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Abstract—Four theoretical methods providing approximations to total system reliability bounds from
subsystem test data are compared through a Monte Carlo study. The system bounds in question, Kraemer,
El Mawazini-Buehler, Grubbs and Mann-Grubbs, are valid asymptotically, i.e. when the number of
failures observed is large. However, their small sample properties, and the closed forms of their small
sample distributions, are unknown. In practice, when a system cannot be tested as a whole, the number
of observed failures may be small. Hence, the practical importance for the study of the small sample
properties of these bounds. Lacking this information, we perform a numerical study of these small sample
properties, as well as a comparison of the bounds.

1. INTRODUCTION

In reliability studies sometimes it is not possible to test a system as a whole, but by subcomponent
units. This may occur, for example, when operating the entire system would imply its destruction
or loss. However, it is still necessary to estimate the reliability of the total system in question.

Extensive research in this area has been performed. As a result, several theoretical (1] and
empirical [2] system bounds for assessing the reliability of the entire system from subsystem test
data have been proposed (a reliability bound f (X), is a one sided confidence interval calculated
from component test data X so that the true system reliability exceeds S (X) with probability (1 — ).
Hence, the practical problem of comparing these procedures and selecting the “best” bound among
those available.

In the present study we consider four well known theoretical bound approximations; Kraemer
[3], El Mawazini-Buehler [4]), Grubbs [5] and Mann-Grubbs [6] (Table 1). The four bound
approximations are applied to series systems composed of 10 subsystems with exponential lifetimes,
whose failure rates are estimated from Type II censored subsystem data.

If the (small sample) exact distribution of these system bounds were available, such a comparison
is performed using their moments and relative efficiencies. We cannot, however, invoke the
~ asymptotical properties in the presence of just a few failures. In the studies previously conducted
to compare these bounds (e.g. [1], [5] and [6]) the authors calculate only a reduced number of
examples from very simple series systems and compare their bound approximations with the exact
result (El Mawazini [7]). This is due to both the complexity and the round-off errors in the
calculations of these quantities for more complex systems.

It is still necessary to know what each bound’s expected coverage (of the true system reliability)
will be. We still want to know what each bound’s variance, skewness and kurtosis will be, for the
small sample statistic will not be symmetrically distributed. We will want to know how these
bounds will be affected by several factors inherent in reliability studies, e.g. early termination,
different and decreasing subsystem reliabilities. According to these properties and their robustness
to the factors mentioned above, we want to rank these bound approximations.

Figures 1 through 4 illustrate this situation for our system of 10 subsystems with total reliability
or 0.9511. The empirical pdf’s (histograms) of the four bound approximations shown, were
obtained by simulating 1000 (small sample) system tests and, then, calculating each of the four
bounds from them. Notice how, in addition to coverage, these bounds differ in other statistical
(performance) measures like median, mode, variance, skewness and kurtosis. Our comparison of
these bounds will be based upon these measures.
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Table 1. Functional forms of the bound approximations
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Where:

X, is the total time on test for the ith subsystem.
K is the total number of subsystems in the system.
Xoy=min(X,, ..., Xp)

r;=number of failures in subsystem j=1,..., K.

X=(X,...,Xg).
¢, = upper a-percentile, standard normal.

The present Monte Carlo study attempts to do just that, numerically. We define a “representa-
tive” system with known total and subsystem reliabilities and a set of ‘“‘representative” testing
conditions. We then simulate 1000 tests for each set of “representative’’ conditions. From these
tests we calculate the four reliability bound approximations in question and then perform statistical
analyses on these experimentally obtained bounds, as a surrogate procedure for the theoretical
small sample pdf’s that we do not have nor can obtain.
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Fig. 1. Kraemer bound for confidence level of 0.75. 1, Real system reliability (0.951). 2, Empirical mode
(0.865). 3, Empirical median (0.832). 4, Empirical coverage (1.00). 5, Empirical interquartile range (0.102).
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Fig. 2. El Mawazini-Buehler bound for confidence 0.75. 1, Real system reliability (0.951). 2, Empirical
mode (0.945). 3, Empirical median (0.945). 4, Empirical coverage (0.661). 5, Empirical interquartile range
(0.020).

2. THE SIMULATOR

The simulation model for this study mimics a “representative” highly reliable system which
cannot be tested altogether, but only at the subsystem level. Statistical assumptions for the validity
of the four reliability bounds under study are given in Table 2 and are met by our simulated system.
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Fig. 3. Grubbs bound for coefficient level of 0.75. 1, Real system reliability (0.951). 2, Empirical mode
(0.925). 3, Empirical median (0.922). 4, Empirical coverage (0.982). 5, Empirical interquartile range
(0.027).
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Fig. 4. Mann-Grubbs bound for confidence level 0.75. 1, Real system reliability (0.951). 2, Empirical mode
(0.945). 3, Empirical median (0.940). 4, Empirical coverage (0.775). 5, Empirical interquartile range
(0.022).

Our “representative” system is composed of 10 independent subsystems with pre-specified
reliabilities (Table 3). Because it is a series system, total system reliability is immediately known
(their product). There are 15 items of each subsystem placed simultaneously on test. A maximum
of three failures will be observed in each subsystem. Mission time (1) for the system and all
subsystems will be the same. The data is standardized by dividing each failure time by 1.

Confidence levels for all system bounds are 0.5, 0.75 and 0.90. Pseudo random subsystem failure
times were generated by inversion of the exponential distributions (Table 3) using the IMSL
library’s GGUBS random number generator routine on a Honeywell 6000 computer running on
GCOS operating system.

Table 2. Basic statistical assumptions

—Series system

—Independent components or subsystems

-—Exponentially distributed Failure Times

—At least one observed Failure in each subsystem (ideally, many more than one)

—All subsystems test are fixed sample and Type II censored

—Exact failure times of all failed items are known

—Results are conditional (fiducial) on observed total times on test (Approximations in [4], [5] and {6] are obtained by inverting the original
Reliability distributions and then expanding in Taylor series. To invert the distributions, authors condition on the observed total times on
test—as if these were parameters of the distribution).

Table 3. Values for the 10 cases of the simulation of system reliability

Case Subsystems Total system reliability
()] (0.995)"" x 1 = 0.9511
(03] (0.995)° x 0.99 = 0.9463
()] 0.995)° x 0.98 = 0.9367
(O] (0.995)° x 0.97 = 0.9272
[&)] 0.995)° x 0.96 = 0.9177
©) (0.990)! x 1 = 0.9044
(U] (0.990)° x 0.97 = 0.8861
®) 0.990)° x 0.95 = 0.8678
® (0.990)° x 0.93 = 0.8496

(10) (0.990)° x 0.90 = 0.8222
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We defined two testing cases. Case one tests every subsystem until the third failure occurs and
then calculates the bounds based on the three first failures of each subsystem. Case two follows
the same procedure except that it stops testing the subsystem with the longest time-to-first-failure
at its first failure.

The rationale for defining such a system and testing procedures was based on our experience
of several years of work with the Reliability Analysis Center (RAC/RADC). Systems with more
than five subsystems had not been previously compared, due to complexity and round-off errors,
so ten subsystems seemed a reasonable/feasible number. The minimum number of failures required
for application of the procedures is one. Hence three failures is reasonable for the “small” sample
case.

The validity for independent and series subsystems is based upon the small interdependence in
the operation of each subsystem on the others, but the absolute necessity of every component to
be working for the entire system to be in operating conditions. The reliability levels defined for
the subsystems point towards highly reliable systems: to investigate the effects of a “bad apple”
among the subsystems, and the capacity of detection of such a situation by the respective
procedures. Exponentiality of failure times is traditionally accepted in electronic equipment. Early
termination of the test with the longest 1st failure is a real life constraint in reliability studies.

Each testing setting was defined as a triplet (reliability, confidence level, testing scheme). Each
was taken from (i) one (of ten possible) subsystem reliability combinations, (i) one (of three) bound
confidence level and (iii) one of the testing schemes (with/without early termination). For each of
these (10 x 3 x 2 = 60) experimental settings, 1000 ““testing experiments” were simulated and each
of the four system bound approximations, calculated. The number of replications (1000) was
assumed large enough to provide smooth histograms (to approximate the corresponding pdf’s) and
efficient estimators of the (real) distribution parameters: mean, median, mode, variance, skewness
and kurtosis. These parameters were used to characterize and to compare each bound distribution.
We restate that the motivation for this whole numerical study is the lack of the exact distribution
for the small sample case and the search for a surrogate of this distribution, for study and
comparison purposes. For more details the reader is referred to the original document [8].

3. RELIABILITY BOUND APPROXIMATION PERFORMANCES

Throughout this experiment we were investigating four very specific problems (or factors) that
could affect our system bound approximations. They were:

(i) The effects of decreasing system reliability, specifically through the presence of a “bad apple”
subsystem.

(ii) The effect of changing the system structure (two such reliability structures are defined in
Table 3: cases 1-5 and cases 6-10). Any empirical study necessarily has to be performed on a
specific system configuration (ours is a series system of 10 components). We wanted to assess how
a change in the structure—i.e. another distribution of reliabilities among the subsystems—in such
a configuration would affect the experimental results.

(iii) The effects of increasing the confidence (1 — a) level of our system bounds (i.e. 0.50, 0.75
and 0.90). _

(iv) The effects of changing the testing scheme (specifically, the effect of early truncation).

In order to numerically study the effect of these four factors on our bounds we defined the
following statistical location and dispersion performance measures:

(1) With respect to location:

(a) Coverage of the true value of the (reliability) parameter, to assess accuracy through the
comparison with nominal coverage.

(b) Median and mode of the 1000 “experiments” (sample) obtained for confidence coefficient of
0.5. We wanted to investigate where the bounds clustered.

(c) Worst case analysis: the largest value (of the 1000 “experimental” bounds) can say something
about how bad we could do. Since all experimental bounds were obtained in the same settings and
the settings all had 1000 cases, the distribution of this order statistic would be the same for all our
bounds under the hypothesis of no difference (H,). This would allow, in our case, comparison

across bounds.
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(2) With respect to dispersion:

(a) Coefficient of variation (CV), standardized measure of the (parametric) variance of the
bounds. It is not very informative in highly skewed distributions (as in our case).

(b) Interquartile range, is a (nonparametric) alternative to measure variation as well as skewness
(in combination with the median) and kurtosis (in combination with the mode). We wanted to
investigate, in addition to the percent of coverage, also the distribution of this coverage about the
true value (through the form of the pdf, i.e. skewness and kurtosis).

A statistical and graphical analysis of the above performance measures follows.

4. ANALYSIS OF THE RESULTS

Table 4 compares the bound coverage as system reliability increases from 0.822 to 0.951. The
closest to the nominal confidence coefficient (1 — a), the better. We can see how Mann—Grubbs
is the “best” in this measure. Kraemer is too conservative; it almost always covers the true system
reliability far below its value (conservative here is not desirable since actual coverage is far from
nominal coverage). The other two bounds yield intermediate results.

In Table 5 we compare the interquartile (IQR) range results (i.e. the range between the 25th (P.
25) and the 75th (P. 75) percentiles of the distribution). Given the skewness/kurtosis of the (small
sample) distributions (see the histograms in Fig. 1 through 4) this seems a better measure of the
dispersion of the bound than the CV of the bound. Notice how, as reliability increases, the
variability of the bound decreases, the other factors held constant. Also, as confidence level
increases, so does variability of the bound. Finally, notice how Mann-Grubbs bound is somewhat
more variable than El Mawazini’s.

Figure 5 presents a graphical comparison corresponding to Table S (notice how bound
variability, portrayed by IQR, decreases as a function of system reliability). Mawazini-Buehler’s
bound shows the smallest variability (IQR). However, it was also the most optimistic of the three

Table 4. Bound coverage

Cases System reliability
Bd o 0.822 0.849 0.867 0.886 0.904 05917 0927 0936 0.946 0.951

Case one
0.50 1.000 1.000 1.000 1.000 1.000 100 100 100 0999 1.00
K 0.25 1.000 1.000 1.000 1000 100 1.00 100 100 100 1.00

0.10 1.000 1.000 1.000 1000 100 100 1.00 100 100 1.00

0.50 0336 0375 0.366 0.410 0406 0.381 0.371 0415 0432 0422
E 0.25 0.577 0.614 0.637 0.654 0.668 0.624 0.630 0.651 0.617 0.661
0.10 0.774 0788 0.812 0.818 0.822 0.786. 0.793 0.801 0.813 0.846

0.50 0.799 0.865 0.882 0912 0928 0.827 0.878 0.891 0918 0.927
G 0.25 0914 0952 0968 0971 0982 0.948 0.969 0972 0982 0.982
0.10 0981 0.989 0.990 0993 0997 0985 0.989 0.995 0992 0.999

0.50 0.527 0.549 0.551 0.562 0.549 0.551 0.560 0.555 0.581- 0.561
M 025 0757 0.793 0.785 0.788 0.784 0.789 0.783 0.782 - 0.748 0.775
0.10 0.903 0924 0913 0919 0905 0.907 0.903 0908 0911 0917

Case two
0.50° 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 0.988 1.00
K 025 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00  1.00

0.10 1.000 1.000 1.000 1000 1.00 100 1.00 100 100 1.00

0.50 0311 0359 0362 0362 0356 0358 0.343 0373 0.391 0.380
E 0.25 0.549 0.574 0.597 0.603 0.619 0.600 0.599 0.603 0.565 0.610
0.10 0.759 0.776 0.779 0.785 0.773 0.768 0.766 0.768 0.771 0.812

0.50 0.778 0.843 0.868 0.881 0.900 0.808 0.855 0.856 0.901 0.909
G 0.25 0.905 0947 0.957 0967 0977 0.938 0.956 0.962 0969 0.974
0.10 0980 0.987 0.987 0990 0.995 0981 0.987 0.991 0991 0.996

0.50 0.504 0516 0.516 0.518 0.505 0.517 0.530 0.523 0.526 0.501
M 025 0.740 0.768 0.762 0.751 0.750 0.767 0.752 0.748 0.709 0.727
0.10 0.895 0.909 0.899 0.898 0.879 0.901 0.889 0.890 0.883 0.900

Case one: in all cases, testing stopped at 3rd failure.

Case two: in one subsystem, testing stopped at 1st failure.

Bounds: K—Kraemer; E—El Mawazini-Buehler; G—Grubbs (fiducial); M—Mann-Grubbs
(approximately optimum).
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Table 5. Bound interquartile range

Cases System reliability
Bd o 0.822 0.849 0.867 0.886 0.904 0.917 0927 0.936 0.946 0951

Case one
0.50 0280 0.288 0.232 0.192 0.155 0245 0203 0.165 0.110 0.095
K 025 0271 0268 0.264 0207 0.162 0.237 0220 0.161 0.109 0.102

0.10 0252 0.269 0242 0231 0.181 0.23¢ 0.207 0.168 0.129 0.116

0.50 0.065 0.054 0.038 0036 0028 0.031 0.025 0.022 0.017 0015
E 0.25 0.084 0.062 0.057 0.044 0.035 0.038 0.034 0.027 0.020 0.020
0.t0  0.101 0.081 0.05% 0.053 0.038 0.042 0.036 0.030 0.024 0.021

0.50 0.084 0.073 0.052 0.050 0.039 0.043 0.035 0.031 0.024 0.022
G 0.25 0.105 0.080 0.074 0.058 0.047 0.051 0.046 0.037 0.028 0.027
0.10 0.128 0.104 0.079 0.071 0.053 0.057 0.048 004! 0.034 0.030

0.50 0.080 0.066 0.046 0.043 0.033 0.039 0.031 0.027 0.020 0.017
M 0.25 0.102 0.076 0.069 0.051 0.041 0.049 0.043 0.032 0.023 0.022
0.10 0.130 0.103 0.073 0.065 0.046 0.055 0048 0.037 0.030 0.026

Case two
0.50 0248 0.285 0.226 0.185 0.148 0.236 0.194 0.157 0.104 0.089
K 0.25 0276 0.267 0260 0.201 0.156 0230 0.212 0.154 0.104 0.097

0.10  0.260 0.270 0.239 0.225 0.175 0.228 020t 0.161 0.123 0.110

0.50 0.065 0.054 0.037 0.036 0.028 0.031 0.025 0.022 0.017 0.015
E 025 0.083 0.062 0.057 0.044 0.034 0.038 0.034 0.027 0.019 0.019
0.10 0.102 0.082 0.060 0.053 0.039 0.042 0.036 0.030 0.024 0.021

0.50 0.084 0.073 0.051 0.050 0.039 0.043 0.035 0.031 0.024 0.022
G 0.25 0.105 0.080 0.075 0.053 0.047 0.051 0.046 0.037 0.027 0.027
0.10 0.128 0.105 0.079 0.071 0.052 0.057 0.049 0.041 0.034 0.030

0.50 0.081 0.066 0.047 0.043 0.033 0.038 0.031 0.026 0.020 0.017
M 0.25 0.102 0.077 0.070 0.052 0.041 0.049 0.043 0.033 0.023 0.022
0.10 0.130 0.105 0.073 0.065 0.046 0.055 0.047 0.037 0.030 0.026

Case one: in all cases, testing stopped at 3rd failure.
Case two: in one subsystem, testing stopped at st failure.
Bounds: K—Kraemer; E—FEl Mawazini-Buehler; G—Grubbs (fiducial); M—Mann-Grubbs

(approximately optimum).

135 — Variability for case one

Empirical interquartile range (x 1072)

] ] |
"8.2 84 8.6 8.8 9.0 9.2 94 9.6 2.0

System retiability (x (07)

Fig. 5. Bound variability as a function of reliability. 1, Grubbs; 2, Mann-Grubbs; 3, El Mawazini—Buehler.
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Table 6. Covariance analysis for bound coverage

Partial F values (coefficient sign)

Total

Response variable R? Reliability Truncation Structure F
Coverage

Mann-Grubbs 0.57 1.49(-) 21.48(+) N.S. —

Bound 0.56 — 20.82 (+) N.S. —

Alpha =0.10 0.04 0.70(~) — — —
Coverage

Mawazini-Buehler 0.57 4.63(+) 15.58 (+) 1.30(+) —

Bound 0.45 — 12.84(+) 1.34(~) —
IQR

Mawazini-Buehler 0.98 175.03(-) — 11.83(~) 193.17

Bound 0.53 — — 9.30(+) —

Grubbs 0.98 153.02(-) — 8.64(—) 176.33

Bound 0.55 — — 998 (+) —

Mann-Grubbs 0.98 188.79 (+) — 16.64 (~) 194.48

Bound 0.50 — — 8.18(+) —

best bounds i.e. it covered the real system reliability less often than required by its confidence
coefficient, and this is not desirable. Mann-Grubbs is second best in this performance measure.

Histograms in Figs 1-4 also show the empirical modes of the four bounds. Notice how
El Mawazini-Buehler’s and Mann-Grubb’s modes are very close to each other and to the true
system reliability. Mann~Grubb’s histogram is more skewed to the left, providing better coverage
than El Mawazini’s. Grubb’s histogram is flatter and Kraemer’s is almost flat.

Finally, in Table 6 we present the analysis of covariance. Coverage and IQR were regressed on
system reliability, truncation method and system structure. We wanted to assess the statistical
significance of these factors, both on the coverage and its variability. Notice how, when early
truncation is present, it is the only significant factor affecting bound coverage. Hence, number of
failures observed is the key factor for coverage, especially when this number is small.

In the lower part of Table 6 we show regression results of IQR on structure, with/without system
reliability included as a factor. Reliability structure (see Section 3, part (ii)), was significant, but
system reliability was a much more significant factor in the variability of the bounds. We believe,
from these regression analyses that, with the appropriate caveats, our experimental results will also
hold in other systems supporting the same assumptions of Table 2. In particular, our analysis
approach will hold for series configurations. These results justify our experiment.

5. DISCUSSION

In this paper we compare four asymptotic approximations to the exact (El Mawazini) system
Reliability bound. Their exact small sample distributions are unknown, hence it is not possible to
theoretically investigate or compare them for the small sample case. In previous studies, these
bounds had been compared, based on a few cases, with the equivalent exact bound of El Mawazini.
We have used, instead, Monte Carlo and a large number of cases. This is the main difference
between our work and other bound comparisons previously performed in the literature. Through
it, we have attempted to provide the reliability practitioner with more insight on bound coverage
and variability by (numerically) characterizing their (small sample) distribution. Using this
information, we have compared these four bound approximations, studying its robustness to
certain assumption departures and ranking them, accordingly. This is the contribution of our

research.
When these bound approximations must be used, the above regression analysis shows that our

results are applicable with the pertinent qualifications regarding system configuration and structure.
Our findings can provide the practitioner with grounds for qualifying his/her results and
understanding their implications. For high cost systems whose structures and configurations are
very different from the one we have used in our experiment, a (restricted) similar study could be
undertaken. In such a case, our paper provides a roadmap to this approach. The implications
involved in assumption violations or relaxations, can be investigated and the practitioner can
support his/her confidence in the bound, etc. Such is a midway procedure between the automatic
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application of any of the above system bound approximations and the extensive (and exclusive)
use of simulation as the only reliability assessment tool.

6. CONCLUSIONS

Given the following two caveats:

(1) The “representative” system upon which the present experiment was implemented may have
some (minor) effect on the results described below. However, from the regression analysis, and the
rationale upon which the “representative” system was conceived, we believe that our results will
hold in systems fulfilling the assumptions in Table 2.

(2) The alternative to defining a specific system and implementing an experiment such as ours
is working with the exact small sample distribution of the bound approximation. This alternative

is not available at present.

(I) General results of system reliability with respect of the four bounds compared:

(i) coverage increases mildly with increasing reliability
(ii) coverage approaches nominal value as confidence coefficient increases
(iii) variability of the bounds are affected by variations in the reliability of any subsystem, and
(iv) variability of the bound decreases both with increasing system reliability and confidence
coefficient.

(IT) Specific results for Mann—Grubbs “approximately optimal’” bound, the preferred among the
four analyzed here:

(i) point estimation of the reliability bound:
—closest value to nominal coverage
—closest mode to true system reliability
(i) variability of the bound point estimation:
—comparatively small variability, among the bounds, and
—relatively stable with respect to changes in system structure.

7. SUMMARY

We recommend Mann-Grubbs bound, when estimating total system reliability from subsystem
data for:

(1) it gives the best (coverage) approximation to the exact reliability bound
(2) it captures subsystem reliability changes that affect the reliability of the total system
(3) it is reasonably robust to early truncation and system structure, among the bounds studied,

and,
(4) it is easy to understand/implement, well documented and the last in a sequential

development/refinement process of system bound approximations.
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