St. Jude Children's Research Hospital

Group 6

St. Jude Children's Research Hospital Xuchen Wang Pragnesh Vaghasiya Mingrui Wang Harlan Toussaint Heng Yang Li Tong

ALSAC • Danny Thomas, Founder

Presentation Outline

- Topic Background
- Objective
- Overview of Previous Work
 - COPQ
 - Fault Tree Analysis
 - Gauge R&R
 - QFD
 - DOE
 - Supply Chain
 - SPC
 - DMAIC/DFSS
 - Acceptance Sampling
- Quality Companion and VSM
- Conclusion

St. Jude's Hospital

- Founded in 1962
- Founder and entertainer : Danny Thomas
- "No child should die in the dawn of life"
- A nonprofit medical corporation
- A pediatric treatment and research facility
- Children's catastrophic diseases

Objective:

Use Quality Engineering methodology and concepts in relation to St. Jude's Children's Hospital and its operations.

Focused on Patient and Family Logistics

Overview of Previous Work

COPQ -	ITEM -
3	Premature Discharges -
• External Cost •	Incorrect Diagnosis
External Cost 9	Delayed Follow-up Appointments
	Any issue with HR -
3	Research Multi-function a
3	Overstock -
3	Over-hiring -
Internal Cost 🧃	Unnecessary Equipment treatment -
	Excess capacity a
	Non-restricted public spending
	Inefficiency in clinical diagnosis a

Gage R&R

• Definition:

measure the amounts of variability induced in measurement by the measurement system itself, and compare the result to the total system.

Gage R&R System: Repeatability; Reproducibility; Stability;

ANOVA:

7 columns			Study Var	%Study Var
	Source	StdDev (SD)	(6 × SD)	(%SV)
3 operators	Total Gage R&R	0.30237	1.81423	27.86
90 group of members	Repeatability	0.19993	1.19960	18.42
•	Reproducibility	0.22684	1.36103	20.90
	Operator	0.22684	1.36103	20.90
Ratio of Gage R&R	Part-To-Part	1.04233	6.25396	96.04
Goes over 10%	Total Variation	1.08530	6.51180	100.00
Not accept				

Number of Distinct Categories = 4

QFD

Definition:

A planning tool used to fulfill customer expectations A tool used to translate customer requirements to engineering specifications Is a link between customers-design engineers-competitors-manufacturing

Purpose

-improve quality

-increase organization capabilities

-to make the organization more competitive

- develop products that better fulfills users' needs

QFL																		
					\leq				\geq	\geq								
Inconstant Dispeties								ıption •				Co	ompetitive	Assessme	int		Leg	end
Technical Requirements Customer Needs	Customer Important Rating (1-5)	Percent of impoetance (%)	Scrupulous inspection to equipment	24 hours security guard	Management of dangeous items	Medicines standar d	Housing standard	Food standard	Sullpy chain supervisxe	Information management	Engergy-efficiency	Scores	NewYork-Presbyterian Morgan Stanley Child	Upstate Golisano Children's Hospital	St. Jude Children Hospital	Correlation Relationship Importance	Symbol 5 4 3 2 1 0 0 0 0 Δ 0 0 Δ 4 8 C D	Meaning Must have Must have Satisfier Satisfier Delighter 9 3 1 0 Extremely Positive Positive Negative Extremely Negative
Nutrient and diverse foods	5	18.51						0	0		0	105	5	3	4			
Must have Capability for providing house	5	18.51		0	0		0		0	Δ	0	110	3	4	5			
Comfortable rooms	4	14.81	0	0	0		0	0	Δ		Δ	116	4	4	4			
Simple check-in	3	11.11							Δ	0	Δ	33	5	3	3			
Satisfier	3	11.11	0	0			Δ			0		48	4	3	4			
Transportation service	3	11.11	0	0	Δ				0	Δ	Δ	36	4	4	3			
Lab supervise	2	7.4	Θ	0	0	0			0	0	0	54	5	3	3			
Delighter Online-oppointment	1	3.7				0			0	0		9	4	4	2			
Onsite-pharmacy Technical Difficulty Number	1	3.7	2	4	Δ 2	0 3	4	4	0 5	4	4	13	3	3 31	4			
Importance of Technical Requirement			3 48	4 51	3 36	3 15	4 84	4 81	85	4	4		37	31	32			
Percent of the Technical Requirement(%)			9.17	9.75	6.88	2.86	16.06	15.48	16.25	14.72	40 8.8							
			5.17	5.15	0.00	2.00	10.00	10.40	10.25	17.72	0.0							

Design of Experiments

Output (Response):

Number of Housing Related Complaints

Input (Factors):

Factor A: Length of Stay

Low(-): 4 weeks High(+): 12 weeks

Factor B: Size of Family

Low(-): 2 family members High(+): 4 family members

Factor C: Number of Beds

Low(-): 1 High(+): 3

Run	Α	В	С
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	-1
5	-1	-1	1
6	1	-1	1
7	-1	1	1
8	1	1	1

	Α	В	С	AB	AC	BC	ABC
SumY+	23.00	22.67	11.67	19.33	18.33	18.00	18.00
SumY-	15.33	15.67	26.67	19.00	20.00	20.33	20.33
AvgY+	5.75	5.67	2.92	4.83	4.58	4.50	4.50
AvgY-	3.83	3.92	6.67	4.75	5.00	5.08	5.08
Effect	1.92	1.75	-3.75	0.08	-0.42	-0.58	-0.58

Supply Chain

Item	Cabinet Maker	Assembler	Furniture Store
Production/Sale	13	14	12
Inventory Max	9	10	8
Cost of Inventory	1	2	5
Cost of Overflow	3	4	10
Cost of Shortage	7	6	7
Random/Selection	Judgement	Judgement	Distribution J

Demand<= Production

			De	mand<=	Produc	tion/Sa	le					
W	'eek	0	1	2	3	4	5	6	7	8	9	10
	Customer Needs		12	12	12	12	12	12	12	12	12	12
	Inventory	8	0	0	0	0	0	0	0	0	0	0
	Net requirements		4	12	12	12	12	12	12	12	12	12
Furniture Store	Cost of inventory	40	0	0	0	0	0	0	0	0	0	0
	Cost of overflow		0	0	0	0	0	0	0	0	0	0
	Cost of shortage		0	0	0	0	0	0	0	0	0	0
	Total cost						40					
	Gross requirements		4	12	12	12	12	12	12	12	12	12
	Inventory	10	6	0	0	0	0	0	0	0	0	0
	Net requirements		0	6	12	12	12	12	12	12	12	12
Assembler	Cost of inventory	20	12	0	0	0	0	0	0	0	0	0
	Cost of overflow		0	0	8	8	8	8	8	8	8	8
	Cost of shortage		0	0	0	0	0	0	0	0	0	0
	Total cost						96					
	Gross requirements		0	6	12	12	12	12	12	12	12	12
	Inventory	9	9	3	0	0	0	0	0	0	0	0
	Net requirements		0	0	9	12	12	12	12	12	12	12
Cabinet Maker	Cost of inventory	9	9	9	0	0	0	0	0	0	0	0
	Cost of overflow		0	0	0	3	3	3	3	3	3	3
	Cost of shortage		0	0	0	0	0	0	0	0	0	0
	Total cost						48					
Total cost of th	ne whole system						184					

Demand>= Production

			De	mand>=	Produc	tion/Sa	le					
N	/eek	0	1	2	3	4	5	6	7	8	9	10
	Forecast demand		14	14	14	14	14	14	14	14	14	14
	Inventory	8	0	0	0	0	0	0	0	0	0	0
	Net requirements		6	14	14	14	14	14	14	14	14	14
Furniture Store	Cost of inventory	40	0	0	0	0	0	0	0	0	0	0
	Cost of overflow		0	0	0	0	0	0	0	0	0	0
	Cost of shortage		0	14	14	14	14	14	14	14	14	14
	Total cost						166					
	Gross requirements		6	14	14	14	14	14	14	14	14	14
	Inventory	10	4	0	0	0	0	0	0	0	0	0
	Net requirements		0	10	14	14	14	14	14	14	14	14
Assembler	Cost of inventory	20	8	0	0	0	0	0	0	0	0	0
	Cost of overflow		0	0	0	0	0	0	0	0	0	0
	Cost of shortage		0	0	0	0	0	0	0	0	0	0
	Total cost						28					
	Gross requirements		0	10	14	14	14	14	14	14	14	14
	Inventory	9	9	0	0	0	0	0	0	0	0	0
	Net requirements		0	1	14	14	14	14	14	14	14	14
Cabinet Maker	Cost of inventory	9	9	0	0	0	0	0	0	0	0	0
	Cost of overflow		0	0	0	0	0	0	0	0	0	0
	Cost of shortage		0	0	7	7	7	7	7	7	7	7
	Total cost						74					
Total cost of t	ne whole system						268					

SPC

Definition:

Detect when a stable process departs from stability 'Quality Control' (QC)

X-bar Chart:

Assess whether a production process is under control or not Three parallel lines

Center : target line for the Process Mean

Above : Upper Control Limit (UCL)

Below : Lower Control Limit (LCL)

Under control : averages fall randomly within the LCL and UCL limits.

Out of control : a shift " δ " in the mean

SPC

Old X-bar chart

All measurements are under Control.

However, there is the drift between Chart mean value and setting Mean value.

Chart: 1,991,115 Setting: 1,990,078

SPC New Chart

Set UCL and LCL with sample A, Generate chart with sample B

There is no drift between two mean values

DMAIC/DFSS

- Six Sigma Approach is a set of administrative, statistical concepts and techniques for process improvement
- Six Sigma seeks to improve the quality of process outputs
 - Six Sigma focus on minimizing variability in processes and eliminating the cause of defects

- Six Sigma has five phases :
 - 1. Define
 - 2. Measure
 - 3. Analyze
 - 4. Improve
 - 5. Control

 To achieve the efficiency-cost aim, we use the divided six sigma improvement, which are Define, Measure, Analyze, Improve and Control.

	Phase	Step	Tools		1.Data collection	Data collection planning
		2.Selection of Initial Projects 3.Problems and Mission Statement for Project 4.Select and Launch the Project	Strategic alignment and goal deployment Cost of Poor Quality analysis Project selection and chartering Project management	Analyze	3.Analysis of theory and relationships	Power and sample size Confidence intervals Hypothesis testing protocol T-test, ANOVA, Normality test
			/OC		1.Evaluate alternatives 2.Doe to optimize	DOE Benchmarking
		2.Document the process 3.Plan for data collection 4.Validate the measurement system	Process mapping Process FMEA Data collection planning MSA Graphs and charts	Improve	3.Process solution 4.Assess effectiveness 5.Resistance to change 6.Implementation plan	Lean event Mistake proofing Process mapping Process FMEA
r	Measure		Stratification Process Capability sigma Calculation Pareto chart Fish bone	Control	1.Establish controls 2.Validate means 3.Process capability 4.Monitor process	Process control plan 5S Statistical process control Standard operating procedures Self-control analysis

Then we did the capability analysis

From the capability sixpack, LSL=\$180m, USL=\$220m.

The lowest daily expense is acceptable, however, the highest daily expense should be improved.

After analyzing this situation, the daily expense higher than \$200m is mainly due to the seasonal equipment maintenance and periodic update.

As a result, we conclude that the

daily expense of St. Jude Children's Research Hospital is stable and acceptable.

Acceptance Sampling

Definition:

Developing inspection plans that enable you to accept or reject a particular lot of incoming material based on the data from a representative sample.

OC Curve:

Depicting the discriminatory power of an acceptance sampling plan. The OC curve plots the probabilities of accepting a lot versus the fraction defective.

Acceptance Sampling

Method:

Éxcel, Minitab and Nomograph

N=280

C≠35

 $P[m \leq c] = \sum_{m=0}^{c} \frac{n!}{m!(n-m)!}$ 280 (n) .02 -.03 -- 001 Po=AQL = .10-PI:LTPD .20 .30 = 0.15=13 .25 -O((AQL) .30 -= 0.9=1-0. .35 — - .98 -.99 - .995 .40 -E .999 .45 -.50 -

₩≤0.1

Acceptance Sampling

Minitab AQL=0.1 LTPD=0.15 Average: 0.125 Number of rows of data to generate: 280 C2 Store in column(s): C1 Event probability: 0.125 Select Help ОК Cancel

K1<35. Accept

Quality Companion-VSM

Identify Potential Project

- The logistic management of the hospital related to all aspects of the medical services. Such as, medical system support, medicine, equipment, electrical, air-conditioning, parking lot etc. Therefore, the logistic costmanagement in a hospital is worthy to supervise and improve.
- Whereas, the logistic cost combines every aspects of St. Jude Children Hospital. Here we pick out THREE main aspects to supervise and improve. These three aspects are the dominant factors that effect the performance of the logistic. Hence, we need to supervise and improve their efficiencycost.
- 1. Food service
- 2. Parent housing
- 3. Daily routines

Pareto Analysis

In the Patient logistics department, we created a survey for the overall satisfaction of the patients in terms of food services, Housing Accommodation, Daily routines. From this survey we found out that maximum no. of complaints were due to the housing accommodation where parents of patients are stationed off the hospital building in the nearby campus

Pareto Analysis

St. Jude charitable Organization

Quality Companion-Uses

- Organize your project
- Streamline how you will approach your improvement project
- Saves Time and Reduces errors
- Easy to Share, Review and Archive your work
- Helps in planning, design, organization, brainstorming and reporting
- On-demand guidance (Built-in Coaches)
- Easy to manage
- Makes quality improvement efficient

Purpose of Value Stream Mapping & Analysis

Definition:

 VSM is a lean manufacturing technique used to analyze and design the flow of materials and information required to bring product or service to a consumer.

Purpose:

- Develop a common understanding of the current process
 - The relationship of process steps
 - A true picture of the process
- Create a baseline to measure improvements against
- Define a vision of the future process
- Establish common leadership objectives
- Identify opportunities for improvement
- Design an implementation plan for improvements

Value of Value Stream Map

The Value Stream Map provides visibility of the entire process

The process may cross functional boundaries

Without the map, you may focus on the wrong areas to try to improve

Analyzing the Value Stream

Planning tool to optimize results of eliminating waste.

Step 1 - Prepare

Gathering Preparatory Information

Document the Case for Change:

Measure the time taken for each of the processes right from putting patient information to checking out & document them

Define the Scope (start and end of process):

- When the patient's family approaches the hospital's desk for admitting the patient, putting all the information needed.
- When the patient's family checks out from the hospital, collecting all the medical documents & medicines.

Step 2 - Gather Data (Develop Current State)

- Observe and gather data
 - Gather data for each step in the flow

Actual lead time	Output	Work
Actual cycle time	On time delivery	Staffing
Defect rate	Quality	Variations in process

- Map the flow of items
- Map the flow of information
- Add data and issues

Step 3 – Future State & Action Plans

Discuss the ideal state

Develop the future state map

Develop action plans

Types of Lean Events

- Lean tools are used to identify, measure and eliminate waste which adds no value.
- Value increases customer satisfaction.
- Some Lean tools used are:
 - Takt Time
 - Continuous flow
 - First In First Out

takt time = $\frac{available time(in a day)}{average daily demand}$

Future State VSM

Conclusion

	System Lead Time	Process Lead Time	Total
Current VSM	21.667 Hr	64.99 Hr	86.657 Hr
Future VSM	19.33 Hr	58 Hr	77.33 Hr
Time Saved	2.337 Hr	6.99 Hr	9.327 Hr

Conclusion

Throughout the activities in this course, we have all learned much about the operations of St. Jude Children's Hospital and the methods used in Productivity and Quality Engineering.

Through the use of the methods discussed and their respective results, it was concluded that St. Jude Children's Hospital can make changes to their Logistics department to ensure price savings and higher patient satisfaction.