::::::::::::. 

               ... ...........:::::::::::::::::::::::::::::.. 

         +---------+---------+---------+---------+---------+-----Tensile       

       290       300       310       320       330       340 

 

 

Distribution Parameters 

 

Distribution Parameters, as we have seen in the three cases above, are population (fixed) 

values that uniquely characterize the distribution function describing a R.V.  Parameters 

allow the graphing of the R.V. specific mass/density function (outcome) patterns.  For 

example, the Normal distribution can be taller/slimmer or flatter/broader, given the same 

mean , according to whether  is larger or smaller. And the Lognormal and Weibull can be 

right or left skewed, peaked, unimodal or not, according to their shape and scale parameters. 

Examples of shapes of these distributions are presented in Figures 3.2 and 3.3. 

 

In many cases, we can even directly identify the parameters in the mass/density function 

graph, as we have done above.  Hence, their understanding and interpretation is of great 

importance.  There are many parameters, but we will only discuss here the widely used 

location and dispersion parameters and the shape, scale and threshold parameters. We will 

illustrate these concepts using parameter values from our three examples above developed. 

 
                N     MEAN   MEDIAN  STDEV   MIN    MAX     Q1      Q3 

normpop      1000   330.12   330.01  4.91   312.30 347.34 326.80  333.27   

logpop       1000   330.26   330.03  6.59   310.23 352.58 325.78  334.80    

webpop       1000   326.77   327.88  7.01   294.96 340.66 323.17  331.75     

 

               

Location parameters respond to the question “Where is the distribution?” Some very useful 

location parameters are the measures of central tendency: mean, median and mode. All 

three examples generated above had very similar measures of central tendency. 

 

Meaningful interpretations of these parameters are also very important.  In general, the 

distribution expected value, mean or long run average is denoted by E(X). It is also the 

outcome located at the center of gravity of the mass/density function graph.  The median is 

the outcome such that half of the population scores below (above) it.  The mode is the value 
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where the mass/density function peaks (most frequent outcome). If a distribution is 

symmetric and unimodal then mean, median and mode coincide (e.g. Normal Distribution). 

 

Mean and median, if they exist, are unique; there can be many modes.  Multiple modes may 

coexist (i.e. in a multimodal distribution) if the shape of the density shows more than one 

hump. This is not usual and when it occurs it often indicates that there are more than one 

homogeneous populations pooled together.   

 

If a distribution is skewed (non symmetric), as with Lognormal and Weibull, then one tail is 

longer than the other. This is very noticeable in our Weibull example. In such cases the 

mean loses importance to median and mode. For no longer there is a cluster about the mean, 

but about the mode, instead.  The median, however, is always interesting because it 

indicates the population value such that half all others are above it, and half are below it. 

That is, if we sort the population, the median is the value that occurs in the middle. 

Knowing where this central value is, provides many interesting uses. 

 

For example, R.V. “income distribution” usually is highly skewed.  Hence, its distribution 

mean is not very informative if say, there are few billionaires and millions of landless 

peasants. More information is provided by the median, which is the income level such that 

half the population income lies above (or below) it. The mode, in turn yields the income 

level that is most frequent and around which, there is some income clustering. 

 

The same occurs with stress on a metal sheet. If the distribution is skewed, as with our 

Weibull example, then the average stress will differ with respect to the mode, about which 

more stress values tend to cluster. This becomes more acute as skewness increases. In such 

cases, the average population stress will be of small design value. 

 

In our Weibull example, skewed to the left, the approximate value of the mean is 327, of 

the median is 329 and of the mode is 332. Also notice that the maximum value is 340 and 

the minimum is 295. They are non symmetrically situated with respect to the mean and 

differ from those same parameters in the Normal and Lognormal examples. 

 

Therefore, unless the distribution is symmetric, mode and median usually provide more 

useful and meaningful information about the phenomenon under study, than the mean.  In 

addition, if we add (subtract) a few extreme values, the mean will be affected, whereas 

mode and median will be much more resilient to such types of changes.  Such resilience is 

referred to as “robustness” of a parameter and is considered a good quality. For example, a 

few test cases where there is a particularly small or large tensile stress, will affect the 

average stress. However, it will not affect the modal or median stress values. 

 

Other location parameters of interest are the maximum/minimum values and the percentiles. 

A percentile is an outcome, within the sampling space of the R.V. such that a given percent 

of the population scores less than or equal to such outcome.  For example, the median stress 

is the fiftieth percentile of all stress values to which a material is subjected to. This is so, 

because half the population scores less than, and the other half more than this stress value. 
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Other important percentiles are the lower (upper) quartiles, also called first (third) quartiles 

and denoted Q1 and Q3. These percentiles define values where 25% of the population (or 

75% of the population) score less than or equal to such values. In general, percentiles are of 

great interests because they define a value such that a pre-specified percent of the entire 

population scores less than or equal to it. This is what engineers need for designing parts: a 

value such that an overwhelming percentage scores better that this value. Then, the engineer 

uses it as a design parameter and calls it an “allowable”. 

 

In our three examples, we can verify how the values of the first and third Quartiles (Q1 and 

Q3) do differ, though not markedly. At the center, the three distributions behave somewhat 

similarly, as expected, since they were generated with similar means and variances. But the 

real difference in behavior, also as expected, is in the tails of the distributions. Such tail 

behavior is of extreme importance in statistics and especially in materials data analysis. 

 

For example, in MIL-HDBK-5 & 17,  there is great interest in estimating the first and tenth 

percentiles of the population distributions under study. These percentile estimations are 

then used to obtain the A and B basis allowables.  Their importance is underscored by the 

fact that 99% (or 90%) of the corresponding population values for a given performance 

measure of interest (say tensile stress) will be larger than this value.  In our three examples, 

this situation is highlighted by the values of the corresponding minimums, which differ 

markedly from each other, the Weibull being the smallest, for it is left skewed. 

 

Population percentiles in the Normal distribution are obtained via the Normal Standard 

table. Percentiles in the Lognormal distribution are obtained using the logarithms of the 

values in the Normal tables. In the Weibull distribution, percentiles are obtained by 

calculating the values from the closed form cumulative distribution function. 

 

It is very important to understand that percentiles vary with a numerical change in the value 

of a parameter, even within the same distribution family.  To provide an example, let’s 

obtain the 31st percentile, for a Binomial (n=4, p) distribution (say, the distribution of 

correct answers in a four-question test, where every question had an unspecified probability 

p, of being answered correctly by any student).  The sampling space consists of integers 0 

through 4.  From any Binomial table, we verify that the percentile in question is one, if 

parameter p = 0.5, and zero if p = 0.25.  This stresses the importance of establishing a 

correct distribution and of obtaining good parameter estimators for it. 

 

In the tensile strength examples developed above, the population average is approximately 

330 units, with a standard deviation of 5 units. Hence, the three distributions capture the 

central values quite similarly (e.g. values between quartiles Q1 and Q3). However, this is 

not so in the tail percentiles. If the true distribution is Normal, then the approximate tenth 

percentile is: 313. But if the true distribution is Lognormal, the approximate tenth percentile 

is now: 309. If the true distribution is Weibull this approximate percentile becomes 296. 

Again, this signals the great importance of selecting the appropriate distribution and also of 

correctly estimating its parameters. For, these first and tenth percentiles will frame the A 

and B basis allowables, frequently used in design and in materials data analysis. 
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Dispersion parameters respond to the question:  “how does the random process vary, about 

some location parameter”. Some well known dispersion parameters are variance, range and 

interquartile range.  The standard deviation is the square root of the  variance.   

 

An interpretation of the standard deviation of a Normal distribution is the distance from the 

mean to the density function inflection point, in both directions. The standard deviation also 

defines what percentage of the population is under the Normal density. For example, if 

tensile strength is normally distributed, independently of the value of its mean and variance 

there are always about 70% of tensile strength population values in the interval between one 

standard deviation below and one standard deviation above, the mean. There are about 95% 

of population tensile strength values in the interval between two standard deviations below 

and two above, the mean. In our example, there are about 70% of possible tensile strength 

measurements between 325 and 335 and about 95% between 320 and 340. 

 

If the population distribution is not Normal, e.g. if it is Lognormal or Weibull, the above 

explained percentage population values no longer hold. Therefore, there is no specific 

reason to add/subtract units of the standard deviation from the mean, any more. For, the 

population percentages in these intervals are now totally different than before. 

 

A better estimation of dispersion about the center, in such cases, is the Interquartile Range 

(IQR). This is the difference between the (Upper/Lower) quartiles: Q3-Q1. These are useful 

alternative measures of dispersion, when the population distribution is not symmetric, as is 

the case of Weibull and Lognormal. Irrespective of the population distribution, IQR always 

contains the 50% of the population, closest to the center (median). In the Normal example 

IQR=333.27-326.8=6.47; in the Lognormal, IQR=334.8-325.78=9.02, and in the Weibull 

example, IQR=331.75-323.17=8.57, relatively close, as the standard deviations were. 

 

Dispersion parameters are often used to characterize or compare population variability.  If 

means of positive R.V. are the same, their variances can be compared directly.  But if the 

means differ, then an indirect dispersion parameter, such as the coefficient of variation 

(defined as the ratio of the standard deviation to the mean) is used. The usefulness of the 

variance loses to IQR, as distributions depart from symmetry, for the same reasons that the 

mean loses to median and mode. In our Normal example CV=4.91/330.12=0.014 and in the 

Lognormal CV=6.9/330.03=0.021 (variation is similar). But the variances could have been 

compared directly, since both distributions had the same mean of 330. 

 

Finally, shape and scale parameters provide the degree of curvature necessary to “adapt” a 

specific family to a specific population (i.e. to obtain a good fit, or approximation to the 

exact, true distribution).   This is especially so in the cases of the Weibull and Lognormal, 

where the shape and scale parameters allow them to be extremely versatile and thus useful 

for fitting many types of data. Examples of different Lognormal density shapes, for various 

shape parameters, are shown in Figure 3.2. Examples of different Weibull density shapes, 

for various shape parameters, are shown in Figure 3.3. 
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Other useful distribution parameters include the threshold, which  provides a lower bound 

for the range of possible outcomes. The threshold is used when, for some technical reason, 

measurement values can never occur below this pre-specified lower limit. Three-parameter 

Lognormal and Weibull are good examples of such three-parameter distributions. Their 

discussion, however, is beyond the scope of this SOAR. The appendix reference [11] 

provides extensive treatment of this advanced topic and of their uses.  

 

It is worth noticing how, in the Lognormal and Weibull distributions, mean and variance 

are obtained as a function of the shape and scale parameters, while in the Normal, they are 

obtained directly and have a specific meaning. Finally, skewness describes the degree of 

(dis)symmetry and kurtosis that of peakedness, of a distribution.  

 

In all cases, the distribution parameters help visualize the density functions or patterns of 

possible R.V. outcomes (e.g. patterns of tensile strength, stress, strain, etc). We illustrate 

some of these visualizations in the comparative dotplots, below, on the same scale: 

 
Each dot represents 8 points 
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In the next section we develop EDA (exploratory data analyses) examples from the three 

above discussed distributions. We draw small samples, simulated from these distributions, 

and try to determine from which one they came from and what their parameter values are, in 

order to recreate their original (but supposedly unknown) pattern. 

 

For, the main problem in statistics is that the true, underlying distribution is seldom known. 

Statisticians, therefore, have to observe (sample) the process of interest. Then, based on this 

observation, conjecture (estimate) about the unknown distribution and its parameters. Then, 

verify (test) these conjectures and, either use them or try another one, accordingly. 

 

Example of Materials Exploratory Data Analysis 

 

Random samples, usually small, are taken from the process under study with the objective 

of estimating the unknown distribution (pattern) of the R.V. of interest, say, tensile strength, 

stress, load, etc. and of its parameters. We will next develop three such examples,  one for 

each distribution (Normal, Lognormal and Weibull) discussed above. 

 

To visualize the underlying distribution and establish the first conjectures about it, we take 

samples of size twenty (reasonable in this context) and perform EDA on them. We obtain 

the descriptive statistics (mean, median, variance, etc.) discussed above. Then we obtain the 

stem-and-leaf, box-and-whiskers (boxplot) and probability plots, We contrast these results, 

comparing the known (simulated) distribution versus the estimated ones. 

 

We describe below the (EDA) exploratory procedures used, via a data set (sample)  of 20 

equiprobable points between 320 and 340. Their true distribution (Uniform) differs from 

either Normal, Lognormal or Weibull, but their mean and variance are similar. The set is: 

 
  324.067   339.668   326.397   328.389   327.287   329.930   335.063  

  331.985   339.055   331.064   329.806   320.234   327.432   328.192  

  322.861   339.008   332.106   331.224   338.830   330.281  

 
                N    MEAN   STDEV      MIN      MAX       Q1       Q3 

uniform        20   330.64   5.51    320.23   339.67   327.32   334.32  

 

A stem-and-leaf plot is a table where data is sorted and then written down by line. Each line 

defines a class, as in a histogram. Each class is defined by the most significant digit(s) in 

the range of data. For example if data ranges from the fifties to the nineties there may be a 

class of 50s, then of 60s, up to 90s, where the first digit is written on the margin. Then, the 

second digit (say a 3 in a 53, a 5 in a 65, etc.) is written in the corresponding line. The result 

is a table that resembles a histogram, but which keeps the individual entries. This way, we 

can also obtain the quartiles, the median, and the maximum and minimums.  In our example  

the classes are defined as 320s, 322s, 324s, etc. For example, number 324 (written 4) is the 

3
rd

 sorted and belongs to the class of 32. The ‘four’ appears to the right, in the same line.  
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    1   32 0 

    2   32 2 

    3   32 4 

    6   32 677 

   10   32 8899 

   10   33 0111 

    6   33 2 

    5   33 5 

    4   33  

    4   33 8999 

 

The boxplot is a plot on an axis having the measurements of the variable of interest. From 

the above stem-and-leaf, we obtain the five-number summary: minimum, Q1, median, Q3, 

maximum of the sample. We plot them on this line and draw a “box” between Q1 and Q3, 

where we signal the median. This plot helps visualize whether the distribution is symmetric, 

how dispersed it is and possible outliers.  The “box” contains the 50% of centered data and 

ends in the corresponding quartiles Q1 and Q3. The “+” indicates the sample median value.  

Lower and upper single lines denote the ranges for the upper and lower 25% of the data.  

Outliers would be denoted by “0” or “*”. The boxplot for the example data set is: 
 

                                ----------------- 

               -----------------I      +        I---------------  

                                ----------------- 

          ----+---------+---------+---------+---------+---------+-uniform  

          320.0     324.0     328.0     332.0     336.0     340.0 

 

 

A Probability-plot is a bivariate plot of the probability of the original data (obtained under 

the assumed distribution and parameters) versus the original data values. The closer to a 

straight line, the better it fits the hypothesized distribution. In this case, the distribution 

hypothesized (Normal) is wrong, but the parameters (330 and 5) are correct. The P-plot is: 
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     0.35+                         xx 
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     0.00+      x 

           ----+---------+---------+---------+---------+---------+Uniform       

           320.0     324.0     328.0     332.0     336.0     340.0 
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Additional information about how to develop and implement these exploratory data analysis 

methods can be obtained from the appendix references [8, 9 and 12]. 

 

 

Example from the Normal Distribution: the “samnor” data set 

 

We generate a sample of twenty Normal(330, 5) data points, and perform similar analyses. 

 
samnor   

  331.791   332.356   334.967   333.400   333.283   323.474   325.869  

  328.466   330.706   327.337   334.580   327.715   335.101   333.980  

  323.853   325.257   333.776   335.254   330.874   336.022  

 

We first obtain the descriptive statistics, stem-and-leaf, boxplot and Probability plot: 

 
                N     MEAN   MEDIAN   STDEV  MIN    MAX     Q1     Q3 

samnor         20   330.90   332.07    4.08 323.47 336.02 327.43 334.43     

 

               

    2   32 33 

    4   32 55 

    6   32 77 

    7   32 8 

   10   33 001 

   10   33 23333 

    5   33 4455 

    1   33 6 

 

 

                              ---------------------------- 

              ----------------I                 +        I-------  

                              ---------------------------- 

          +---------+---------+---------+---------+---------+------samnor   

      322.5     325.0     327.5     330.0     332.5     335.0 
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     0.60+                                      x 
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         -                                  2 

         - 

         - 

     0.30+                         x 

         -                      x 

         -                    x 

         -              x 

         -     xx     x 

     0.00+ 

           +---------+---------+---------+---------+---------+----samnor   

       322.5     325.0     327.5     330.0     332.5     335.0 
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The Anderson Darling (AD) Normality test (which will be explained in the next chapter) 

yields a p-value of 0.059 (the test is borderline). Hence the (true) Normality of the data is 

not rejected. The boxplot, stem and probability plots (Figure 3.4) and the descriptive 

statistics, do not greatly contradict the assumption of the data being Normally distributed 

either, especially considering the small sample size (20) that we are working with. 

 

Example from the Lognormal Distribution: the “samlog’ data set: 
 

We also obtain the descriptive statistics, stem-and-leaf, boxplot and Probability plot: 
 
samlog   

  322.622   339.015   337.496   326.577   337.969   334.904   321.611  

  326.909   331.485   327.420   332.434   331.427   343.294   326.406  

  329.342   324.788   337.555   324.536   324.845   328.083  

 

                N     MEAN   MEDIAN STDEV  MIN     MAX      Q1      Q3 

samlog         20   330.44   328.71  6.15 321.61  343.29  325.24  336.85 

 

    1   32 1 

    2   32 2 

    5   32 444 

    9   32 6667 

   (2)  32 89 

    9   33 11 

    7   33 2 

    6   33 4 

    5   33 777 

    2   33 9 

    1   34  

    1   34 3 

 

                              ---------------------------- 

              ----------------I                 +        I-------  

                              ---------------------------- 

          +---------+---------+---------+---------+---------+------samnor   

      322.5     325.0     327.5     330.0     332.5     335.0 
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         -                 * 

     0.30+              * * 

         -             2 

         -        *2 

         -    * 

         - * 

           ------+---------+---------+---------+---------+--------+samlog   

             324.0     328.0     332.0     336.0     340.0     344.0 
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The Anderson Darling test does not reject the Normality assumption, even when these data 

do come from the Lognormal distribution. The same comment regarding small sample size, 

applies to boxplot and the other displays. The transformed (Logarithmic) data, which by 

definition is Normal, also passes the Normality test. The probability plot for Log data is: 
 

 

  

         - 

         -                                                        * 

     0.90+                                          2*  * 

         - 

 Prob    -                                    * 

         - 

         -                              * 

     0.60+                           2 

         - 

         - 

         -                      * 

         -                   * 

     0.30+               *** 

         -              * 

         -          3 

         -     * 

         -  * 

           +---------+---------+---------+---------+---------+------Logs      

       5.772     5.784     5.796     5.808     5.820     5.832 

 

Example from the Weibull Distribution: the “samweb” data set 

 

We also obtain the descriptive statistics, stem-and-leaf, boxplot and Probability plot: 

 
samweb   

  327.499   321.732   335.454   319.592   329.087   324.084   323.503  

  329.799   331.301   338.228   322.344   325.816   319.262   334.181  

  324.332   327.348   329.534   326.618   328.533   331.875  

 
                N     MEAN   MEDIAN  STDEV   MIN    MAX     Q1     Q3  

samweb         20   327.51   327.42   5.14 319.26  338.23 323.65 330.93 

             

 

                       -------------------- 

          -------------I         +        I----------------------  

                       -------------------- 

          --------+---------+---------+---------+---------+--------samweb   

              322.0     325.5     329.0     332.5     336.0 

 

This sample also passed the Anderson Darling test for Normality (when in fact it does come 

from the Weibull distribution). In addition, notice how the right tail is longer than the left 

one (see boxplot) in the sample, contrary to the situation in the population. The linear trend 

of the Probability plot below, also provides plausibility for the Normal distribution. 
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         -                                    xx 
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         -                      x 
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         -             x 

         -        x x 

         - xx 

     0.00+ 

           --------+---------+---------+---------+---------+-------samweb   

               322.0     325.5     329.0     332.5     336.0 

 

Summarizing, the four small samples examined above have all been drawn from different 

populations (Uniform, Normal, Lognormal and Weibull) with similar means and variances 

(means close to 330 and standard deviations close to 5). Since the four distribution patterns 

are close and the sample size is small, they can all be approximated by the Normal. The real 

pattern difference, also shown above, lies in the tails of the distributions and affects the 

calculations of small percentiles such as those defining the A and B basis allowables. This 

illustrates the crucial problem at the heart of the statistical work in materials analysis. 

 

Extreme Values or Outliers 

 

When working with data, we first have to establish a distribution (with its corresponding 

parameters) that accurately characterizes the random phenomenon (e.g. Fit the data). Then, 

we proceed to analyze the sample behavior in the tails of the fitted distribution.  This is 

particularly important in hypothesis testing (which will be discussed next chapter).  For it 

allows us to assess whether an (unusual) observation, assuming a specific distribution and 

parameters, has an unreasonably small probability of occurrence: i.e. it is an “outlier”. 

 

For example, a particular tensile strength observation may be an outlier, if it is assumed to 

come from a pattern of tensile strengths distributed Lognormal. But it may well be within 

specs if the assumed distribution is Weibull. This is especially important in the tails, where 

the probabilities of occurrence are very small and the difference between such probabilities 

under two distributions, may be relatively very large. In the examples presented above, we 

saw that a tensile strength value of 310 had a much higher probability of occurrence, if we 

assumed the Weibull distribution, than if we assumed the Normal. 

 

For, an outlier is defined as an observed value, in the tails of the assumed distribution 

(pattern of possible outcomes, say of tensile strength) that occurs with a very small 

probability.  It is incorrect to believe that an outlier is always an erroneous observation or 

that it should be automatically removed.  In the dice example, a sum of 12 occurs with 

probability 1/36=0.028, but it may occur at any trial with that probability.  We may perform 
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the dice experiment three consecutive times and get three sums of 12 (an event that occurs 

with probability 2.14 x 10
-5

, very small but not zero).  We may then conclude that the dice 

are fixed or otherwise that we are extremely (un)lucky. 

 

However, we may be disregarding important information, if we mechanically decide to 

discard it as erroneous, simply because we have detected an “extreme value” (outlier).  For 

example, it may occur that, in a sheet metal process, we observe with probability 0.001 that 

a large number of cracks per sheet are obtained.  

 

In fact, it may occur that a rare combination of humidity, room temperature, pressure and 

defective metal composition (combinations that occur with probability 0.001) always 

produces such poor quality material. However, in the Lab where this testing is taking place, 

for some special reason, such rare combination arises often. If, instead of discarding this 

“outlier”, we collect several specimens of it, review their circumstances and submit them to 

laboratory, technical and statistical analysis, we could uncover the real reasons behind such 

rare events. We could then, by better controlling the room temperature and other production 

factors, remove the real problem (instead of the outlier that points toward this problem) and 

reduce the overall process variability. This is a better use of statistics. 

 

Outliers or extreme values indeed raise a red flag - but do not insure foul play.  Statistics 

provides a useful, scientific context in which to analyze such result -but not a mechanical 

working rule. On the other hand, in many cases there is indeed a clerical error that can be 

corrected, or some extraneous circumstances that warrant discarding the data, because it no 

longer represents the population under analysis (e.g. metal thickness is different).  Only in 

this case it is adequate to remove it from the data set (and put it somewhere else). 

 

Below, we show three comparative displays of boxplots, from the three above developed 

examples. In them, potential outliers are represented by “*” and “0”. To “assess” potential 

outliers in boxplots, one uses the method of “fences” (see chapter 3 of  [8]). One first 

computes the sample IQR. Then, one subtracts/adds 1.5 and 3 times the IQR to quartiles Q1 

and Q3, obtaining two “fences”. The rule of thumb is that observations (denoted with 

asterisks) lying within the ‘inner’ and ‘outer’ fences, should be regarded with care. 

Observations lying outside the ‘outer’ fence (denoted with 0) i.e. that lie outside 3 times the 

IQR, should be considered as potential outliers and should be reviewed very carefully. 
 

 

                                 ---------- 

            * *     -------------I   +    I-------------- *** *  

                                 ---------- 

          ------+---------+---------+---------+---------+--------+normpop  

            315.0     322.0     329.0     336.0     343.0     350.0 

 

  

 

                               ------------ 

            *  ----------------I     +    I-----------------* ** *  

                               ------------ 

          ----+---------+---------+---------+---------+---------+--logpop   

          312.0     320.0     328.0     336.0     344.0     352.0 
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                                       ---------- 

           OO   * *********------------I    +   I---------  

                                       ---------- 

          ------+---------+---------+---------+---------+------webpop   

               300       310       320       330       340 

 

 

Conclusions and Summarization 

 

Statistical analysis, like most others, is more than just the mechanical application of a set of 

procedures and equations.  Actually, many statistical procedures and equations are the result 

of a systematization in the process of scientific experimentation and examination, derived 

under certain (statistical) assumptions and conditions.  If such underlying assumptions and 

conditions (e.g. data normality, independence, homogeneity of variances, etc.) are not met, 

then the results obtained from the statistical procedures used are not valid or have a 

different interpretation (i.e. have different probabilities of occurrence). 

 

The objective of the present chapter is, precisely, to provide initial insight into the statistical 

thinking process, so that the engineer or practitioner can improve the use of statistics as an 

everyday analysis tool. To that effect we have developed examples from the three statistical 

distributions used in handbooks [6, 7] procedures: Normal, Lognormal and Weibull.  

 

These examples show a few but important points. First, that given some general parameters 

such as the mean and the variance, several statistical distributions can approximate the true 

pattern of outcomes, especially toward the center of the distribution. Secondly, that the 

main difference between distribution models occurs in the tails, where the interesting 

statistical work in materials data analysis is done. This is so because the small tail 

percentiles define the A and B basis allowables, of interest in materials data analysis and 

design. The differences in tail behavior, between two distribution models (and even within 

one model, for different parameter values), may be of significant importance. 

 

Finally, we have shown how it is extremely difficult to differentiate between two statistical 

distributions (models) when the sample size is not large. We have used here samples of size 

twenty, which in many occasions is much more than the materials engineer can afford, due 

to cost and time considerations, in real life data analysis or in experimental work. This is a 

real life constrain that we have to learn to live with and manage, as best we can.  

 

A last word should be said about non-parametric statistics. Because of all the considerations 

above, it is often useful and even desirable not to specify a distribution. If the sample is 

large and under certain circumstances, distribution free (also called non-parametric) 

statistics can be obtained. These statistics are based on general probabilistic considerations 

(outside of the scope of this SOAR) rather than on specific parametric families of 

distributions such as the three discussed above. Non-parametric results are usually 

conservative. But when there is doubt regarding which is the correct or adequate 

distribution to use, non-parametric statistics is a better solution.  
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With this understanding of random variables, statistical distributions and its corresponding 

parameters, and hence, of what outliers or potential extraneous observations are, the reader 

is in position to advance to the next chapter, that deals with testing and estimation. 
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