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Executive Summary 
 

In this chapter we discuss the origins, definitions and ways of creating and identifying 

good quality materials data. We also discuss the process and characteristics of generating 

metadata and providing its pedigree. We also discuss the process and importance of 

assessing data and illustrate it with a real life example. Finally, we discuss statistical 

problems in the generation of data (i.e. sampling) for analysis as well as other important 

problems involved in sampling and in statistical experimentation. The references for this 

chapter are very specific to this area and, as done in chapter one, they are provided at the 

end of the chapter. 

 

Introduction 

 

Data are scientific or technical measurements represented by numbers or other means [1]. 

Its importance in scientific and engineering work can never be stressed enough. For 

example, the soul and heart of statistical analysis is the data. It is well known that bad 

data induces the so-called GIGO model: Garbage In, Garbage Out. In plain English, no 

statistical procedure will yield good results if the data used with it is bad.  

 

In a similar way, data is essential for the materials engineer who is designing, say, an 

airplane part, during the process of selecting the right components. Bad data may result in 

a poor materials selection that may cause very serious manufacturing consequences. But 

telling apart good from bad data is not immediately nor easily done. For, at first glance 

much of the data looks alike, even when they may be completely different in more than 

one way  –especially in their quality! The objective of this chapter is to provide some 

background to the materials engineer, in the direction of recognizing good data and 

setting it apart from bad data. To this effect, significant number of materials data analysis 

references particular to this area have been consulted and are given at the end of this 

chapter. These chapter references are distinct from the general ones in the appendix. 

 

Broadly speaking, good data refers to accurate, complete and trustworthy ones, which 

can be easily accessed by the materials engineer from a reliable source, such as a 

handbook or database. Good quality data has, first, been carefully collected by a serious 

organization that follows strict quality control guidelines. This means that the collecting 

organization has carefully reviewed the experimental and test procedures of the data 

originators, checked it for consistency and registered this (metadata) ancillary 

information jointly with the analysis data itself. Then, the reporting organization will also 

check the analysis results via some internal and external procedures, known as data 



validation and certification. Finally, they will place the entire data information package in 

an accessible medium, such as an electronic database, where they can easily be retrieved 

and used by interested practitioners.  

 

In short, good data can be recognized because it shows a good pedigree –and bad data 

does not! Data pedigree is difficult to define but easy to instinctively understand. In the 

same way that one would look at a dog’s pedigree, one can look at data pedigree. A dog 

may look very good, as it walks at a dog show. But one is only sure that it is worth 

paying a large sum for it when one verifies its pedigree: who its parents and grandparents 

were, and how many prizes they got, its health history, siblings, breeding organization, 

etc. Finally, that all this information is certified by a respectable dog breeding society, to 

be sure that it has not been tampered with or has been sloppily or hastily evaluated.  

 

In a similar way, good data is recognized by the entire folder that describes who collected 

and analyzed it, and how was all this done. What were the procedures used to check the 

quality of the experimentation, measurements and processing of this data, who checked it 

and to what level. All this information, which comprises the metadata, is assessed and 

provides the data pedigree. We will illustrate these concepts further in this chapter, with 

a practical example. We will compare two data sets, one “good” and one “bad”, and 

explain why they are so, based upon the discussion that follows. 

 

Metadata serves several purposes. In addition to helping establish the data pedigree, 

metadata also allows the comparison of different data sets and helps adjust them to the 

technological advances that occur with time. It also provides the grounds to establish the 

range and circumstances of the analysis results and of the reporting organization.  

 

For example, a given stress value is only valid for specific types of components and 

under specific environmental and working conditions –obtained from the metadata. This 

information is useful for design engineers. In addition, a statistical analysis of these stress 

values and the conditions under which they were obtained may provide indication of 

what factors (and in what magnitude) affect the material stress values. This information is 

useful for research engineers and scientists. Finally, we can combine the metadata with 

an assessment of the data providers’ organization. Then, we can use these factors to 

establish, via statistical analysis, if they help to identify and differentiate “good” from 

“bad” data. Some examples of these uses of data are developed in chapters four and five. 

 

To better understand the practical importance of using good data and of its associated 

metadata and pedigree, we drafted a short list of questions about the engineering uses of 

materials data: How do we generate good data? How do we request and use them? How 

does a trustworthy data bank accept and process them? What is the data accreditation 

process like? How does one justify the cost of generating quality data sets? 
 

The rest of this chapter discusses the important problem of assessing good data and of 

investigating how it is established. It also deals with the closely associated concept (and 

the establishment) of data pedigree. We review some issues that arise when we attempt 

to answer the above questions about quality of the data and their pedigree. We performed 

an extensive literature search and used it as the unifying thread to discuss some of the 



requirements for good data generation, process, analysis, validation, accreditation and 

certification, as suggested by several experienced researchers in this field. We also 

discuss the problem of the associated metadata characteristics required for the 

appropriate application of the statistical procedures described in [2, 3]. We finalize with a 

discussion of the statistical aspects of data collection and their consequences in the 

process of generalization of the obtained data analysis results (inference). 

 

With this approach we expect to achieve several goals. First, we expect to satisfactorily 

answer the important questions of why data, metadata and data pedigree are important 

issues. Then, to discuss what metadata should be preserved, when recording the data, to 

assess and complete it. We also expect to provide a comprehensive list of the ancillary 

information that, according to relevant experts in this field, comprises the most important 

metadata as well as specific examples on how to use and assess them. We also expect to 

review the roadmap regarding how expert organizations implement their validation and 

certification procedures and what criteria they consider most important for it. Finally, we 

provide, at the end of the chapter, a list of references of specialized articles that cover 

these important topics in detail, for further in-depth reading. 

 

With all the above, we provide a short but comprehensive document that can be used by 

practicing materials engineers and scientists as a quick overview of the data problems or 

by a beginner to rapidly become acquainted with its salient features. 

 

Data and Metadata 

 

Several well known specialists have discussed materials data problems at length. We will 

now borrow and elaborate on their incisive discussions. Barrett [1] states that since 

materials data originate from tests developed under specific conditions, we need to record 

the corresponding metadata, or data about the data. Without this ancillary information, 

the experimental results will loose their contextual meaning. For example, the use of 

fatigue information is closely associated with the conditions in which fatigue occurred 

and with the related material specifications.  

 

Examples of metadata information include characteristics of test materials, specimens 

used, experimental and test conditions, measurement and calibration procedures, readings 

of the experimental results, specific ambient conditions, etc. In addition, metadata (i.e. 

such ancillary information) is used to perform statistical analysis, to compare different 

samples, to establish smoothing curves, as well as in the process of validating the data. 

 

Metadata is often missing or incomplete, creating a serious void in the data collection 

effort. An easy solution would be to collect and store everything about the data. But this 

creates even larger problems. For, we must also think about the ease of the information 

retrieval by potential users of electronic databases –if this information is ever to be used. 

In order to facilitate its retrieval, the storage of materials information has to be well 

planned, then implemented in such a way that it is easily and uniformly accessed. To this 

end, extensive standard formats have already been established (e.g. see [4]). 

 



Barrett adds that metadata can also be used in assessing which data sets to pool together. 

For example, apparently similar data sets may have some specific difference (say an 

ambient condition, material thickness, temperature, etc.) that sets them apart. These data 

must be tested using say, ANOVA or the K-sample Anderson Darling test procedures, 

prior to pooling them together. They can be pooled only if the statistical tests do not 

reject the hypothesis that they come from the same population. We will see several 

illustrative numerical examples of these problems in chapter five.  

 

Also, experimental techniques improve or change with time. New parameters are 

identified that affect test results. For example, new research may indicate that humidity or 

ambient temperature (not  considered before) may affect the measurements of, say tensile 

strength. If taken into consideration, the variability of the model (and of the tensile 

measurements) can be reduced and the precision of the estimations (say the allowables) 

can therefore be increased. If metadata are available we may correct the original data for 

these new developments (again, see chapter five).  

 

Finally, the ancillary information obtained from the metadata also provides the variables 

for regression and analysis of variance or covariance, among other statistical procedures. 

The functions obtained can then be used to correct or reclassify the data, as well as to fill 

in for data gaps, where necessary and feasible. 

 

Kaufman [7] discusses the work on standards performed by the ASTM Committee E-49 

for the Computerization of Materials Property Data. This work deals with the problems of 

facilitating data storage and retrieval. Kaufman presents the ASTM Committee list of 

materials descriptors and of guidelines for reporting test data. The list emphasizes the 

importance of a unique format for the identification of metals and metal alloys and of 

polymers. A standard data format for the computerization of test data and mechanical 

properties is necessary to make comparisons between data sets. For example, if it is 

experimentally determined that ambient temperature is a factor in, say tensile strength, 

then we cannot compare, at par, two data sets where one of them includes ambient 

temperature in the metadata and the other one doesn’t. Such comparisons are valid when 

all the relevant fields are obtained and compatible. This shows the importance of 

recuperating all the information requested, in standardized formats, in addition to just 

reporting test data. 

 

Standardizing the information content again raises the problem of the evaluation of data 

for quality and reliability. This is another crucial issue for those working in the field of 

materials data generation as well as for those who use the data in their engineering design 

work. For, in the same way that collecting all available information about the data is not a 

solution, storing all available data sets is not one, either. We must perform a selection. 

 

This problem has also been thoroughly studied. Kaufman  [6] discusses data quality and 

reliability issues. He provides several lists of guidelines for subjective assessment, 

validation, analysis and certification of materials data, based on the ASTM Committee E-

49.05 report on data quality. Kaufman discusses several data levels. The lowest level is 

that of unanalyzed (raw) data, then the analyzed individual results, then mathematically 



reduced, then validated, then evaluated and finally certified data. The precise definitions 

for these materials data classification levels are included in [6].  

 

Kaufman also discusses standard guidelines for database management, regarding quality 

and reliability and emphasizing on identification of data sources, proof checking of the 

data, correcting errors and assessing user satisfaction. In [5], Kaufman also provides 

extensive guidelines for data evaluation. He classifies them into subjective assessment, 

validation, analysis and certification and gives lists of activities for each category. The 

fictitious example we developed in the first section of chapter five is based on these 

issues. For, it uses statistical procedures to investigate the association between objective 

quality factors and subjective, experience based, data source classification. 

 

Barrett [1] discusses, in detail, the guidelines outlined by Kaufman [5] as well as the 

problem of quality assessment of data sets. Mixing good and bad data doesn’t improve a 

data bank –on the contrary it lowers the quality of the mix. In particular, mixing good and 

bad data increases the data variability, which in turn lowers the accuracy of the derived 

allowables. Barrett states that data can be evaluated through a complete process, that 

starts with assessing the organization that generates it and ends with a comparison of the 

originated test results with well accepted and certified results.  

 

According to Barrett, an organization that creates data can be evaluated through its 

experience, accountability, bias, calibration practices and management attitudes such as 

the separation between data generators and evaluators. For, to avoid conflicts of interest, 

an independent group should carry out the data validation, if such validation is done 

within the same organization. All these factors show the degree of preparation of the data 

gathering organization and its data generation activity performance level. 

 

In addition the personnel, the raw data and the validation activities also carry a strong 

weight. The associated personnel, with its experience, qualifications and attitude, also 

contribute to the data quality and credibility. Raw data itself can be checked for accuracy, 

outliers, physical properties, etc, as will be illustrated when we discuss distributions, 

estimation and testing, in chapters three and four. The data validation activities include 

statistical procedures for assessing consistency with known physical laws, parameter 

values and apparent similarity. These  procedures will be illustrated through the testing, 

regression and ANOVA examples developed in chapters four and five.  

 

Barrett provides a well-defined set of activities for the validation team. He provides lists 

of guidelines for the validation process and for establishing data quality indicators. The 

most important guidelines are to work with plural teams that include members of 

uniformly high experience and ability, that base their decisions on true consensus and 

whose members work within the limits of their knowledge and experience. Barrett 

suggests avoiding inclusion of members of suspect reliability, experience or known bias. 

He also provides a glossary of terms concerning data, quality and their validation process. 

 

Finally, Barrett states that certification, as opposed to validation, is the recognition by a 

warranting authority, of the quality of the data. These authorities have to be uniformly 



recognized and well established and should certify only for their area of expertise. 

Examples include committees of professional societies, official organizations, etc. 

 

Types of Data and Databases  

 

There are different types of materials data and databases, since there are different types of 

uses for them. Materials data are thus collected, processed and organized accordingly. 

Rumble [7] discusses how materials databases can be classified according to different 

schemes that include data, user, and application and access types. He states that materials 

information should flow from data generators (e.g. testers) to data users (e.g. handbooks) 

as flows a slow moving river. Rumble states that such information flow consists of the 

four stages of data generation, analysis, aggregation and reanalysis. 
 

As the computer has become ubiquitous, more work is automated and performed through 

or with computers. Much of the materials testing found these days is done this way.  The 

resulting data collection from materials test equipment is, hence, computerized. Rumble 

calls this computerized collection of original test results data, laboratory notebook 

databases. They can be computer searched, analyzed, updated and manipulated, among 

other functions. And they also contain very useful ancillary (meta) data. 

 

Rumble then states that report databases are those that provide analysis results of test 

data. They may include sophisticated correlations, graphical comparisons, coefficients, 

parameters, etc. They can appear in the literature (journal articles and technical reports) 

or in handbooks. They serve several functions, including derivation of properties, 

extension of data domain and improved understanding. Rumble underlines the 

importance of the data analysis stage and of the need to preserve the results of these 

(intermediate) analysis procedures. Such types of materials statistical data analyses are 

the object of this SOAR and will be illustrated and discussed in the following chapters. 

 

Handbook databases, continues Rumble, compile data and other results into collections 

(e.g. [2, 3]) and constitute the data source of first choice. Not too many of them exist and 

their need is strong. Materials organizations such as AMPTIAC foster the creation and 

development of good materials databases. The present SOAR is part of such effort, since 

creating good materials data bases requires a clear understanding of the statistical 

procedures employed in deriving the materials properties included in them. 

 

Rumble then classifies data targeted to specific applications, as applications databases. 

These are derived for convenience or for the quality of their data and built for solving 

specific problems These may be custom built, for some specific project, but they are 

usually not maintained nor updated beyond the life of such specialized work.  

 

Rumble also discusses the classification of databases by user groups and presents tables 

of such uses. Data base uses include the calculation and evaluation of materials 

properties, the design, development, selection and performance evaluation of materials, 

failure analysis and product information. Databases can also be classified into personal, 

group, institutional, collegial or public, according to whom are their users and what kind 

of organization they come from. 



 

Rumble concludes by discussing the problems of moving databases between types, of 

transferring data between them and of planning, retrofitting, maintaining, operating and 

completing metadata information, all of which is very expensive and time consuming, but 

necessary. For example, a personal database may be acquired by an organization that 

publishes a handbook and wants to include this institutional database in it. However, 

before such inclusion is possible, certain activities need to take place. 

 

There are also several widely accepted databases, in addition to the already mentioned 

ones in handbooks [2 and 3]. They have been developed by other well-known and 

respected organizations and groups of users. Among them is the VAMAS (Versailles 

Project for Advanced Materials and Standards) group, described by Reynard [8]. Some of 

VAMAS technical working areas include: wear test methods, surface chemical analysis, 

ceramics, polymer blends and composites, bioengineering materials, weld characteristics, 

creep crack growth and low-cycle fatigue. VAMAS also has a data base certification 

process in place and a set of well-defined database standards. 

 

The CODATA (International Council of Scientific Unions Committee on Data for 

Science and Technology) is another data gathering group, broadly representative of the 

industrialized nations. Barrett [9] describes the CODATA organization and its aims to 

assist the materials data base managers and to provide them with information on cost-

benefits, standards, guidelines and terminology.  

 

Other authors also describe the work of international database groups. For example, 

Kaufman [10] discusses the MPD (National Materials Property Data Network, Inc.) 

effort, a pilot network from Stanford University. Kozolov [11] describes work done in the 

COMECON Standards Reference Data (SRD) system, which performed work in the 

former USSR and Eastern Block. Nishima et al. [12] describe such data base work in 

Japan and Lu and Fan [13] describe the activities on materials databases in China. 

 

Data Accreditation  

 

Collecting good data and avoiding bad ones is of paramount importance. To emphasize 

this, we revisit some of the activities performed during Data Accreditation, the process 

that leads to providing the users with assurances about the quality of the data. 

 

Munro and Chen [14] present a complete methodology for data evaluation. They divide 

the data into seven increasing classes of (un)acceptability level: unevaluated, research 

(preliminary and work in progress), typical (from surveys), commercial (manufacturer’s), 

evaluated (basic acceptance), validated (confirmed via correlations and models) and 

certified (standard references). Then, they provide a general data evaluation procedure. 

 

If materials are not well specified, data is classified as unacceptable. If the measurement 

methods are not described and one is dealing with manufacturer’s data, it is classified as 

commercial. If it is survey data it is classified as typical. If it is subsidiary data it is 

classified as unevaluated. If none of the above, data is also classified as unevaluated. 



 

If the data provides (or is checked against) standard reference values, it is classified as 

certified. Otherwise, if correlation or models have been applied, it is classified as 

validated. If data is checked by independent values, it is classified as evaluated. If the 

data is not checked but real properties are provided, the data is also classified as 

evaluated. If peer reviewed and part of an interim report, the data are classified as 

research in progress. Otherwise, if results are incompatible with materials, data may 

have to be reassessed and reclassified as either evaluated or unacceptable. 

 

Munro and Chen give precise definitions of these classifications and also discuss the 

activities involved in working with them. In addition, the authors provide specific 

examples of applications of analytical, statistical and graphical methods to the validation 

of the data. Some of these methods will also be discussed and illustrated in this SOAR. 

 

Kaufman [5] also discusses data evaluation and analysis. He provides a short list of 

activities and methods to be employed in the evaluation of different types of data and 

data organizations. These include the activities performed by the owner/maintainer of 

data sources, in the appraisal of individual raw data records and data sets, in the analysis 

and derivation of material properties and in the characterization of data sources. 

 

Regarding the data owner, Kaufman suggests looking into the experience of the 

organization, of the personnel involved and of their quality control procedures, among 

other features. Regarding the raw data record, he suggests the assessment of the testing 

organization, of the completeness of material descriptions, of the completeness of the test 

methods descriptions, of the test data itself and of the validation procedures employed. 

 

Regarding the analysis of properties, Kaufman suggests using graphical and statistical 

procedures and parametric modeling. He also suggests performing comparisons with 

other data sets and sources. Finally, and regarding data sources, Kaufman characterizes 

them by type of data, test methods, traceability, degree of evaluation, periodicity of 

updating process and supporting index. 

Kaufman  [6] again discusses quality and reliability issues of materials databases, as well 

as the ASTM Committee E-49 criteria. Standardization of the information is basic, 

because it allows uniform and universal access to it. Standardization is obtained through 

uniform fields in the database.  The recommended field content descriptions include 

database name or acronym, full title, name of producer, address, telephone, types of data 

(e.g. raw, typical, statistically derived, evaluated), materials classes (e.g. polymers, 

ceramics, ferrous, non ferrous metals), property classes (e.g. mechanical, physical, 

electrical), independent variables (e.g. fabrication process, product form, thickness), 

testing variables (e.g. time, temperature), updating frequency (e.g. static, irregular, 

quarterly), evaluator name and organization, availability (e.g. public, private, free, fee) 

and media used (e.g. on line, hardcopy, compact disk). 

Finally, Barrett [1] also comments about other database quality indicators. He discusses 

data presentation issues (e.g. accuracy), unit conversions and other data manipulations. 

Such issues are often taken for granted, but they are relevant to the values recorded. 



Barrett provides a list of quantifiable quality indicators for assessing data records or 

databases. These indicators are grouped into data quality (e.g. source, statistical basis, 

evaluation status), database quality (e.g. completeness, support) and database operation 

(e.g. availability, access). Barrett states that this list of indicators may be regarded as a 

vector in a multidimensional space. Under this multivariate approach, database 

comparisons may be established by looking into each component. 

 

An Illustrative Example of Data Comparison 

 

To provide an illustrative example of application of the above data discussion, we have 

asked Mr. David Brumbaugh, of AMPTIAC to select and compare two data sets. One of 

them is “good” data, while the other is “bad” data. The technical reasons Mr. Brumbaugh 

has provided, for performing such data classifications, are as follows: 

 

In this example, data on the yield strength of 1-inch annealed 4130 steel bar has been 

taken from two different sources. The first source [18] is the Aerospace Structural Metals 

Handbook (ASMH), and the second source is from an Internet web site that will remain 

anonymous for the purposes of this discussion. The first noticeable difference in the data 

is that there is large difference (15ksi) in the values reported for the yield strength (82ksi 

ASMH and 67ksi Webster). The second difference is that the data from the web site lacks 

essential metadata such as processing history, whereas it is given in the ASMH. For 

example, in the ASMH, processing history such as the fact that the material was cold 

worked and then annealed at a temperature of 1550 Fahrenheit was given. No annealing 

temperature or other processing history was noted in the data from the web site. The third 

and last major difference in the data can be seen in the sources cited for the data. The 

format in which the references are given for the data taken from the Webster lead to 

uncertainty in determining from which reference source the yield strength was obtained. 

For instance, it is unclear whether the data was obtained from a questionable source such 

as vendor information or from a very credible source such as the ASM Metals Handbook. 

The ASMH on the other hand, is very clear in identifying the two sources from which the 

yield strength data was obtained. Because of the completeness of the data obtained from 

the ASMH, it would in this example be considered the good source, whereas the web site 

data would be considered the bad source. 

 

Uses and Cost of Good Data  

 

So far, we have discussed materials data, their quality and their pedigree. And we have 

provided an illustrative example of how to detect and classify a data set. Obtaining good 

data however, does not come free: it entails a cost. On the other hand, an (economic) 

benefit is also derived (directly or indirectly) from its uses in engineering design. In this 

section, we discuss issues of good data uses and their corresponding costs and benefits. 
 

Newley [15] presents a case study example of the integration of materials information 

into engineering design. He describes the evolution of an information system from the 

initial recognition of its need. Some of the advantages of creating materials information 

systems are derived from their function of providing a central source. Information 

systems provide a source of best available data, that designers and analysts can use in 



their work. Information systems also provide a source of preferred materials and 

processes as well as of experience gained in manufacturing them. They provide the fact 

that data used is traceable and the possibility that one is now able to assess which 

information is most valuable. 

 

Newley states that materials information is required throughout the life of a design. He 

then provides an information flow process for the five stages into which he divides the 

engineering design process. These stages are R&D, product scheme, detail drawing, 

production qualification and in-service product report. In all of them, the materials 

information process has a valid, distinct and useful input. 

 

Newley then provides a list of technical factors affecting materials selection that can be 

included in such life cycle information flow. They include specific materials properties 

(e.g. fracture mechanics, fatigue, strength and ductility), compatibility (e.g. corrosion, 

wear, thermal mismatch) and manufacturing (e.g. availability, cost, machinability, 

inspection, formability). Newley finishes by describing the requirements of materials data 

information systems and outlining its data structure organization. 

 

An example of the use of a software tool for materials data analysis is given by Zhou et 

al. [16]. The software includes six advanced statistical analysis procedures. They are 

nonlinear mapping, principal components, stepwise discriminant analysis, discriminant 

analysis with constellation graph, hierarchical clustering analysis and stepwise 

regression. It also has an artificial neural network algorithm. Using such a software 

package for materials data analysis and property prediction presupposes the existence of a 

database with abundant and reliable data. These advanced quantitative statistical analyses 

can greatly enhance a design process. However, they are only possible when plenty of 

good, quantitative data are available and easily accessible. 

 

The software described by Zhou et al. first takes a data set and pretreats it (analyzes it in 

a preliminary way) looking for relationships (in a similar way as we will do in chapters 

four and five). Then, it applies diverse multivariate statistical procedures, according to 

the features of the data set and the objectives of the study in question. The software then 

provides graphical and analytical results. Several engineering design case studies are 

presented, that demonstrate the various types of data analyses that can be performed with 

this software, when one has access to a large amount of good and reliable data. 

 

However, good and reliable data does costs money to collect, validate, install, deliver and 

maintain. Barrett [17] discusses the many benefits and economic consequences of such 

materials databases. Barrett defines the current problem of justifying data collection as 

one of operating in a market driven economy. In these economic times, one is required to 

perform a cost-benefit analysis of the engineering information system and to show the 

real value added by it, to the design process. The problem with this approach is that the 

information activity hides its benefits quite well. And it is easier to show the losses 

incurred, by not using good information in the design process, than it is to show the gains 

obtained by using good information systems. 

 



Regarding this situation, Barrett suggests that cost-benefits relationship should be 

uncoupled until benefits are better characterized and understood. He also suggests that 

different viewpoints on information benefits also be recognized. These viewpoints should 

include not only those from system developers, but also the viewpoints of users (of 

existing systems) as well as of potential users (of new systems under development) and 

also the viewpoints of those non-users who can influence the process (e.g. managers). 

 

Barrett suggests and describes a new approach to the quantitative evaluation of benefits. 

This approach presupposes that economic benefits do exist and hence should reflect 

somewhere in the system. Therefore, he proposes that database functions and features be 

linked with tangible user benefits –some of which may not be readily identified or 

appreciated. Some examples of such functions and features include the speedy access (by 

engineers and designers) to electronic data and the organization and structure of the 

information and electronic communication (that saves valuable search time of technical 

personnel). These work times that have been saved could be quantified and presented as a 

tangible economic benefit of having an information system in place. 

 

There are also examples of economic and social advantages perceived or sought by the 

user of a materials information system. They include reduced design cycle time, lower 

labor costs, lower material and capital costs, improved product quality and reliability and 

enhanced education and work interest for the information system user. All these factors 

are quantifiable in dollars and cents and constitute evident examples of socioeconomic 

gains, introduced by the use of databases and information systems. Finally, Barrett 

provides tables where both, benefits and functions, are linked together establishing which 

functions yield what advantages and vice versa. 

 

Statistical Characteristics of Good Data. 
 

Data is the life and blood of materials data analysis and of statistical analysis in general. 

In this section we will discuss some general characteristics of “good” statistical data, as it 

relates to our materials subject matter. 
 

In statistics, when we talk about data we think of a sample. We also think of data as the 

problem information from which we will derive our conclusions. We want the sample to 

be representative of the population it comes from, in order to infer (generalize) the results 

obtained, back to the entire population. Samples that are not representative (of the entire 

population they are drawn from) do not allow these types of generalizations. The analysis 

results then apply only to this sample or at best, to the population subclass they represent. 

 

In order to be “representative”, a sample should be drawn at random from the entire 

population and each sample point (or observation) should be independent. In this case we 

say that every observation or measurement (and by extension, the sample) is independent 

and identically distributed. In statistical literature this is denoted as i.i.d.  Searching for 

this representativity condition, the handbooks [2 and 3] request that measurements are 

taken from several batches, which in turn should include several measurements. Having 

the necessary population representativity and independence, enables us to generalize the 



data analysis results (e.g. materials allowables) to the entire population (of materials) 

from which it was drawn and not only for the particular specimens in that batch (sample). 

 

Randomness (e.g. occurring by chance) is the property that allows an observation to 

appear in the sample with the same probability with which it appears in the population. 

For example, a specimen with damaged surface will randomly appear in the sample (by 

chance) once every 1000 times (in the long run) if it is observed in the population with 

this same frequency. Independence is the property by which the presence (or absence) of 

a specific sample value has no influence in the presence (or absence) of any other sample 

value. For example, having drawn a specimen with damaged surface, has no bearing on 

the fact that the next sample specimen drawn also has to have (or cannot have) a damaged 

surface.  

 

Some times total randomness and total independence, are theoretical conditions that we 

can only strive for. On the other hand, disregard of these two conditions (say, by 

performing experimentation on specially developed lab material, under specially 

developed testing conditions) destroys the necessary representativity that enables us to 

generalize the experimental results to the entire population (statistical inference). In such 

case, we could not state that the experimental results are valid for ordinary production 

material operating under ordinary working and environmental conditions. 

 

In addition to being random, independent and identically distributed, “good” samples 

should be as large as feasible for two reasons. First, as sample sizes increase the 

uncertainty (variance) associated with the information (point estimators) they convey, 

decreases. Secondly, a fundamental statistical result (the Central Limit Theorem or CLT) 

that will be discussed in chapter four will apply only to large and “good” samples. If our 

sample is “good”, and large enough that we can apply the CLT, our statistical work is 

greatly facilitated and our inferences, greatly enhanced. 

 

Therefore, the minimum size that a sample can have is two elements (in order to obtain a 

sample variance and thus, a measure of uncertainty of the estimations). In addition, if the 

sample has at least 30 observations, the CLT and all its nice statistical properties, apply.  

 

Some Statistical Sampling Schemes and their Characteristics 

 

We sample because we do not have the time, the money or the physical possibility to 

measure the entire population. However, we still need to obtain some information 

(estimations) from, or to experiment with (a part of) the population, and then to infer our 

analysis results back to the whole. A good example of the practical relationships, 

problems and dynamics of the sampling versus counting controversy is illustrated by the 

current Congressional debate about the Year 2000 Census (and the under count of certain 

population groups e.g. the homeless, minorities, illegal aliens, etc.).  

 

Populations can be finite or infinite and samples may be drawn from them with or 

without replacement. This has an important effect in how the estimations, and essentially 

their measures of uncertainty (e.g. sample variance), are calculated.  



 

If the population is finite (say, of size N) and homogeneous, then any member drawn at 

random has a probability of selection of 1/N. A sample is said to be drawn with 

replacement when every observation taken from the population is put back into it. Each 

sample element has, at least theoretically, the same probability of being drawn again. But 

if observations drawn are not replaced, then different probabilities of selection apply to 

each sample element. For example, the first sample element has probability of selection 

1/N, the second sample element has 1/(N-1), the third, 1/(N-2), etc. If N is small, the 

differences in probability of selection between the first sample element drawn and the last 

one (of a sample of size n) will be of 1/N to 1/(N-n+1). This can be quite significant if the 

sample size n is large. These conditions affect both the sampling distribution of the 

statistic used as estimator as well as its variance. In addition, once an element is drawn 

(and then discarded) its probability of being drawn again is now zero. We will revisit the 

sampling problem in chapter four. 

 

Also in sampling without replacement, if the random sample size n is not large (but the 

finite population size N is) we may neglect the above mentioned difference in probability 

of selection (between the first and last sample elements) for it will not be significant. 

Then, for all practical purposes we assume that the probability of selection is the same. 

We will assume likewise when the population size is infinite and we sample with or 

without replacement. A “litmus” test for assessing when the above situation holds is to 

look at the relation (1 – n/N). If it is close to unit, then we are probably OK. If it is not, 

then we want to consider other alternatives. 

 

Another important sampling consideration, in addition to the population size, is the 

population homogeneity (or lack thereof). If the population is homogeneous, all members 

have similar characteristics (as, say, in the tensile strength of a material that has the same 

thickness). Then, a simple a random sampling scheme is usually adequate and things are 

greatly facilitated. On the other hand, if the population is heterogeneous, there will be 

subgroups with different characteristics (as, say, in a material that has several levels of 

thickness). Then we may have a stratified population with strata or classes of different 

sizes. In this case, simple random sampling may not provide the best point estimators, for 

their variance will be larger than that of the estimators obtained by implementing other 

more appropriate sampling schemes (e.g. stratified sampling). 

 

In materials data analysis, for example, we take several batches from different production 

runs. The objective of this approach is precisely to obtain the most representative sample 

possible, in order to extend our analysis results to the entire population (e.g. the whole 

production process) and not to restrict the inferences to the few batches considered. 

However, in practice batches may differ (i.e. constitute population subclasses or strata).  

This may occur because of specific production process characteristics. For example, a 

batch at the start of the production run may be produced under a different mix, different 

temperature, different machine adjustment, etc. than a batch produced at the end of the 

run). This may also occur because different producers may have different characteristics. 

For example, one manufacturer may have some special equipment, a different supplier, 

diverse management or technical qualifications, etc. 



 

For these reasons, we first analyze whether the samples (batches) are similar (i.e. the 

population is homogeneous) in order to assess whether we can pool them together. If the 

statistical tests reject the hypothesis that batches come from the same population, then we 

assume that the population is heterogeneous and we do not pool the samples together. 

The way in which we calculate sample estimations, say the allowables, will differ in both 

cases. For, we strive to obtain sample estimators (e.g. allowables) valid for the entire 

population in question and not only for the specific batches (sub classes) analyzed. 

 

This situation also has bearing with the “random effects” model of ANOVA and 

regression, discussed in the handbooks [2, 3] and in the RECIPE program manual [19]. In 

the “fixed” effects model, inferences (generalization) are reduced to the finite population 

of the batches (groups) submitted to analyses or, at best, to the specific production runs 

that generated them. On the other hand, in the “random” effects model, the selected 

groups or batches and their generating processes, are themselves considered random 

representatives of all possible batches from all possible (similar) generating processes. 

The inference is drawn for this broader population, which is what the materials engineer 

is looking for. Elementary information on sampling can be found in any of the statistics 

textbooks referenced in the appendix. More advanced information can be found in [20]. 

 

A final word is due regarding the case of special studies performed on non-random 

samples. If (pilot) experimental research is undertaken under, say, special (laboratory) 

conditions, then two considerations are in order concerning their results. First, pilot 

experimental samples are usually not random and hence, their inferences should not be 

automatically generalized to an entire population (which probably lies outside of its 

inference range). Secondly, the inferential restrictions do not imply that the experimental 

results are lost or worthless. 

 

On the contrary, these experimental results are extremely valuable for what they are: an 

initial or pilot research study. They provide several very useful pieces of information, 

among them an initial estimation of the variance of the measurement (random variable) 

of interest. Having such initial estimations are essential for designing subsequent studies 

and experiments, specifically in determining the sample size required to obtain further 

results within certain value ranges. We will revisit this important issue when we discuss 

hypothesis testing, in chapter four. 

 

In any case, experimental results will be enhanced if the pilot studies are conducted under 

the most “representative” conditions. One way of achieving this occurs when the 

researcher selects the specimen types, operating conditions, environment, etc. according 

to his experience. The samples obtained with this approach are still subjective and will 

never surpass a randomly drawn sample. However, if the researcher’s judgement and 

experience are correct, they will be closer to representative conditions and will provide 

results closer to those obtained from a random sample. Some times, such experimental 

samples selected by the good judgement of an experienced researcher, are referred to as 

judgement sampling. They constitute a valid option in pilot studies, and yield very 

valuable contributions in the process of scientific research. 
 



Conclusions 
 

In this chapter, we have summarized the main issues regarding materials data. We have 

discussed their quality and their pedigree, as well as their relationships to the 

construction, maintenance and use of “good” materials databases for engineering design. 

Finally, we have provided an illustrative example of what a “good” database is and what 

it isn’t, and why. In addition, we have discussed some important statistical issues 

regarding samples, sampling schemes, their characteristics, their limitations and their 

(statistical inference) consequences in the process of scientific research. Data is the 

analysis raw material and random sampling is its best source. This chapter, therefore, 

develops the insight for better understanding all the chapters that follow and for a more 

efficient implementation of the statistical procedures used in materials data analyses. 
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