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Introduction

In the previous (first) article of this series, random variables (R.V.),

distributions and parameters were overviewed and the problem of

outliers was briefly discussed. Our objective was to provide practicing

engineers with a more thorough understanding of the philosophy

behind the statistical procedures they need to apply in their materials

work. [1,2].

In this second article we pursue further this objective by discussing

problems related with sampling, estimation and testing. We have seen

how every random process (or R.V.) has two or more outputs that fol-

low a distinctive pattern (its distribution). And we have seen how such

a distribution can be uniquely specified by a set of fixed values or para-

meters. Once these two elements are known, we can answer all perti-

nent questions regarding the random process and thus take the neces-

sary decisions to control, forecast or effect its course.

Unfortunately, in almost every case the R.V. distribution and its

associated parameters are unknown. Then, the best that we can do is

to observe the process (i.e. sample) and use these sample observations

to reconstruct both the distribution and the parameters that generated

them (estimation) or to confirm or reject some educated guess that we

have previously formed, about these distribution and parameters

(hypothesis testing).

Sampling

Statistics is about taking (optimal) decisions under uncertainty. We

deal with a random process (R.V.) whose distribution and parameters

we ignore but would like to know for then we would be able to define

the optimal strategy vis-à-vis this random process. Hence, we observe

this process for as long as we can afford: this is sampling. Sampling’s

first assumption is that the process is stable (that the conditions pre-

vailing during the observation period will remain the same during the

extrapolation period). Then, the sample must be taken at random, in

order for it to be "representative" of the population it comes from [3].

Sampling can take several forms. For example, we can select n sub-

jects at random from a finite population of N individuals (e.g. n light

bulbs out of a batch of N). Or we can select them from an infinite pop-

ulation (e.g. roll n times a pair of dice, from the infinite population of

possible dice rolls). We can also sample with (or without) replacement

according to whether we return (or do not return) each sample subject

back to the population, after each drawing. However, (simple, ran-

dom) sampling schemes share two common qualities. First, all indi-

viduals in the population (in sampling with replacement) or all possi-

ble samples (in sampling without replacement) must have the same

probability of selection. Second, that sampling is very expensive (either

in time, or in money or in both). For this latter reason, often sample

sizes are not very large.

Once a sample of size n is obtained, we need to synthesize it, i.e. to

create a "statistic." Since it is the product of a random (sampling)

experiment, the statistic is also a R.V. and has its distribution and para-

meters. For example, the sample average (denoted –χ) is a widely used

statistic. For, if we have a reasonably large (say, 30 or more) random

sample, from the same (unspecified) distribution (i.e. population) with

finite mean µ and variance σ2 then, by the Central Limit Theorem

(CLT) the distribution of sample average –χ is Normal, with the same

mean µ and variance σ2/n. This is a very useful result, for it provides

both, the statistical table (distribution) we need to use (Normal

Standard) as well as the necessary parameters (µ, σ) to standardize R.V.

(i.e. take it to the Standard Normal, with µ = 0 and σ = 1). Since every

Normal R.V. can be standardized, we obtain the Standard Normal dis-

tribution from –χ, via the transformation:

(1)

Due to the CLT, the sample average –χ and transformation (1) above

are among the most frequently used statistics. However, there are many

others and their use depends on the situation. First, average –χ requires

a large sample size. Then –χ is an estimator of the population mean.

And as discussed in our first article, mean and variance may become

less informative, as the population distribution becomes less symmet-

ric. In such cases we may use other sampling statistics that have associ-

ated other sampling distributions. Some of these are Student’s t, Chi

Square and F, also frequently used in estimation and testing.

The distribution of Student’s t:

(2)

is obtained when (1) the sample size is "small" (less than 30), (2) the

variance σ2 of the population is unknown (and estimated by s2) and (3)

the parent distribution is Normal. Student t distribution is "flatter"

than the Standard Normal, with heavier tails. This is a consequence of

having a larger uncertainty, since we have less information than before

(e.g. smaller n and unknown σ). We now have to deal with the "degrees

of freedom" (d.f.) parameter, which depends on the number of sample

points (n) minus one (due to the estimation of both mean and variance

from the sample). 
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value and the Power. They both serve to assess our test decision, when

taken on a specific sample with a specific test. The p value is the proba-

bility of rejecting the null hypothesis H0 with a test statistic value, as

extreme or even more extreme, than the value we have obtained from our

sample. The Power of the test is the probability of rejecting H0, with the

test statistic value that we have obtained from our sample.

All of the above situations, regarding hypothesis testing, can only be

guaranteed if all test assumptions (i.e. statistic distribution under the null,

independence and distribution of the raw data, etc.) are met. For example,

the z-test (1) for the mean requires that the population variance is known.

However, in some cases one or more test assumptions may be relaxed (to a

certain point) and the test results are still acceptable. In these cases we say

the test is Robust to (violations of) such assumption. For example, the z-

test is robust to the variance assumption, since the substitution of the sam-

ple variance s2 for the population variance σ 2 still yields an approximately

Normal Standard distribution for statistic z in (1).

When a hypothesis test is invalidated by serious violations of its

assumptions, one can still resort to other procedures such as transforma-

tions of the raw data or to the use of distribution free (non parametric)

tests. By transforming the raw data we may obtain a better fit to a more

suitable distribution that fulfills the test assumptions. By implementing a

distribution free test, we are no longer bound to distribution assumptions

(e.g. Normality) which are sometimes difficult to obtain from our data,

even after transformation. However, distribution free tests are usually less

powerful than their parametric counterparts (e.g. they do not reject H0

when it is false, as often as their parametric counterparts do). As with

everything else, there is a trade-off involved in test selection, and care must

be exercised.

Finally, there are many more types of tests than we have discussed

here. Since our objective is to overview the funda-

mentals of hypothesis testing, only the simple case of

the two sided, z-test for a single mean was presented.

As with the other topics, the reader is pointed to the

references [4, 5] for further reading and examples.

Summary and Conclusions.

In our first article we overviewed some problems

associated with the distribution of a R.V. We also

said that, once the R.V. distribution and its associat-

ed parameters were known, we could answer all nec-

essary questions and define the best strategy in deal-

ing with such R.V. (or in other words, with taking

the best decisions under uncertainty).

In practice, however, the distribution of the R.V. and

its parameters are usually unknown. Hence, to

achieve our objective (of answering questions and

defining the best strategies) we need to "estimate"

them. We do this via observing the random process

(R.V.) under study and then using these observations (sample) to form the

best educated guess regarding its unknown distribution and associated

parameters. If, due to previous experience we already have some idea

regarding the distribution and its parameters, we test. If we have no idea

and want to start constructing a framework of reference, we estimate. This

is what sampling, estimation and testing are about.

In the next and final installment of this series of articles, we will apply

the (theoretical) concepts discussed in our first two articles to several spe-

cific statistical procedures described in MIL-HDBK-5 and MIL-HDBK-

17.

Note: Comments or questions on this article can be posted on the

AMPTIAC Materials Forum located on AMPTIAC’s web site.

(http://amptiac.iitri.org)
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STATISTICAL ANALYSIS OF MATERIAL DATA
PART II: ON ESTIMATION AND TESTING
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Table 1. Hypothesis testing process
Justice System Statistical Hypothesis Testing

Presiding Judge (Ito) Statistician

Jury (of 12 peers) Test Statistic (e.g. formula (1) in the text)

Jury Task: process the evidence Statistic Task: synthesize the (data) information

Defendant (O.J. Simpson) Parameter tested (e.g. population mean)

Verdicts (Not Guilty and Guilty, always assume Hypothesis (null and alternative)

the null –Not Guilty – is true unless disproved 

by data – beyond reasonable doubt

Evidence (glove, DNA test, etc.) Data collected (for the test)

Does Evidence (data) overwhelmingly contradict 

the assumed null hypothesis beyond doubt?

Decision: acquit or convict Decision: Reject or not Reject the null hypothesis

Possible errors (misjudgement) Error Types (I and II)

Convict an Innocent Defendant Type I: Reject the null when it is true

Acquit a Guilty Defendant Type II: Accept the null when it is false

Risk of Convicting an Innocent Defendant Alpha: Probability of Type I error

Risk of Acquitting a Guilty Defendant Beta: Probability of Type II error



erance interval for a distribution (population) F, with tolerance coeffi-

cient γ, we mean that, with probability γ such random interval covers at

least a pre-specified percentage (e.g. 100%) of the population.

Testing.

Often, we do have some preconceived idea or educated guess, regarding

the random process under study. For example, previous experience may

have established that a parameter (say the population mean µ ) is equal to

a given value (say µ 0). And we would like to verify whether the current

process (or R.V.) under study maintains this value or whether it has

changed. In such cases we are dealing with a hypothesis testing situation.

We first find a suitable estimator of the parameter for which we have

made the conjecture (say, large sample average –χ for the population mean

µ ). Based on our conjecture that the true population mean is µ 0 (in tech-

nical terms, the null hypothesis H0: µ = µ 0) we derive the sampling dis-

tribution of test statistic z, given in (1) above. Under H0, z will be dis-

tributed Normal Standard (see Figure 1). When the sample size n is

small, the parent distribution is Normal and the variance σ 2 is unknown

but estimated by s2 from the sample, the test statistic becomes (2) and its

distribution under hypothesis H0 is Student t, with n - 1 d.f.

Our objective here is to decide, based upon the result of the hypothe-

sis test, whether our conjecture, as defined in the null hypothesis H0 is

reasonable (e.g. whether the value of the test statistic z, is mainstream in

its distribution). Alternatively, the test result may constitute a "rare

event" according to the hypothesized null distribution (i.e. this result has

a very low probability of occurrence under H0). In such case, one of two

possibilities exist. First, our conjecture H0 (null hypothesis) is incorrect.

Here, we fare better rejecting H0 in favor of the "alternative hypothesis"

H1 (negation of the null, or in this example that the true population

mean is other than µ0). Secondly, that we have been terribly unlucky and

such rare event has occurred precisely to us (something that would hap-

pen, under H0, at most with probability α). Hence, we reject H0 and

absorb a probability α of (Type I) error.

Hence, the probability α, "size of the test" or significance level is the

error we commit if we take this wrong decision. This probability also

determines the critical value and the critical region of the test. There are

two types of wrong decisions, namely Types I and II errors: rejecting H0

when it is true and accepting H0 when it is false, respectively. The prob-

ability α of committing Type I error is, say 0.05, if we are prepared to

reject H0 when it is true, in the long run, at most once in twenty times.

If this α is too high, we may want to reduce it to say, one in a hundred

or 0.01, etc. As with the c.i., we can reduce Type I error to zero by adopt-

ing the decision rule "always accept H0". But then we would be maxi-

mizing Type II error: accepting the null when it is false.

Once the test hypotheses, the test statistic and its distribution

under H0 and α (significance level) are defined, we obtain the critical

values and the critical regions for the test. For our example we pre-spec-

ify α = 0.05 and divide it symmetrically into two upper/lower tails. This

procedure defines zα/2 (see shaded areas in Figure 1). Hence, both crit-

ical values zα/2 for this example will be (from the Normal Standard

tables) 1.96 and -1.96 and the critical regions, the semi intervals from

zα/2 up and lower than  - zα/2. The decision to reject H0 is taken if the

value z of test statistic (1) falls in either one of these two rejection or crit-

ical regions. In any other case, we do not reject H0 (and hence assume it

is reasonable).

Lets explain the hypothesis testing process via a comparison with the

judicial system (Table 1). In the well known case of O. J. Simpson, Judge

Ito plays the role of the statistician (he directs the process and interprets

the rules). There are two hypotheses. The null (assumed) is the defendant

is innocent. Its negation or alternative is: the defendant is guilty (and

must be proven beyond reasonable doubt). The evidence is the data: the

bloody gloves, the DNA tests, etc. The Jury, plays the role of the test sta-

tistic who evaluates the evidence (data). The Jury then reaches one of two

possible decisions. It can declare the defendant guilty (reject H0) when

the evidence overwhelmingly contradicts the assumed defendant’s inno-

cence (null hypothesis). Or it can declare the defendant not guilty, if they

cannot convince themselves (i.e. beyond reasonable doubt) that the

defendant is guilty. The Jury can commit two types of errors. They can

convict an innocent (reject the null when it is true) which is Type I, or

acquit a guilty person, which is Type II. The Judicial system (and the

Statisticians) would like to minimize the probability of either of these

two possible errors.

There are two types of hypothesis tests: two sided (as the one discussed

in the example above) and one sided. Often, we are not interested in the

exact value of a parameter (say that the true population mean µ is exact-

ly µ0). Instead, we may want to test whether the mean µ is greater or

smaller than a given value (say µ0). In such case, the null hypothesis H0

becomes: µ ≥ µ0 or µ ≤ µ0, accordingly. These hypothesis tests are called

one-sided and have a single critical value and critical region.

From the above discussion, we can see that there is a one-to-one rela-

tion between two sided hypothesis tests and the derivation of confidence

intervals, and one-sided hypothesis tests and the derivation of confidence

bounds. For example, for a given sample and significance level α, if a

two-sided test for µ0 rejects hypothesis H0, then the corresponding 100(1

- α)% c.i. for µ does not cover µ0 and vice-versa.

Two widely used hypothesis tests performance measures are the p

The variance estimator:

(3)

yields (via (n -1)s2/σ2) a Chi Square (χ) Distribution which can be defined

as the sum of "n" independent, squared Standard Normal R.V. and has n

degrees of freedom associated with it. The ratio of two independent Chi

Square R.V., χ1 and χ2 divided by their corresponding d.f. ν1 and ν2,:

(4)

is distributed F, with ν1 and ν2 d.f.

Notice how all three distributions above (Student t, Chi Square and F)

require that the R.V. sample average –χ be "centered" (e.g. subtract the pop-

ulation mean µ). The corresponding non-central R.V. t, Chi Square and F

are obtained when the originating R.V.  are not "centered" (e.g. when µ is

no longer the expected value of –χ). This difference, related to the "non-cen-

trality parameter", is also used in several testing procedures included in

[1,2].

Summarizing, we first take a random sample of size n, from the popula-

tion of interest and then synthesize it into a statistic (e.g. sample average,

sample variance etc.). Then, according to our sample size, the parent distri-

bution and the statistical objectives we are pursuing, we obtain the corre-

sponding sampling distribution (e.g. z, t, Chi Square, F, etc.) and use it for

estimation or testing, as needed.

Estimation

In the initial observation of a random process or R.V., we may not have a

firm idea of what its distribution is nor where its parameters lie. Our objec-

tive, then, is to "estimate" these values from the sample. We can obtain a

point estimator (e.g., the sample average is a point estimator for parameter

population mean). However, point estimators may vary widely from sam-

ple to sample. Hence, interval estimators, i.e. random intervals that "cover"

the fixed parameter with a prescribed probability, are more efficient. For,

they provide a region where the distribution parameter may lie with some

specified probability, namely the confidence interval (c.i.).

It is known, by the CLT, that for large samples, the interval (–χ - zα/2σ/√n,
–χ + zα/2σ/√n),  covers the mean µ with probability (1 - α) or 100(1 - α)%

of the time (α defined as the non coverage probability). This means, for

example, that if the (fixed but unknown) parameter µ were an invisible

coin, sitting on top of a table, and our c.i. were a plastic dish (of radius

zα/2σ/√n) that we were throwing, to cover the coin, then (under certain con-

straints) the dish would actually cover the coin 100(1 - α)% of the time.

The error 100α would be the percentage of times our dish would not cover

the coin. Of course, the larger the dish radius (or c.i.) the smaller the cov-

erage error α. However, once covered by the dish, we no longer see where

the coin, sitting under it, lies. So, a dish (c.i.) the size of the table would

always cover the coin. Only that such c.i. becomes useless, for we are back

again in the same situation we started with (e.g. the coin can be on the

entire table under the dish).

The procedure for obtaining an interval estimator (c.i.) for µ, from a

large sample, is based on the following. By the CLT, the distribution of the

average (–χ) of a sample of size n is Normal with (unknown) mean µ and

standard deviation σ/√n. If we prescribe a "half width" or distance H, from

both directions of µ, we obtain the population percentage included in this

interval (µ - H, µ + H). If, instead, we prescribe a percentage of the popu-

lation (say 90%) to lie inside an interval (µ - H, µ + H), we can equally

obtain the necessary H. Hence, any random sample average –χ (of the pop-

ulation of all possible averages of samples of size n) will be in this interval

with probability 1 - α (say, 0.9). Also, the furthest –χ can be from µ (either

by excess or defect) and still lie in the prescribed interval, is H. Hence,

inverting the above process, we can equally say that the interval (χ - H, χ +

H) centered in average χ, will "cover" or include mean µ, with probability

1 - α, i.e. 100(1 - α)% of the times. Again, it is important to emphasize that

it is the c.i. which is random, varies, and may or may not "cover" the fixed

parameter µ.

Analogous philosophy underlies the calculation of c.i. for the mean,

when using small samples, or for the variance, the ratio of two variances,

etc. In such cases, we use some of the other above mentioned distributions

and statistics (Student t, Chi Square, F, etc.) instead of the Normal Standard

and z. But the philosophy of pre-establishing a coverage probability 1 - α
and then "inverting" the process on the statistic distribution, remain the

same as explained above.

It is important to recognize that, all other factors remaining equal, the

half width H is inversely proportional to sample size. For the large sample

c.i. for µ, we see that: 

(–χ - H,  –χ + H) = (–χ - zα/2σ/√n, –χ + zα/2σ/√n) ⇒ H = zα/2σ/√n

And this equation determines the sample size n, required for a coverage 1 - α,

when the natural variability of the R.V. is σ2, in the above mentioned case.

Finally it is important to note the difference between confidence inter-

vals and confidence bounds as well as between confidence and tolerance

intervals and bounds. As seen above, a c.i. provides two (lower/upper)

bounds within which the parameter is included 100(1 - α)% of the times

we do this. A confidence (upper/lower) bound is a value such that the para-

meter in question is (above/below) this bound 100(1 - α)% of the times.

Therefore, in a c.i., the coverage error α is equally divided between the

regions above and below its upper/lower bounds. In a confidence bound,

the coverage error is committed only in one case, hence the entire error

probability α is allotted to only one region (either upper/lower).

The main difference between tolerance and confidence intervals/ bounds

can be explained as follows. In a tolerance interval (bound) we are now con-

cerned with the coverage of a percentage of the population, as opposed to

the (c.i.) coverage of a parameter. Hence, when we say that (ξ1, ξ2) is a tol-
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Figure 1. Distribution of the Test Statistic Under the Null Hypotesis (H0).
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erance interval for a distribution (population) F, with tolerance coeffi-

cient γ, we mean that, with probability γ such random interval covers at

least a pre-specified percentage (e.g. 100%) of the population.

Testing.

Often, we do have some preconceived idea or educated guess, regarding

the random process under study. For example, previous experience may

have established that a parameter (say the population mean µ ) is equal to

a given value (say µ 0). And we would like to verify whether the current

process (or R.V.) under study maintains this value or whether it has

changed. In such cases we are dealing with a hypothesis testing situation.

We first find a suitable estimator of the parameter for which we have

made the conjecture (say, large sample average –χ for the population mean

µ ). Based on our conjecture that the true population mean is µ 0 (in tech-

nical terms, the null hypothesis H0: µ = µ 0) we derive the sampling dis-

tribution of test statistic z, given in (1) above. Under H0, z will be dis-

tributed Normal Standard (see Figure 1). When the sample size n is

small, the parent distribution is Normal and the variance σ 2 is unknown

but estimated by s2 from the sample, the test statistic becomes (2) and its

distribution under hypothesis H0 is Student t, with n - 1 d.f.

Our objective here is to decide, based upon the result of the hypothe-

sis test, whether our conjecture, as defined in the null hypothesis H0 is

reasonable (e.g. whether the value of the test statistic z, is mainstream in

its distribution). Alternatively, the test result may constitute a "rare

event" according to the hypothesized null distribution (i.e. this result has

a very low probability of occurrence under H0). In such case, one of two

possibilities exist. First, our conjecture H0 (null hypothesis) is incorrect.

Here, we fare better rejecting H0 in favor of the "alternative hypothesis"

H1 (negation of the null, or in this example that the true population

mean is other than µ0). Secondly, that we have been terribly unlucky and

such rare event has occurred precisely to us (something that would hap-

pen, under H0, at most with probability α). Hence, we reject H0 and

absorb a probability α of (Type I) error.

Hence, the probability α, "size of the test" or significance level is the

error we commit if we take this wrong decision. This probability also

determines the critical value and the critical region of the test. There are

two types of wrong decisions, namely Types I and II errors: rejecting H0

when it is true and accepting H0 when it is false, respectively. The prob-

ability α of committing Type I error is, say 0.05, if we are prepared to

reject H0 when it is true, in the long run, at most once in twenty times.

If this α is too high, we may want to reduce it to say, one in a hundred

or 0.01, etc. As with the c.i., we can reduce Type I error to zero by adopt-

ing the decision rule "always accept H0". But then we would be maxi-

mizing Type II error: accepting the null when it is false.

Once the test hypotheses, the test statistic and its distribution

under H0 and α (significance level) are defined, we obtain the critical

values and the critical regions for the test. For our example we pre-spec-

ify α = 0.05 and divide it symmetrically into two upper/lower tails. This

procedure defines zα/2 (see shaded areas in Figure 1). Hence, both crit-

ical values zα/2 for this example will be (from the Normal Standard

tables) 1.96 and -1.96 and the critical regions, the semi intervals from

zα/2 up and lower than  - zα/2. The decision to reject H0 is taken if the

value z of test statistic (1) falls in either one of these two rejection or crit-

ical regions. In any other case, we do not reject H0 (and hence assume it

is reasonable).

Lets explain the hypothesis testing process via a comparison with the

judicial system (Table 1). In the well known case of O. J. Simpson, Judge

Ito plays the role of the statistician (he directs the process and interprets

the rules). There are two hypotheses. The null (assumed) is the defendant

is innocent. Its negation or alternative is: the defendant is guilty (and

must be proven beyond reasonable doubt). The evidence is the data: the

bloody gloves, the DNA tests, etc. The Jury, plays the role of the test sta-

tistic who evaluates the evidence (data). The Jury then reaches one of two

possible decisions. It can declare the defendant guilty (reject H0) when

the evidence overwhelmingly contradicts the assumed defendant’s inno-

cence (null hypothesis). Or it can declare the defendant not guilty, if they

cannot convince themselves (i.e. beyond reasonable doubt) that the

defendant is guilty. The Jury can commit two types of errors. They can

convict an innocent (reject the null when it is true) which is Type I, or

acquit a guilty person, which is Type II. The Judicial system (and the

Statisticians) would like to minimize the probability of either of these

two possible errors.

There are two types of hypothesis tests: two sided (as the one discussed

in the example above) and one sided. Often, we are not interested in the

exact value of a parameter (say that the true population mean µ is exact-

ly µ0). Instead, we may want to test whether the mean µ is greater or

smaller than a given value (say µ0). In such case, the null hypothesis H0

becomes: µ ≥ µ0 or µ ≤ µ0, accordingly. These hypothesis tests are called

one-sided and have a single critical value and critical region.

From the above discussion, we can see that there is a one-to-one rela-

tion between two sided hypothesis tests and the derivation of confidence

intervals, and one-sided hypothesis tests and the derivation of confidence

bounds. For example, for a given sample and significance level α, if a

two-sided test for µ0 rejects hypothesis H0, then the corresponding 100(1

- α)% c.i. for µ does not cover µ0 and vice-versa.

Two widely used hypothesis tests performance measures are the p

The variance estimator:

(3)

yields (via (n -1)s2/σ2) a Chi Square (χ) Distribution which can be defined

as the sum of "n" independent, squared Standard Normal R.V. and has n

degrees of freedom associated with it. The ratio of two independent Chi

Square R.V., χ1 and χ2 divided by their corresponding d.f. ν1 and ν2,:

(4)

is distributed F, with ν1 and ν2 d.f.

Notice how all three distributions above (Student t, Chi Square and F)

require that the R.V. sample average –χ be "centered" (e.g. subtract the pop-

ulation mean µ). The corresponding non-central R.V. t, Chi Square and F

are obtained when the originating R.V.  are not "centered" (e.g. when µ is

no longer the expected value of –χ). This difference, related to the "non-cen-

trality parameter", is also used in several testing procedures included in

[1,2].

Summarizing, we first take a random sample of size n, from the popula-

tion of interest and then synthesize it into a statistic (e.g. sample average,

sample variance etc.). Then, according to our sample size, the parent distri-

bution and the statistical objectives we are pursuing, we obtain the corre-

sponding sampling distribution (e.g. z, t, Chi Square, F, etc.) and use it for

estimation or testing, as needed.

Estimation

In the initial observation of a random process or R.V., we may not have a

firm idea of what its distribution is nor where its parameters lie. Our objec-

tive, then, is to "estimate" these values from the sample. We can obtain a

point estimator (e.g., the sample average is a point estimator for parameter

population mean). However, point estimators may vary widely from sam-

ple to sample. Hence, interval estimators, i.e. random intervals that "cover"

the fixed parameter with a prescribed probability, are more efficient. For,

they provide a region where the distribution parameter may lie with some

specified probability, namely the confidence interval (c.i.).

It is known, by the CLT, that for large samples, the interval (–χ - zα/2σ/√n,
–χ + zα/2σ/√n),  covers the mean µ with probability (1 - α) or 100(1 - α)%

of the time (α defined as the non coverage probability). This means, for

example, that if the (fixed but unknown) parameter µ were an invisible

coin, sitting on top of a table, and our c.i. were a plastic dish (of radius

zα/2σ/√n) that we were throwing, to cover the coin, then (under certain con-

straints) the dish would actually cover the coin 100(1 - α)% of the time.

The error 100α would be the percentage of times our dish would not cover

the coin. Of course, the larger the dish radius (or c.i.) the smaller the cov-

erage error α. However, once covered by the dish, we no longer see where

the coin, sitting under it, lies. So, a dish (c.i.) the size of the table would

always cover the coin. Only that such c.i. becomes useless, for we are back

again in the same situation we started with (e.g. the coin can be on the

entire table under the dish).

The procedure for obtaining an interval estimator (c.i.) for µ, from a

large sample, is based on the following. By the CLT, the distribution of the

average (–χ) of a sample of size n is Normal with (unknown) mean µ and

standard deviation σ/√n. If we prescribe a "half width" or distance H, from

both directions of µ, we obtain the population percentage included in this

interval (µ - H, µ + H). If, instead, we prescribe a percentage of the popu-

lation (say 90%) to lie inside an interval (µ - H, µ + H), we can equally

obtain the necessary H. Hence, any random sample average –χ (of the pop-

ulation of all possible averages of samples of size n) will be in this interval

with probability 1 - α (say, 0.9). Also, the furthest –χ can be from µ (either

by excess or defect) and still lie in the prescribed interval, is H. Hence,

inverting the above process, we can equally say that the interval (χ - H, χ +

H) centered in average χ, will "cover" or include mean µ, with probability

1 - α, i.e. 100(1 - α)% of the times. Again, it is important to emphasize that

it is the c.i. which is random, varies, and may or may not "cover" the fixed

parameter µ.

Analogous philosophy underlies the calculation of c.i. for the mean,

when using small samples, or for the variance, the ratio of two variances,

etc. In such cases, we use some of the other above mentioned distributions

and statistics (Student t, Chi Square, F, etc.) instead of the Normal Standard

and z. But the philosophy of pre-establishing a coverage probability 1 - α
and then "inverting" the process on the statistic distribution, remain the

same as explained above.

It is important to recognize that, all other factors remaining equal, the

half width H is inversely proportional to sample size. For the large sample

c.i. for µ, we see that: 

(–χ - H,  –χ + H) = (–χ - zα/2σ/√n, –χ + zα/2σ/√n) ⇒ H = zα/2σ/√n

And this equation determines the sample size n, required for a coverage 1 - α,

when the natural variability of the R.V. is σ2, in the above mentioned case.

Finally it is important to note the difference between confidence inter-

vals and confidence bounds as well as between confidence and tolerance

intervals and bounds. As seen above, a c.i. provides two (lower/upper)

bounds within which the parameter is included 100(1 - α)% of the times

we do this. A confidence (upper/lower) bound is a value such that the para-

meter in question is (above/below) this bound 100(1 - α)% of the times.

Therefore, in a c.i., the coverage error α is equally divided between the

regions above and below its upper/lower bounds. In a confidence bound,

the coverage error is committed only in one case, hence the entire error

probability α is allotted to only one region (either upper/lower).

The main difference between tolerance and confidence intervals/ bounds

can be explained as follows. In a tolerance interval (bound) we are now con-

cerned with the coverage of a percentage of the population, as opposed to

the (c.i.) coverage of a parameter. Hence, when we say that (ξ1, ξ2) is a tol-
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Figure 1. Distribution of the Test Statistic Under the Null Hypotesis (H0).
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Introduction

In the previous (first) article of this series, random variables (R.V.),

distributions and parameters were overviewed and the problem of

outliers was briefly discussed. Our objective was to provide practicing

engineers with a more thorough understanding of the philosophy

behind the statistical procedures they need to apply in their materials

work. [1,2].

In this second article we pursue further this objective by discussing

problems related with sampling, estimation and testing. We have seen

how every random process (or R.V.) has two or more outputs that fol-

low a distinctive pattern (its distribution). And we have seen how such

a distribution can be uniquely specified by a set of fixed values or para-

meters. Once these two elements are known, we can answer all perti-

nent questions regarding the random process and thus take the neces-

sary decisions to control, forecast or effect its course.

Unfortunately, in almost every case the R.V. distribution and its

associated parameters are unknown. Then, the best that we can do is

to observe the process (i.e. sample) and use these sample observations

to reconstruct both the distribution and the parameters that generated

them (estimation) or to confirm or reject some educated guess that we

have previously formed, about these distribution and parameters

(hypothesis testing).

Sampling

Statistics is about taking (optimal) decisions under uncertainty. We

deal with a random process (R.V.) whose distribution and parameters

we ignore but would like to know for then we would be able to define

the optimal strategy vis-à-vis this random process. Hence, we observe

this process for as long as we can afford: this is sampling. Sampling’s

first assumption is that the process is stable (that the conditions pre-

vailing during the observation period will remain the same during the

extrapolation period). Then, the sample must be taken at random, in

order for it to be "representative" of the population it comes from [3].

Sampling can take several forms. For example, we can select n sub-

jects at random from a finite population of N individuals (e.g. n light

bulbs out of a batch of N). Or we can select them from an infinite pop-

ulation (e.g. roll n times a pair of dice, from the infinite population of

possible dice rolls). We can also sample with (or without) replacement

according to whether we return (or do not return) each sample subject

back to the population, after each drawing. However, (simple, ran-

dom) sampling schemes share two common qualities. First, all indi-

viduals in the population (in sampling with replacement) or all possi-

ble samples (in sampling without replacement) must have the same

probability of selection. Second, that sampling is very expensive (either

in time, or in money or in both). For this latter reason, often sample

sizes are not very large.

Once a sample of size n is obtained, we need to synthesize it, i.e. to

create a "statistic." Since it is the product of a random (sampling)

experiment, the statistic is also a R.V. and has its distribution and para-

meters. For example, the sample average (denoted –χ) is a widely used

statistic. For, if we have a reasonably large (say, 30 or more) random

sample, from the same (unspecified) distribution (i.e. population) with

finite mean µ and variance σ2 then, by the Central Limit Theorem

(CLT) the distribution of sample average –χ is Normal, with the same

mean µ and variance σ2/n. This is a very useful result, for it provides

both, the statistical table (distribution) we need to use (Normal

Standard) as well as the necessary parameters (µ, σ) to standardize R.V.

(i.e. take it to the Standard Normal, with µ = 0 and σ = 1). Since every

Normal R.V. can be standardized, we obtain the Standard Normal dis-

tribution from –χ, via the transformation:

(1)

Due to the CLT, the sample average –χ and transformation (1) above

are among the most frequently used statistics. However, there are many

others and their use depends on the situation. First, average –χ requires

a large sample size. Then –χ is an estimator of the population mean.

And as discussed in our first article, mean and variance may become

less informative, as the population distribution becomes less symmet-

ric. In such cases we may use other sampling statistics that have associ-

ated other sampling distributions. Some of these are Student’s t, Chi

Square and F, also frequently used in estimation and testing.

The distribution of Student’s t:

(2)

is obtained when (1) the sample size is "small" (less than 30), (2) the

variance σ2 of the population is unknown (and estimated by s2) and (3)

the parent distribution is Normal. Student t distribution is "flatter"

than the Standard Normal, with heavier tails. This is a consequence of

having a larger uncertainty, since we have less information than before

(e.g. smaller n and unknown σ). We now have to deal with the "degrees

of freedom" (d.f.) parameter, which depends on the number of sample

points (n) minus one (due to the estimation of both mean and variance

from the sample). 
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value and the Power. They both serve to assess our test decision, when

taken on a specific sample with a specific test. The p value is the proba-

bility of rejecting the null hypothesis H0 with a test statistic value, as

extreme or even more extreme, than the value we have obtained from our

sample. The Power of the test is the probability of rejecting H0, with the

test statistic value that we have obtained from our sample.

All of the above situations, regarding hypothesis testing, can only be

guaranteed if all test assumptions (i.e. statistic distribution under the null,

independence and distribution of the raw data, etc.) are met. For example,

the z-test (1) for the mean requires that the population variance is known.

However, in some cases one or more test assumptions may be relaxed (to a

certain point) and the test results are still acceptable. In these cases we say

the test is Robust to (violations of) such assumption. For example, the z-

test is robust to the variance assumption, since the substitution of the sam-

ple variance s2 for the population variance σ 2 still yields an approximately

Normal Standard distribution for statistic z in (1).

When a hypothesis test is invalidated by serious violations of its

assumptions, one can still resort to other procedures such as transforma-

tions of the raw data or to the use of distribution free (non parametric)

tests. By transforming the raw data we may obtain a better fit to a more

suitable distribution that fulfills the test assumptions. By implementing a

distribution free test, we are no longer bound to distribution assumptions

(e.g. Normality) which are sometimes difficult to obtain from our data,

even after transformation. However, distribution free tests are usually less

powerful than their parametric counterparts (e.g. they do not reject H0

when it is false, as often as their parametric counterparts do). As with

everything else, there is a trade-off involved in test selection, and care must

be exercised.

Finally, there are many more types of tests than we have discussed

here. Since our objective is to overview the funda-

mentals of hypothesis testing, only the simple case of

the two sided, z-test for a single mean was presented.

As with the other topics, the reader is pointed to the

references [4, 5] for further reading and examples.

Summary and Conclusions.

In our first article we overviewed some problems

associated with the distribution of a R.V. We also

said that, once the R.V. distribution and its associat-

ed parameters were known, we could answer all nec-

essary questions and define the best strategy in deal-

ing with such R.V. (or in other words, with taking

the best decisions under uncertainty).

In practice, however, the distribution of the R.V. and

its parameters are usually unknown. Hence, to

achieve our objective (of answering questions and

defining the best strategies) we need to "estimate"

them. We do this via observing the random process

(R.V.) under study and then using these observations (sample) to form the

best educated guess regarding its unknown distribution and associated

parameters. If, due to previous experience we already have some idea

regarding the distribution and its parameters, we test. If we have no idea

and want to start constructing a framework of reference, we estimate. This

is what sampling, estimation and testing are about.

In the next and final installment of this series of articles, we will apply

the (theoretical) concepts discussed in our first two articles to several spe-

cific statistical procedures described in MIL-HDBK-5 and MIL-HDBK-

17.

Note: Comments or questions on this article can be posted on the

AMPTIAC Materials Forum located on AMPTIAC’s web site.

(http://amptiac.iitri.org)
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STATISTICAL ANALYSIS OF MATERIAL DATA
PART II: ON ESTIMATION AND TESTING
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Table 1. Hypothesis testing process
Justice System Statistical Hypothesis Testing

Presiding Judge (Ito) Statistician

Jury (of 12 peers) Test Statistic (e.g. formula (1) in the text)

Jury Task: process the evidence Statistic Task: synthesize the (data) information

Defendant (O.J. Simpson) Parameter tested (e.g. population mean)

Verdicts (Not Guilty and Guilty, always assume Hypothesis (null and alternative)

the null –Not Guilty – is true unless disproved 

by data – beyond reasonable doubt

Evidence (glove, DNA test, etc.) Data collected (for the test)

Does Evidence (data) overwhelmingly contradict 

the assumed null hypothesis beyond doubt?

Decision: acquit or convict Decision: Reject or not Reject the null hypothesis

Possible errors (misjudgement) Error Types (I and II)

Convict an Innocent Defendant Type I: Reject the null when it is true

Acquit a Guilty Defendant Type II: Accept the null when it is false

Risk of Convicting an Innocent Defendant Alpha: Probability of Type I error

Risk of Acquitting a Guilty Defendant Beta: Probability of Type II error


