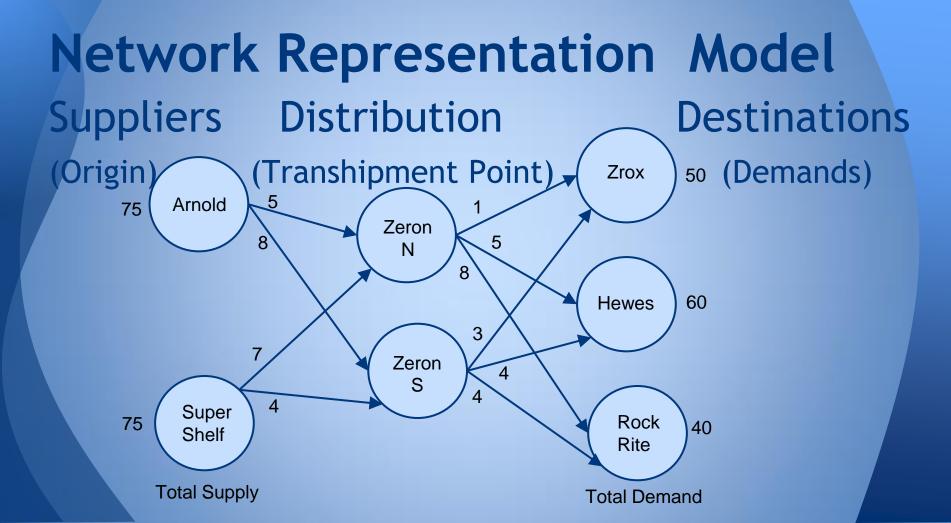
Transshipment

Brandon Davis, Emily Faiser, Gloria Karol, Akela Gaines-Porter,Zemria Sakanovic, Anthony Federico Managment Science Group 2


Transportation

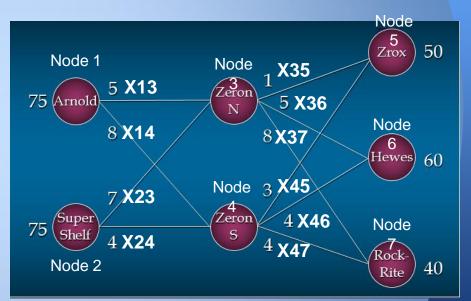
Transshipment problems are transportation problems in which a shipment may move through intermediate nodes (transshipment nodes) before reaching a particular destination node.

Transshipment problems can be converted to larger transportation problems and solved by a special transportation program.

Transshipment problems can also be solved by general purpose linear programming codes.

The network representation for a transshipment problem with two sources, three intermediate nodes, and two destinations is shown on the next slide.

Transhipment Example Chapter 6


The Northside and Southside facilities of Zeron Industries supply three firms (Zrox, Hewes, Rockrite) with customized shelving for its offices. They both order shelving from the same two manufacturers, Arnold Manufacturers and Supershelf, Inc.

Currently weekly demands by the users are 50 for Zrox, 60 for Hewes, and 40 for Rockrite. Both Arnold and Supershelf can supply at most 75 units to its customers.

Because of long standing contracts based on past orders, unit costs from the manufacturers to the suppliers are:

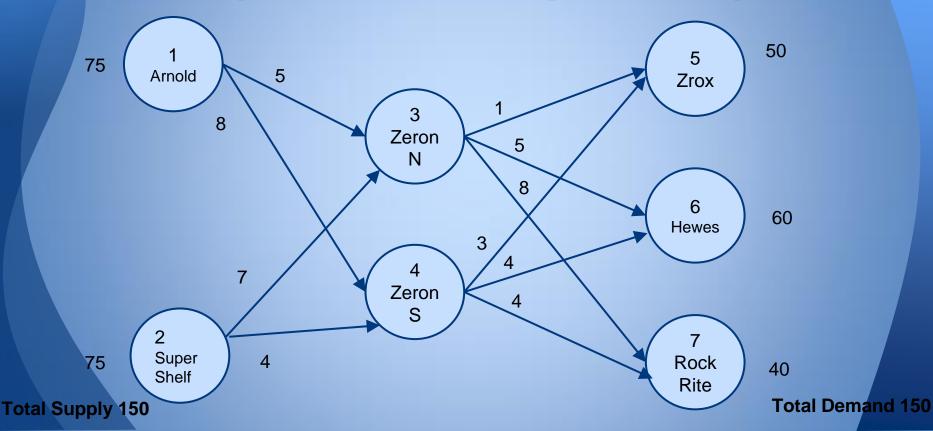
	Zeron N	Zeron S
Arnold	5	8
Supershelf	7	4
The costs to install the she	elving at the	various locations
		II. B. I.M.

	<u>Zrox</u>	<u>Hewes</u>	Rockrite
Zeron N	1	5	8
Zeron S	3	4	4

Transshipment Example Chapter 6

Objective Defined: This is a minimization problem therefore the objective is to reduce shipment costs incurred from supplier to distribution point to destination.

 $\mathsf{Min} = 5x_{13} + 8x_{14} + 7x_{23} + 4x_{24} + 1x_{35} + 5x_{36} + 8x_{37} + 3x_{45} + 4x_{46} + 4x_{47}$


Transhipment Example Chapter 6

Constraints Defined:

Amount Out of Arnold: Amount Out of Supershelf: Amount Through Zeron N: Amount Through Zeron S: Amount Into Zrox: Amount Into Hewes: Amount Into Rockrite: Non-negativity of Variables:

 $\begin{array}{l} x_{13} + x_{14} \leq 75 \\ x_{23} + x_{24} \leq 75 \\ x_{13} + x_{23} - x_{35} - x_{36} - x_{37} = 0 \\ x_{14} + x_{24} - x_{45} - x_{46} - x_{47} = 0 \\ x_{35} + x_{45} = 50 \\ x_{36} + x_{46} = 60 \\ x_{37} + x_{47} = 40 \\ x_{jj} \geq 0, \text{ for all } j \text{ and } j. \end{array}$

Transhipment Example Chapter 6

Lingo Model:

Min=5*x13+8*x14+7*x23+4*x24+1*x35+5*x36+8*x37+3*x45+4*x46+
4*x47;
!subject to;
x13+x14<=75;</pre>

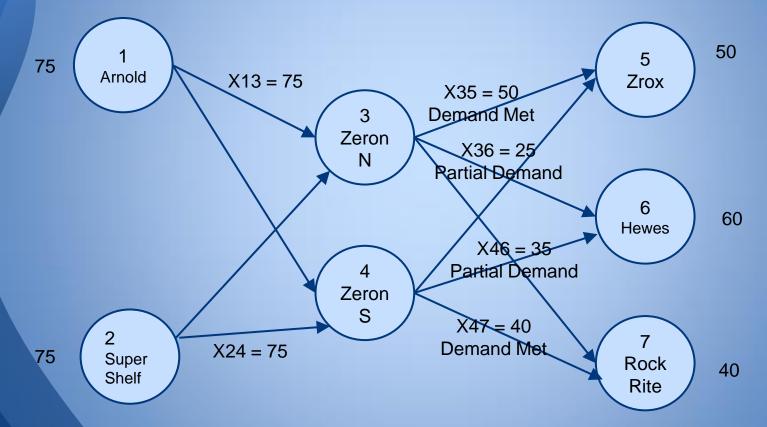
```
x23+x24<=75;
```

```
x13+x23-x35-x36-x37=0;
```

```
x14+x24-x45-x46-x47=0;
```

```
x35+x45=50;
```

```
x36+x46=60;
```


```
x37+x47=40;
```

```
End
```

Lingo Results

Global optimal solution found.		Va	riable	Value	Reduced Cost
Objective value:	1150.000		X13	75.00000	0.000000
-			X14	0.00000	2.000000
Infeasibilities:	0.000000		X23	0.000000	4.000000
Total solver iterations:	3		X24	75.00000	0.000000
			X35	50.00000	0.000000
Madal Class.	TD		X36	25.00000	0.000000
Model Class:	LP		X37	0.00000	3.000000
			X45	0.00000	3.000000
Total variables: 10			X46	35. 00000	0.000000
Nonlinear variables: 0			X47	40.00000	0.00000
Integer variables: 0			Row	Slack or Surplus	Dual Price
			1	1150.000	-1.000000
Total constraints: 8			2	0.000000	0.000000
Nonlinear constraints: 0			3	0.00000	2.000000
			4	0.00000	-5.000000
			5	0.00000	-6.000000
Total nonzeros: 30			6	0.00000	-6.000000
Nonlinear nonzeros: 0			7	0.00000	-10.00000
			8	0.000000	-10.00000

Final Results Illustrated

References

<u>Textbook:</u> Anderson, Sweeney, and Williams. <u>An Introduction to Management Science -</u> <u>Quantitative Approaches to Decision Making</u>, West Publishing Company, 12th Edition (2005). ISBN: 0-324-64971-1

<u>Powerpoint:</u> Anderson, Sweeney, and Williams. (2001). <u>An Introduction to Management Science -</u> <u>Quantitative Approaches to Decision Making</u> [PowerPoint slides]. <u>Retrieved from https://sunyit.sln.suny.edu</u>