SIMULATION

AND

STATISTICAL EDUCATION.

Jorge Luis Romeu

Department of Mathematics

SUNY-Cortland

romeu@snycorva.cortland.edu

Presented at the

Educational Statistics Section.

Annual Meeting of the

American Statistical Association.

Orlando, Fla.

August of 1995.

OUTLINE:

=======

- * Motivation, Introduction and Background
- * Problems in Using Simulation in Teaching.
- * Simulation Approaches to Teaching Stats.
 - * Monte Carlo Simulation in Education.
 - * GPSS Simulation Example.
 - * Summary and Conclusions.

I. INTRODUCTION AND BACKGROUND:

- * Need: Reach the Students
- * Pedagogical Changes Advocated in:
 - ASA Workshops and Conferences
 - ASA Educational Section
 - Electronic and Hard Copy Journals
 - * Less is More.
 - Less Theoretical Concepts
 - More Statistical Methods
 - $-\ Selection/Priorities/Trade-offs$
 - Real Life Examples
 - More Case Studies
 - Inter-Disciplinary Applications
 - More Undergraduate Statistics

II. SIMULATION IN TEACHING

- * Teaching Approaches:
 - lecturing
- Physical Experimentation
 - Simulation

* Problems with Lecturing:

- Boring and Dry
- Lack of Data Collection
- Lack of Group Learning

* Problems With Physical Experimentation:

- Expensive in Time/Resources
 - Personal Risks Involved

* Advantages of Simulation:

- Retains uncertainty of outcomes
- Data Collection and Manipulation
 - Less Time Consuming
 - More Time for Case Studies

* Discrete Event Simulation

- Seldom Used for Teaching in Past
 - Difficult to Program in HOL
- Simulation Languages in Main Frame
 - At Present, SW Available in PC's
 - Comes With Simulation Textbooks
 - Easy to obtain, learn, operate

* Present Experience Stems from:

- Teaching Applied Statistics
- Teaching Simulation Modelling
- Teaching Statistics With Simulation
 - Workshop for Faculty

III. SIMULATION APPROACHES

* THREE Approaches:

- Independent Course
 - Companion Lab
- Embedded in Course

* Independent Course (Applications):

- Complementary but Required
- Data Analysis and Methods
- $\hbox{-} \textit{Real Life/Inter-Disciplinary}$

* Companion Laboratory:

- Staff with Intermediate Simulation
 - Understanding/Operating GPSS
 - Weekly Lab Follows Lecture
- Alternative to Physical Experiments
 - Group Learning (Seed)
 - Individual Accountability (Seed)
 - Different/Contradictory Results

- Lively Discussions
- Control Over Model/Variables
- Model Assumption Violations
- Realistic/Inter-Disciplinary Examples
- Flexibility in Constructing Examples
- Final Report: Summarization Skills
- Presentations: Communications Skills
- Less Drudgery for Faculty/Students

* Embedded Simulation:

- Staff with Minimal Simulation
 - Running/Operating GPSS
 - Focal Point Faculty
- Class Examples and Homeworks
 - Course Final Proyects
 - Individual/Group Work (Seed)
- Different/Contradictory Results
 - Easy Example Modifications
 - Different Problem Responses
- Model Assumption Violations
- $-\ Student\ Discussions/Interactions$

* Stat Methodology Reviewed:

- GOF/Transformations
- Simple/Multiple Regressions
 - ANOVA and ANCOVA
- Response Surface Methodology

- Experimental Design
- Multivariate Analysis
 - Non Parametrics
- Time Series Analysis
 - Quality Control
- Exploratory Data Analysis
- Use of Statistical Packages

IV. MONTE CARLO SIMULATION

- * As A Teaching Tool:
 - In-Class Examples
 - Final Proyects
 - Generation of r.v.
 - GOF Tests
 - Hypothesis Testing
- Test Assumption Violations/Transformations
 - Statistical Alternatives
 - Performance Measures: Power
 - Approximations of the Distribution
 - Multi-Dimensionality Problems

V. GPSS SIMULATION EXAMPLE

* Analysis of a System of Small Dams

VI. CONCLUSIONS

- * Simulation has used Statistics
- * Statisticians Can Now Use Simulation
 - * This is No Longer a Problem
 - Software (GPSS) Easy to Get
 - Easy to Learn and to Run
 - Saves Programming Time
 - * Very Flexible/Easy to Modify
 - * Allows Group Learning/Interaction
 - * Maintains Individual Accountability
 - * Relatively Small Faculty Training

* * * *