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Introduction
This START sheet discusses some empirical and practical
methods for checking and verifying the statistical assumptions
of the Weibull distribution.  It presents several numerical and
graphical examples and provides references for further reading.

It is important to correctly assess statistical distributions.
For, when our hypothesized distribution does not hold, the
derived statistical results are invalid (6).  For example, the
confidence levels of the confidence intervals (or of hypothe-
ses tests) implemented may be completely off.  To avoid such
problems, we need to check all distribution assumptions.

Two approaches are used to assess the distribution assump-
tions.  One is by implementing numerically convoluted, theo-
retical Goodness of Fit (GoF) tests such as the Chi Square,
Anderson Darling or Kolmogorov-Smirnov.  Their lengthy cal-
culations often require the use of specialized software, not
always readily available.  On the other hand, there exist prac-
tical procedures that are easy to understand and implement and
are based on intuition and graphical distribution properties.
These procedures can also be used to assess the distribution
assumptions (5, 7, 8). 

This START sheet discusses such practical assessment proce-
dures, for the important case of the Weibull distribution, wide-
ly used in reliability, maintainability, and safety (RMS) work
(1, 2, 3, 4).  We begin with a numerical example that illustrates
the importance of this problem.  Then, we develop additional
numerical and graphical examples that illustrate the imple-
mentation and interpretation of such distribution checks.

Putting the Problem in Perspective
Assume that we need to estimate the reliability of a device,
R(T), for a Mission Time T, based on some life data (X1, ...,
Xn).  First, consider that the distribution of the life of a device
(times to failure) is Weibull (Figure 1) and then that it is
Exponential (Figure 2), having the same mean = 10.  Figures
1 and 2 were obtained from 5000 data points from each of
these two distributions.  The Weibull, in addition, has shape
parameter β = 1.23 and scale parameter α = 11.

Figure 1.  Weibull (α = 11, β = 1.23)

Figure 2.  Exponential (θ = 10)

The descriptive statistics for these 5000 data points are
shown in Table 1.  Notice how the two means are 10.  The
two distributions differ mainly in that Weibull clusters about
the mean and is therefore, less variable than the Exponential
(contrast the StDev values).
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Table 1.  Descriptive Statistics for the Data Sets
Variable N Mean Median StDev Min Max Q1 Q3

W(11,1.23) 5000 10.106 7.936 8.338 0.010 77.834 3.875 14.010
Expon(10) 5000 9.996 6.868 10.174 0.001 92.951 2.736 13.933
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There are some practical connotations of belonging to one of
these two distributions.  The Weibull distribution with shape
parameter larger than unity (β > 1) characterizes a life that dete-
riorates with time, i.e., device lives whose failure rate increases
with time (reliability decay).  On the other hand, when the shape
parameter is unity (β = 1), Weibull becomes an Exponential dis-
tribution.  Hence, the device failure rate is constant and there is
no reliability growth or decay.  Finally, if the shape parameter is
smaller than unity (β < 1), there is reliability growth because the
failure rate of the device decreases with time.

Thus, a point estimator based on the life data is obtained by cal-
culating such reliability according to some “formula.”  However,
reliability is defined as the probability that a device life X out-
lasts the device mission time T (formally, R(T) = P{X > T}).  As
a result, the assumption of a specific statistical distribution for
the device life determines which “formula” we use, as well as
which parameters it includes. 

For example, assume the data are distributed as a Weibull, with
shape parameter β and scale parameter α.  Then, the “formula”
of the Weibull reliability point estimator is:

R(T) = P{X > T} = Exp{-(T/α)β}

However, if the data are assumed Exponential, with mean θ, the
Exponential reliability estimator becomes:

R(T) = P{X > T} = Exp{-T/θ}

Because the two distributions are different the two reliability
estimations will differ (they have different formulas and param-
eters) except when the shape parameter β = 1 and the Weibull
distribution becomes an Exponential. 

For example, if the required Mission Time is T = 3 and the
parameters are known and equal to α = 11, β = 1.23 and θ = 10,
the two respective reliabilities are as follows:

If the true distribution of lives were Weibull (11,1.23):

R(T) = Exp{-(T/α)β} = Exp{-(3/11)1.23} = 0.81

If the true distribution of lives were Exponential (10):

R(T) = Exp{-T/θ} = Exp(-3/10) = 0.74

The difference between the two reliabilities is close to 10%!
Thus, it is very importance to assess (via the sample data) whether
or not that our distribution assumption is correct. 

Finally, the problem becomes yet more complex when the distri-
bution parameters are unknown.  For then we also need to esti-
mate these parameters from the samples and the uncertainty
increases even more.

Statistical Assumptions and their Implications
Fortunately, distribution model assumptions are associated with
very practical and useful implications, and the Weibull is no excep-
tion.  In practice, the assumption that Weibull is the true distribu-
tion of the lives of a device has several important connotations:
some physical and theoretical and others algebraic and graphical. 

The physical interpretations can be inferred from Weibull’s rela-
tionship to the Extreme Value Theory (3, 4).  For example, con-
sider a metallic chain where each of its “n” links has the same
size and strength.  Such a chain can be considered a series sys-
tem composed of “n” components, each having the same life dis-
tribution and failure rate.  The system fails whenever the first
failure occurs (link breaks).  Therefore, the lives of a population
of these systems (chains) would follow the Weibull.

In addition, the Weibull failure rate increases, decreases or
remains constant, according to the value of shape parameter β.
These characteristics help us assess whether the life of a device
is Weibull, by analyzing its physical conditions.

The algebraic consequences stem from another important char-
acteristic of the Weibull:  its closed functional forms that are eas-
ily manipulated from a mathematical standpoint.  Weibull’s den-
sity and distribution functions are, respectively:

The graphical consequences stem from such ease of algebraic
manipulations.  Taking the logarithms of the distribution func-
tion F(x) and doing some algebra, we obtain:

When the distribution of the lives is really Weibull, the previous
equation is that of a line.  Now assume that an estimation of F(x)
can be obtained and denote it px.  We then can substitute px in
lieu of F(x) in the equation and solve for x. 

We actually estimate the value px for any data point x, i.e., the
“median rank” by defining:

where Rank(x) is the rank of life x, in the sorted sample of size
n, of all device lives.
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Using such px values, we plot the pairs (px, x) in “Weibull paper”.
Alternatively, we can plot the Log-transformed, sorted data, right
from the above equation, as will be shown in the next section.  In
either case, we use these plots to assess whether the true distri-
bution is Weibull, and to estimate its parameters.

Practical Methods to Verify Weibull
Distribution
We now apply several empirical and practical procedures to the
life test data in Table 2 to determine if the sample (n = 45) was
taken from the Weibull. 

Table 2.  Large Sample Life Data Set (sorted)

In this life data set, two distribution assumptions need to be ver-
ified:  (1) that the data are independent and (2) that they are iden-
tically distributed as a Weibull. 

The assumption of independence implies that randomization
(sampling) of the population of devices (and other influencing
factors) must be performed before placing them on test.  For
example, device operators, times of operations, weather condi-
tions, location of the devices in warehouses, etc. should be ran-
domly selected.  Only then will the sample be representative of
the population. 

To assess the second assertion, we use informal methods, based
on the properties of the Weibull distribution.  They seem appro-
priate for the practical engineer, since they are largely intuitive
and easy to implement.

To assess a sample, we first tabulate and plot the raw data in sev-
eral ways.  The descriptive statistics are shown in Table 3 and the
histogram in Figure 3.  Next, we analyze and check (empirically
but efficiently) if a Weibull assumption holds. 

Table 3.  Descriptive Statistics of Data in Table 2

There are a number of useful and easy to implement procedures,
based on well-known statistical properties of the Weibull distri-
bution, which help us to informally assess this assumption.
These properties are summarized in Table 4.

Figure 3.  Histogram of the Sample from Table 2

Table 4.  Some Properties of the Weibull Distribution

To verify Property 1, we notice how device lives 13.49 and 13.55
(in Table 2) have ranks 28 and 29.  Since the 63rd percentile is
estimated by 0.63*n = 0.63*45 = 28.35 we need to interpolate.
The average of these two lives (13.53) yields a rough estimate of
the Weibull characteristic life α, which we will compare with
results from Properties 4 and 7.

To verify Property 2, we transform the data (Table 5).  The first
column is the original data, the second its mean rank px, the third
its transformation ln(ln(1/(1- px))) and the last column, its trans-
formation ln(X). 

For example, for the first (smallest) value (0.8997) px is: 

Substituting px for F(X) in ln(ln(1/(1- F(X)))) we obtain the cor-
responding:

= ln(0.0155) = -4.165

0.8997 1.2838 1.5766 1.8627 2.4193 2.4353
3.1520 3.3367 3.4850 3.9605 3.9921 3.9934
4.1013 4.8306 5.3545 5.6094 7.7829 7.8240
8.3431 9.0248 9.2627 9.2766 9.7943 11.4391

12.2847 12.4112 13.1651 13.4990 13.5532 14.1542
14.4694 14.5857 15.1603 15.6962 15.7833 17.4998
18.1497 18.6342 19.4354 19.7557 19.9496 22.5383
23.8066 29.9006 34.0658

N Mean Median StdDev Min Max Q1 Q3

45 11.19 9.79 7.85 0.9 34.07 3.99 15.74
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1. Characteristic life α lies approximately at the 63rd percentile (63%
of the population).  Hence, the Weibull sample should replicate
this.  Sample 63rd percentile should be an alternative (gross) esti-
mator of characteristic life α.

2. The plot of the transformed, sorted data set of lives {X1, ..., Xn}:

should be linear, if the true distribution is Weibull.
3. The slope of the linear trend from Property 2 is an alternative esti-

mator of shape β.
4. The regression of the pairs defined in Property 2, yields better esti-

mates of (α, β) and these should be close to the raw estimates
obtained in Properties 2 and 3 above.

5. The transformation Y = Xβ should yield an Exponential distribu-

tion with mean µ = αβ.
6. The Weibull Probability and Score plots of device lives {X1, ...,

Xn} should be linear.
7. The corresponding regressions from the plots in Property 6 should

have a slope of unity.
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Table 5.  Transformed Data

We plot the pairs [ln{ln(1/1 - px)}, ln(x)] in Figure 4.  They
reflect a linear trend, as expected from Property 2, when the
device lives are distributed as a Weibull.

From Figure 4 and the data in Table 5, we obtain the slope for the
estimated linear trend:

Figure 4.  Scatter Plot of the Transformed Data in Table 5 (in
Columns 2 and 4)

This slope (1.3478) is a rough estimate of the Weibull shape
parameter β.  To obtain a formal estimation (Property 4, of Table
4) we regress ln(ln(1/(1- px))) = C2 and ln(X) = C1:

The regression equation is  C2 = -3.41 + 1.35 C1

S = 0.1774 R-Sq = 97.9% R-Sq(adj) = 97.9%

Intercept  =  -3.4071, Slope  = 1.3542

The regression fit is high (97.9%); its slope (1.35) is the Weibull
shape parameter; CharLf is the Weibull Characteristic Life, or
scale parameter, and it is obtained by: 

CharLf = Exp(-(Intercept/Slope)) = Exp(-(-3.4/1.35)) =  12.378

Notice how the rough estimates of Characteristic Life and shape
parameters (13.53 and 1.347) are close to the more formal
Weibull estimates given by the regression above.

We now perform the transformation Y = Xβ (Table 6).  If X is
distributed Weibull then, by Property 5 in Table 4, Y will be

Exponential with mean αβ.

The Exponentiality of Y can be assessed by any or all of the pro-
cedures in Reference 5.  For example, compare the descriptive

statistics and probability plots of variable Y = Xβ.

Table 6.  Transformation Y = X**1.35 Yields an Exponential
(µ = 29.860)

Row Sample Px Ln(Ln(*) Ln(X)
1 0.8997 0.0154 -4.1644 -0.10566
2 1.2838 0.0374 -3.2659 0.24980
3 1.5766 0.0595 -2.7918 0.45529
4 1.8627 0.0815 -2.4650 0.62200
5 2.4193 0.1035 -2.2138 0.88347
6 2.4353 0.1256 -2.0087 0.89009
7 3.1520 0.1476 -1.8346 1.14804
8 3.3367 0.1696 -1.6828 1.20498
9 3.4850 0.1916 -1.5477 1.24846
10 3.9605 0.2137 -1.4256 1.37636
11 3.9921 0.2357 -1.3139 1.38432
12 3.9934 0.2577 -1.2106 1.38465
13 4.1013 0.2797 -1.1143 1.41131
14 4.8306 0.3018 -1.0239 1.57496
15 5.3545 0.3238 -0.9384 1.67794
16 5.6094 0.3458 -0.8572 1.72444
17 7.7829 0.3678 -0.7795 2.05193
18 7.8240 0.3899 -0.7051 2.05720
19 8.3431 0.4119 -0.6333 2.12143
20 9.0248 0.4339 -0.5638 2.19998
21 9.2627 0.4559 -0.4964 2.22599
22 9.2766 0.4780 -0.4307 2.22750
23 9.7943 0.5000 -0.3665 2.28180
24 11.4391 0.5220 -0.3035 2.43704
25 12.2847 0.5441 -0.2416 2.50836
26 12.4112 0.5661 -0.1805 2.51860
27 13.1651 0.5881 -0.1199 2.57757
28 13.4990 0.6101 -0.0598 2.60262
29 13.5532 0.6322 0.0001 2.60663
30 14.1542 0.6542 0.0600 2.65001
31 14.4694 0.6762 0.1201 2.67204
32 14.5857 0.6982 0.1808 2.68004
33 15.1603 0.7203 0.2421 2.71868
34 15.6962 0.7423 0.3045 2.75342
35 15.7833 0.7643 0.3683 2.75895
36 17.4998 0.7863 0.4340 2.86219
37 18.1497 0.8084 0.5021 2.89866
38 18.6342 0.8304 0.5734 2.92500
39 19.4354 0.8524 0.6489 2.96710
40 19.7557 0.8744 0.7300 2.98344
41 19.9496 0.8965 0.8189 2.99321
42 22.5383 0.9185 0.9192 3.11522
43 23.8066 0.9405 1.0375 3.16996
44 29.9006 0.9626 1.1893 3.39788
45 34.0658 0.9846 1.4284 3.52830
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Predictor Coef StDev T P
Constant -3.40715 0.06856 -49.69 0.000
C1 1.35424 0.03008 45.02 0.000

0.867 1.401 1.849 2.316 3.296 3.325 4.711
5.087 5.395 6.411 6.481 6.484 6.721 8.383
9.633 10.257 15.960 16.074 17.530 19.491 20.188

20.229 21.768 26.843 29.556 29.967 32.450 33.567
33.749 35.785 36.865 37.265 39.261 41.146 41.454
47.654 50.058 51.870 54.904 56.129 56.874 67.057
72.201 98.213 117.120
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Notice in Table 7 how the mean and standard deviation of Y = Xβ

are relatively close, as expected in an Exponential distribution.
The Probability plot of Y, presented in Figure 5, also shows a
clear linear trend.

Table 7.  Descriptive Statistics

Figure 5.  Probability Plot for the Transformed Variable Y = Xβ

(Linear Trend as Expected for Exponential)

To assess Property 6 in Table 4, we implement Weibull probabil-
ity and score plots on the original lives {X1, …, Xn}.  These plots
(Figures 6 and 7) as expected, are linear. 

Figure 6.  Probability Plot for the Weibull Data; it Follows an
Upward Linear Trend, as Expected if X is Weibull

Figure 7.  Weibull Scores Plot Displays a Linear Trend, as
Expected from Property 7

If the Weibull assumption is correct, the linear regression of the
data in Figure 6 should also reflect the one-to-one relation, yield-
ing a slope of unity (Property 7).

The regression equation is WeibProb = -0.0113 + 1.03 Irank

S = 0.03881     R-Sq = 98.3%     R-Sq(adj) = 98.3%

The regression Index of Fit is very high (R2 = 98.3).  The regres-
sion slope (1.03) yields an approximate 99% CI  (0.97, 1.09) that
covers unit, supporting Weibull by Property 7.

The Weibull scores (xi) are the percentiles corresponding to the
Median Ranks px in Table 5.  To obtain such percentiles, we sub-
stitute px for F(x) in the Weibull equation

and solve for Xi obtaining the equation

For example, from the smallest data point (0.899) we get the first
Weibull score (using px = 0.0154) in the following manner:

Weibull scores are then plotted vs. their corresponding sorted
data (e.g., 0.566 vs. 0.899).  The Weibull scores plot is present-
ed in Figure 7.

The regression of the Weibull scores on the ordered sample,
according to Property 7 in Table 4, should also yield a slope of
unity.  The regression equation is:

WeibScr = 0.041 + 0.989 WeibSamp

S = 1.027       R-Sq = 98.3%     R-Sq(adj) = 98.3%

As with the Probability Plot, the Index of Fit (98.3%) is very
high.  The 99% approximate CI (0.92, 0.104) also covers unity,
as expected when the data is distributed Weibull.

Variable N Mean Median StDev
Transf 45 28.97 21.77 26.11
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All of the preceding empirical results support the plausibility of
the Weibull assumption for our life data set.  If, at such point, a
stronger case for the validity of the Weibull distribution is
required, then a number of theoretical GoF tests can be carried
out.  GoF tests will be the topic of a forthcoming paper.

Summary
In this START sheet we have discussed the important problem of
(empirically) assessing the Weibull distribution assumptions of a
data set.  We have provided several numerical and graphical
examples.  We have discussed some related theoretical and prac-
tical issues, giving references to background information and
further readings.  In doing so, we mentioned other, very impor-
tant, reliability analysis topics.  Due to their complexity, these
will be treated in more detail in forthcoming papers.
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