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1.0 Introduction 

 

We use statistical distributions to estimate the Covid-19 Staff and Equipment requirements to 

successfully cope with an overflow of patients. This work is part of our struggle vs. Covid-19: 

https://www.researchgate.net/publication/341282217_A_Proposal_for_Fighting_Covid-

19_and_its_Economic_Fallout Previous work includes screening with Design of Experiments: 

https://www.researchgate.net/publication/344924536_Design_of_Experiments_DOE_in_Covid-

19_Factor_Screening_and_Assessment using statistical methods to establish a new Vaccine Life: 

https://www.researchgate.net/publication/344495955_Survival_Analysis_Methods_Applied_to_

Establishing_Covid-19_Vaccine_Life as well as to help accelerate vaccine testing: 

https://www.researchgate.net/publication/344193195_Some_Statistical_Methods_to_Accelerate_

Covid-19_Vaccine_Testing and a Markov model to study problems of reopening college:  

https://www.researchgate.net/publication/343825461_A_Markov_Model_to_Study_College_Re-

opening_Under_Covid-19 and the effects of Herd Immunization: 

 https://www.researchgate.net/publication/343345908_A_Markov_Model_to_Study_Covid-

19_Herd_Immunization?channel=doi&linkId=5f244905458515b729f78487&showFulltext=t

rue as well as of general survival: 

 https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-

19_Survival_Analysis   about socio-economic and racial issues affected by Covid-19: 

https://www.researchgate.net/publication/343700072_A_Digression_About_Race_Ethnicity_Cla

ss_and_Covid-19 and developing A Markov Chain Model for Covid-19 Survival Analysis: 

https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-

19_Survival_Analysis and An Example of Survival Analysis Applied to analyzing Covid-19 Data: 

https://www.researchgate.net/publication/342583500_An_Example_of_Survival_Analysis_Data

_Applied_to_Covid-19, and Multivariate Statistics in the Analysis of Covid-19 Data, and More 

on Applying Multivariate Statistics to Covid-19 Data, both of which can also be found in: 

https://www.researchgate.net/publication/341385856_Multivariate_Stats_PC_Discrimination_in

_the_Analysis_of_Covid-19, and the implementation of multivariate analyses methods such as:  

https://www.researchgate.net/publication/342154667_More_on_Applying_Principal_Component

s_Discrimination_Analysis_to_Covid-19 Design of Experiments to the Assessment of Covid-19: 

https://www.researchgate.net/publication/341532612_Example_of_a_DOE_Application_to_Cor

onavarius_Data_Analysis Offshoring: https://www.researchgate.net/publication/341685776_Off-

Shoring_Taxpayers_and_the_Coronavarus_Pandemic and reliability methods in ICU assessment: 

https://www.researchgate.net/publication/342449617_Example_of_the_Design_and_Operation_

of_an_ICU_using_Reliability_Principles and Quality Control methods for monitoring Covid-19: 

https://web.cortland.edu/matresearch/AplicatSPCtoCovid19MFE2020.pdf  
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2.0 Problem Statement 
 

We use Poisson and Negative Binomial distributions to estimate Covid-19 Staff and Equipment 

requirements to successfully cope with a possible patient overflow. We assume that the reader is 

familiar with our previous paper on designing and operating a hospital ICU, that is found in: 

https://www.researchgate.net/publication/342449617_Example_of_the_Design_and_Operation_

of_an_ICU_using_Reliability_Principles There, we discussed how to assess ICU and ventilator 

reliability and maintainability requirements using survival analysis, FTA & FMEA methodology. 

Also, mean life, times to failure, and confidence intervals of life parameters were obtained. 

 

In the present article we implement several statistical procedures to estimate health care system 

(hospital, ward, ICU, etc) load, and operating requirements (number of beds, of doctors, nurses, 

ventilators, etc.) to successfully cope with a possible health system overload, during the second 

Covid-19 wave. One of the important concerns of the second wave is that the health care system 

may have to handle a very large number of patients requiring critical medical attention. 

 

We assume that data from the first Covid-19 wave is available, and that there does exist a data 

collection system in place, to update said data base with incoming data from the second wave. 

Lack of data is one of the most daunting problems in correctly estimating system requirements. 

 

After establishing the number of incoming Covid-19 cases using said data base, we estimate the 

operating requirements for successfully dealing with increasing patient input. We first use the 

Poisson distribution, a more traditional procedure for these endeavors. Secondly, we implement 

the Negative Binomial distribution, which is not so commonly used here, but which yields good 

results. We then validate the results by simulating patient admissions with the Negative Binomial 

and the estimated parameters, evaluating the results through a survival analysis. We then 

compare and discuss the different methods’ evaluations and we conclude. 

 

3.0 Poisson Distribution  

 

Assume that a hospital ICU has calculated how, every hour, on the average, five new Covid-19 

patients are admitted. A Poisson distribution
1
 with Mean five (Lambda: λ = 5) has been used to 

describe the current situation. It is customary to provide three estimations: an average, a best, 

and a worst case. We use the mean point estimator (λ=5) for the average case, and the Lower 

and Upper Limits of the Confidence Interval (CI) for the mean, as best and worst case values.  

 

There are two situations. First, both the average and the data that provided it exist. Secondly, said 

average comes from a subject-matter expert estimated guess. We will illustrate both cases next. 
 

We generate Covid-19 patient hourly admissions data for 50 consecutive hours (over two days) 

at a hospital ward, using a Poisson distribution with mean λ = 5: 

 

    8    5    2    4    4    7    4    7    3    7    4    5    5    5    4     7    7    6    3    5    3    4    5    4    5   

10    4    7    7    8     2    5    4    2    4    9    6    6   10    7    4    3    6    4    4     5    9    2    7    6 

 

                                                 
1
 Poisson Distribution: https://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm  
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These simulated data represent a data collection effort of 50 hours at a hospital ward. There, the 

admissions of Covid-19 patients per hour were obtained.  Data were then processed, to obtain the 

point estimator λ and confidence interval for the unknown Poisson Mean λ. 

 

There are several procedures to obtain a CI for a Poisson Mean. Some are given in: 

http://onbiostatistics.blogspot.com/2014/03/computing-confidence-interval-for.html  

 

We used the large sample approach. We first computed the Poisson sample mean λ=5.28. Then, 

we obtained the sample mean Standard Deviation: Sqrt(5.20/50) = 0.3225. Then we add/subtract 

said Std-Dev, times the 97.5
th

 percentile of the Normal Standard (1.95), to mean λ, obtaining: 

 

95% CI: Lower Limit:         4.64792;     Upper Limit:         5.91208 

 

We calculated the Average, Best and Worst Cases Probabilities for selected admissions per day: 

 

Best Case: Prob. up to 130 admissions in 24 hours: Poisson (4.64*24=111.55; 130) = 0.96 

 Prob. (admitting over 130 patients) = 1- 0.96 = 0.04 

Average Case: for up to 130 admissions in 24 hours: Poisson (5.28*24=126.72; 130) = 0.64 

 Prob. (admitting over 130 patients) = 1- 0.636 = 0.364 

Worse Case: for up to 130 admissions in 24 hours: Poisson (2.91*24=141.8; 130) = 0.17 

 Prob. (admitting over 130 patients) = 1- 0.17 = 0.83 

 

We can then use such probabilities of Covid-19 admissions to help staff doctors and nurses, to 

prepare or seek beds, ventilators and other necessary hospital equipment, etc. For example, if we 

select an Average Case of 130 admissions, then 64% of the time actual admissions will go over 

130. It would be safer to plan for a larger number of admissions that would be surpassed say 5%: 

 

Average Case: for up to 145 admissions in 24 hours: Poisson (5.28*24=126.72; 145) = 0.9499 

 Prob.(admitting over 145 patients) = 1- 0.9499  = 0.0.05 (or 5% of the time) 

 

Planning for admission of 145 Covid-19 daily patients, surpassed 5% of the days, is much safer. 

 

When there is no data on hospital hourly admissions, or when there is an estimate, but the data 

used to obtain it is lost, we use a subject matter expert to provide an estimate λ of the Poisson 

Mean, as well as values for the Best and Worst cases. These do not yield the best results, but can 

be used as initial estimates, and can be later updated as new information is collected. 

 

4.0 Negative Binomial Distribution 

 

In the above-mentioned case if not having estimations or a CI for the Poisson Mean we may use 

another procedure, which may provide better information. We will require knowledge about (or 

an estimation of) the probability “p” of hospital bed occupancy, per a pre-established interval of 

time (e.g. per day, per hour, half-hour). Let’s explain through a numerical example. 

 

Assume that a hospital has investigated how, in every pre-established interval of time (e.g. an 

hour, a half-hour, 15 minutes), a Covid-19 patient has (or has not) be admitted. Assume that 

http://onbiostatistics.blogspot.com/2014/03/computing-confidence-interval-for.html


each interval constitutes a Bernoulli trial with two outcomes: (1) a patient is admitted during this 

time (2) or is not. Such two results are denoted with a 1 or a 0. We count the number of intervals 

(or Bernoulli trials) until a patient is admitted, considered a success with probability p, or is not 

(a failure; with 1-p). The distribution used to describe this situation is the Geometric
2
 (p).  

 

We then consider the number of time intervals (X) in an eight-hour shift (i.e. the number, out of 

its eight time intervals) until a total of K successes or admissions, is obtained. The statistical 

distribution used to describe this situation is the Negative Binomial (x,k,p)
3
, which has three 

parameters: success probability “p”, number of intervals “x”, and desired successes, “k”. 

 

For example, consider the run of “x” hour-long time intervals, where no patient admissions has 

occurred (failures), until one admission (success) finally occurs. Then, consider the number (x) of 

time intervals until the fifth patient (k=5) is admitted. We can have two different (one individual 

and one cumulative) Negative Binomial probability statements: 

 

Probability that the K
th

 admission occurs at the X
th

 time slot: P{X=x; k} 

 

Probability that K
th

 (but no more) admission occurs, at or before the X
th

 time slot: P{X≤ x; k} 

 

This modeling approach may not be as traditional in Public Health. But we believe it provides 

useful information. We will next illustrate its implementation, through a numerical example. 

 

Fifty observations with failures (0) and successes (1), each one representing either a Covid-19 

admission (or not) at a hospital ward, were generated for fifty time intervals (Bernoulli trials) of 

one hour each, using probability of success p = 0.2 per hourly time interval. Said data are: 

 

   1   0   1   0   0   0   1   0   0   0   0   0   1   0   0   0   0   0   0 1   0   0   0   1   0   0   0   0   0   0   0   

0   1   0   1   0   0   0 1   0   0   0   1   0   0   0   0   0   0   0 

 

Said simulated data represent a data collection effort of 50 hours at a hospital ward. Zero or unit 

represent the admissions (or not) of Covid-19 patients, in each hourly interval.  From these data 

we obtained a point estimator and confidence interval for the unknown Bernoulli proportion p. 

 

In order to provide the three customary estimations (average, best and worst cases) we use the 

point estimator p=0.2 as the Average case, and the Lower and Upper Limits of its CI as the best 

and worst case values. The procedure we followed to calculate a CI for ‘p’ is described in:  

https://stats.stackexchange.com/questions/4756/confidence-interval-for-bernoulli-sampling  

 

We used the large sample approach. We first obtained the sample proportion p = 0.2. Then, we 

obtained the Standard Deviation for proportion p: Sqrt(0.2*0.8/50) = 0.0565. Then we added and 

subtracted to proportion p=0.2, said Std-Dev times the Normal Standard 97.5
th

 percentile (1.95): 

 

95% CI: Lower Limit:  0.0891;     Upper Limit:         0.3109 

 

                                                 
2
 Geometric Dist. parameters, formulas, etc.: https://en.wikipedia.org/wiki/Geometric_distribution  

3
 Negative Binomial Dist. parameters, formulas, etc.: https://en.wikipedia.org/wiki/Negative_binomial_distribution  

https://stats.stackexchange.com/questions/4756/confidence-interval-for-bernoulli-sampling
https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Negative_binomial_distribution


We give details for the Average case below. All cases are implemented in a similar fashion. 

 

Since every hour a Covid-19 patient is either admitted (1) or not (0), we consider the run of all 

hourly time slots (X) until the K
th

 desired admission (success) occurs. The time slot events are 

independent. Probability that the Third patient is admitted in the Fifth hourly time slot is: 

 

Probability (Third Patient admitted in 5
th

 slot) = P{X=5;k=3;p} = (1-p)
5-3

*p
3
=0.8

2
*0.2

3
= 0.0307 

Probability (Third Patient admitted up to 5
th

 slot) = P{X ≤ 5;k=3;p} = ƩiP{X=i}= 0.0579 

 

Prob. (admitting the Third patient after the Fifth time slot) = 1- 0. 0579 = 0.9421 

 

Scheduling of beds, doctors, nurses, ventilators etc. is dependent on the number of admissions. 

That 94.2% of the times, there will be more admissions than three is a very risky situation. One 

way to decrease such risk is to increase the time X to admission from Five to Eight times slots: 

 

The probability that the Third Covid-19 patient is admitted up to the last (8th) hourly shift slot: 

 

Probability (X≤8;k=3;p) = Negative-Binomial (x≤8; k=3; p=0.2) = 0.2031 

 Prob. (admitting over 3 patients in an eight hour shift) = 1- 0.2031 = 0.7969 

 

Thence, if we have at most three ICU beds, ventilators, etc., available in an eight-hour shift, ICU 

will be overwhelmed 79.6% of the shifts, as there will occur over three admissions per shift. ICU 

will need to increase available beds, ventilators, etc., to cope with such p=0.2 admissions rate. 

 

There is another application of the Negative Binomial, to help with Logistics of Covid-19 patient 

admissions. It consists in finding an admissions pattern (e.g. a convenient p) that fits the results 

we are observing in the ICU, and estimating from it the staff etc. requirements needed to cope. 

 

Assume that we are observing admissions of about 20 patients per eight hour shift. We want to 

explore this situation further using the Negative Binomial. We create a smaller time slot, dividing 

the hourly interval into 60 minutes. We define p = 0.07, 0.06, 0.05, 0.04 per minute, respectively. 

For example, for p=0.06 we have: 0.06*15 = 0.9 yielding a 90% chance of having: one patient 

admitted every 15 minutes, and of 0.15*4*8 = 28.8 patient admitted per shift, and so forth. 

 

We calculated the probabilities of admission for selected minutes (180 minutes=three hours; 240 

minutes=four hours, etc. until 480 minutes = eight hours). Calculation results (Evt are minutes, 

and NBin04 etc. are the probabilities of having 20 admissions up to Evt minutes) are below: 

 
Evt     NBim04   NBim05   NBim06   NBin07 

 240     0.00175   0.01848    0.08739   0.24114 

 300     0.01903   0.11904    0.34626   0.62178 

 360     0.08964   0.34676    0.67004   0.88332 

 420     0.24399   0.61999    0.88204   0.97610 

 480     0.45797   0.82638    0.96871   0.99648 

 

 



For example, for p=0.06, 1/3 of the times (300 minutes=5 hours) there are 20 admissions, or one 

half admissions by 330 minutes, or 2/3 by 360 minutes (6 hours); or 97% by the shift end (8 hrs). 

 

 Prob. (admitting over 20 patients, in an 8 hour shift; p=0.06) = 1- 0.9687= 0.0313 

 

Thence, if there are 20 ICU beds, ventilators, etc. available per eight-hour shift, and the true rate 

of admission is p=0.06 per minute (case of 28.8 admissions/shift), the ICU will be overwhelmed 

3.13% of the shifts. This approach allows public health and hospital professionals to assess, in 

advance, if there are enough resources to successfully deal with a rising admissions situation. If 

not, this approach allows them to prepare a plan B by comparing other alternatives created using 

different numbers of admissions, or of probabilities, per an eight hour shift. 

 

To better illustrate this approach, patient admissions, for p = 0.04, 0.05, 0.06 were simulated for 

100 shifts. The descriptor statistics are presented below: 

 
Var20       N   Mean  SEMn  StDev   Min     Q1     Med     Q3      Max 

NB04      100  505.6    10.1    101.2    289.0   432.3  495.0   564.8   823.0 

NB05      100  401.3    8.93      89.3    175.0   346.2  403.0   449.5   656.0 

NB06      100  334.9    6.30      63.1    197.0   284.0  332.0   368.5   551.0 

 

Notice how, for smaller admission probabilities (and less patients admitted), the mean time to 

arrive to 20 admissions is longer (e.g. 505 minutes for p=0.04) than for larger probabilities (334 

minutes for p=0.06). That is why these ICUs fill up sooner. Mean and Median are very close, so 

these distribution are relatively symmetric. Standard deviations and quartiles may help build 

some intervals for playing the “what if” game with admission input and assessing their results. 

 

To assess the simulated results as well as provide the above-mentioned standard deviations and 

quartiles (to play “what if” comparisons) we implemented (Kaplan-Meier) survival analyses. We 

present selected values of minutes, survival probabilities, and 95% confidence intervals, below: 

 
Mean(min) Std-Dev LowerBd UpperBd Q1 Med Q3 IQR Prob. 

505.55  10.1249 485.706 525.394 432 494 564 132 0.04 

401.36  8.93191 383.854 418.866 346 401 448 102 0.05 

334.98  6.30105 322.630 347.330 284 332 367 83 0.06 

 

Min. SurvPr. 1-Surv  LowerLim. UpperLim. Prob. 

359 0.96  0.04  0.921593 0.99841 0.04 

481 0.56  0.44    0.462710 0.65729 0.04 

520 0.41  0.59  0.313602 0.50640 0.04 

359 0.67  0.33  0.577840 0.76216 0.05 

480 0.17  0.83  0.096377 0.24362 0.05 

515 0.09  0.91  0.033909 0.14609 0.05 

360 0.31  0.69  0.219353 0.40065 0.06 

472 0.02  0.98  0.000000 0.04744 0.06 

528 0.01  0.99  0.000000 0.02950 0,06 

  

Notice how, about 360 minutes (after 6 shift hours), 96%, 67% and 31% of times, these wards or 

ICUs still haven’t had 20 admissions. At shift end (480 minutes) survival rates are 56%, 17% and 

2%, respectively and 1-Surv probs are close to  the NegBin.(k≤20). Forty minutes after shifts end 

(about 520 minutes), rates are 41%, 9% and 1%. If true admission rates were about 20 pat./shift, 

the 20 bed ICUs will do fine. If admission rates go up to 29, ICUs will be overloaded pretty fast. 



We present below, the survival plots for p=0.04 and 0.06 that extend what has been said above. 

Select any time (abscissas) and verify the corresponding survival probability (ordinate) value: 

 

 
 

    
 



5.0 Discussion and Extensions 

 

Methods discussed in this paper can be used to estimate staff and equipment requirements: ICUs, 

ventilators, doctors, nurses, support personnel, and medical equipment, that increasing number of 

admissions, stemming from the second wave of Covid-19, will require. Estimations are made by 

conveniently redefining success and failure events, and their corresponding probabilities, as done 

above. Such estimations are badly needed at all levels, especially at regional and ICU levels. 

 

In addition, the length of use of ICUs and its medical resources is a very important factor in their 

availability. Readers are directed to two papers on survival analysis, from our previous work: 

https://www.researchgate.net/publication/342583500_An_Example_of_Survival_Analysis_Data

_Applied_to_Covid-19  There, probabilities of survival of patients on ventilators, given their age 

and co-morbidities, are estimated, including providing estimates of their times to death: 

https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-

19_Survival_Analysis  If resource shortages bring about a Triage, such estimates may be used to 

determine patient allocation  of ward, ICU and ventilator facilities.  

 

We assumed that the admissions processes follow first a Poisson, and then a Negative Binomial 

distribution. If such assumptions are incorrect, the ensuing results are unsubstantiated. There are 

ways to assess such assumptions, implementing Goodness-of-Fit tests to the data collected. This 

is outside the scope of our work, but we include some titles, in the Bibliography, for reference. 

 

The Poisson and Negative Binomial distributions are based on different fundamentals. Poisson is 

based on the number of events per unit time. If a point process follows the Poisson distribution, 

then the times between successive inputs are distributed Exponential. The Geometric distribution 

is concerned with the number of failures until a success occurs. Negative Binomial distribution is 

obtained from the sum of independent and identically distributed Geometric random variables. It 

yields the number of events required until a pre-established number of successes occur. 

 
The Geometric distribution is the discrete analogue of the Exponential. The Negative Binomial is 

the discrete analogue of the Gamma, and is obtained from the sum of independent, identically 

distributed Exponential random variables. Notice, in the table below, how the Geometric and 

Exponential distributions, as well as the Negative Binomial and the Gamma distributions, are 

relatively close, for moderately large values of X; 

  
X    Geo(0.2)    Exp(5)      NB(3,8,.2)   Gamma(3,5) 

7    0.790285    0.753403    0.148032    0.166502 

8    0.832228    0.798103    0.203082    0.216642 

9    0.865782    0.834701    0.261802    0.269379 

10  0.892626    0.864665    0.322200    0.323324 

 

The above is not just a pedantic show off about theoretical knowledge, but also a useful fact. Not 

every statistics package includes these four distributions. For example, older versions of Minitab 

do not include the Negative Binomial (the newest version does). But they do include the Gamma 

and Geometric. An alternative is to use the distribution definitions above to directly obtain (or 

approximate) the Negative Binomial through either Geometric or Gamma, thus avoiding the use 

of more convoluted procedures, based on the Binomial distribution. 

https://www.researchgate.net/publication/342583500_An_Example_of_Survival_Analysis_Data_Applied_to_Covid-19
https://www.researchgate.net/publication/342583500_An_Example_of_Survival_Analysis_Data_Applied_to_Covid-19
https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-19_Survival_Analysis
https://www.researchgate.net/publication/343021113_A_Markov_Chain_Model_for_Covid-19_Survival_Analysis


 

Finally, in the Bibliography section, we included the urls of two excellent statistics textbooks 

discussing the distributions used in this paper, and an article on combining statistics with O.R. 

 

6. Conclusions 

 

This Covid-19 work stems from our proposal to the retired academic and research communities: 

https://www.researchgate.net/publication/341282217_A_Proposal_for_Fighting_Covid-

19_and_its_Economic_Fallout  which pursues one goal: to contribute to defeat Covid-19.  

This paper is a tutorial on the uses of the Negative Binomial Distribution, to help estimate the 

staff and equipment hospitals require, to deal with a surge in the admission of Covid-19 patients. 

The data analyzed was created using this researcher’s experience and information. Our numerical 

results have only illustrative value. However, researchers, public health, and medical officers and 

practitioners, can follow these statistical procedures, substituting their data for ours, generating 

additional analyses, and including new factors, as they become available.  

We want to reach four audiences: (1) public health professionals and researchers, (2) medical 

doctors, (3) statisticians and (4) the public in general. We want to encourage public health and 

medical professionals to use more statistical procedures, not always easy to implement. Health 

and medical professionals, and statisticians, need to do more joint work: not only after data have 

been collected, but also at the time that experiments are being designed. Joint work enables the 

possibility of extrapolating to the general population (statistical inference) the promising results 

obtained in their laboratories and hospital wards. This is the final objective of research.  

We want to encourage statisticians, especially those retired, who have the experience, financial 

support (their pension), and the time to provide such assistance, to contribute in helping with the 

planning, implementation and analysis of statistical procedures –or with writing about them.  

We want to provide illustrative examples to doctors, public health researchers, and to the general 

public, to help them better understand what the others do, fostering more efficient collaboration. 

Finally, we have written a series of papers on statistical analysis of Covid-19. They are listed in 

the initial section of this article, with their web addresses. Such papers could become a part of a 

biostatistics course in public health, or an applications course, in the medical curriculum. 

 

https://www.researchgate.net/publication/341282217_A_Proposal_for_Fighting_Covid-19_and_its_Economic_Fallout
https://www.researchgate.net/publication/341282217_A_Proposal_for_Fighting_Covid-19_and_its_Economic_Fallout
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