SIMULATION

AND

STATISTICAL EDUCATION.

Jorge Luis Romeu

Department of Mathematics

SUNY-Cortland

romeu@snycorva.cortland.edu

Presented at the

Educational Statistics Section.

Annual Meeting of the

Orlando, Fla.

August of 1995.
OUTLINE:

* Motivation, Introduction and Background

* Problems in Using Simulation in Teaching.

* Simulation Approaches to Teaching Stats.

* Monte Carlo Simulation in Education.

* GPSS Simulation Example.

* Summary and Conclusions.
I. INTRODUCTION AND BACKGROUND:

* Need: Reach the Students

* Pedagogical Changes Advocated in:
 - ASA Workshops and Conferences
 - ASA Educational Section
 - Electronic and Hard Copy Journals

 * Less is More.
 - Less Theoretical Concepts
 - More Statistical Methods
 - Selection/Priorities/Trade-offs
 - Real Life Examples
 - More Case Studies
 - Inter-Disciplinary Applications
 - More Undergraduate Statistics

II. SIMULATION IN TEACHING

* Teaching Approaches:
 - lecturing
 - Physical Experimentation
 - Simulation
* Problems with Lecturing:

- Boring and Dry
- Lack of Data Collection
- Lack of Group Learning

* Problems With Physical Experimentation:

- Expensive in Time/Resources
- Personal Risks Involved

* Advantages of Simulation:

- Retains uncertainty of outcomes
- Data Collection and Manipulation
 - Less Time Consuming
 - More Time for Case Studies

* Discrete Event Simulation

- Seldom Used for Teaching in Past
 - Difficult to Program in HOL
- Simulation Languages in Main Frame
- At Present, SW Available in PC’s
- Comes With Simulation Textbooks
 - Easy to obtain, learn, operate
* Present Experience Stems from:

- Teaching Applied Statistics
- Teaching Simulation Modelling
- Teaching Statistics With Simulation
 - Workshop for Faculty

III. SIMULATION APPROACHES

* THREE Approaches:

- Independent Course
- Companion Lab
- Embedded in Course

* Independent Course (Applications):

- Complementary but Required
- Data Analysis and Methods
- Real Life/Inter-Disciplinary

* Companion Laboratory:

- Staff with Intermediate Simulation
- Understanding/Operating GPSS
 - Weekly Lab Follows Lecture
- Alternative to Physical Experiments
 - Group Learning (Seed)
- Individual Accountability (Seed)
- Different/Contradictory Results
- Lively Discussions
- Control Over Model/Variables
- Model Assumption Violations
- Realistic/Inter-Disciplinary Examples
- Flexibility in Constructing Examples
- Final Report: Summarization Skills
- Presentations: Communications Skills
- Less Drudgery for Faculty/Students

* Embedded Simulation:

- Staff with Minimal Simulation
 - Running/Operating GPSS
 - Focal Point Faculty
- Class Examples and Homeworks
 - Course Final Projects
- Individual/Group Work (Seed)
- Different/Contradictory Results
 - Easy Example Modifications
 - Different Problem Responses
 - Model Assumption Violations
 - Student Discussions/Interactions

* Stat Methodology Reviewed:

 - GOF/Transformations
 - Simple/Multiple Regressions
 - ANOVA and ANCOVA
 - Response Surface Methodology
- Experimental Design
- Multivariate Analysis
- Non Parametrics
- Time Series Analysis
- Quality Control
- Exploratory Data Analysis
- Use of Statistical Packages

IV. MONTE CARLO SIMULATION

* As A Teaching Tool:

- In-Class Examples
- Final Projects
- Generation of r.v.
- GOF Tests
- Hypothesis Testing
- Test Assumption Violations/Transformations
- Statistical Alternatives
- Performance Measures: Power
- Approximations of the Distribution
- Multi-Dimensionality Problems

V. GPSS SIMULATION EXAMPLE

* Analysis of a System of Small Dams
VI. CONCLUSIONS

* Simulation has used Statistics
* Statisticians Can Now Use Simulation

* This is No Longer a Problem
 - Software (GPSS) Easy to Get
 - Easy to Learn and to Run
 - Saves Programming Time

* Very Flexible/Easy to Modify
* Allows Group Learning/Interaction
* Maintains Individual Accountability
* Relatively Small Faculty Training

* * * * *