ECS526 Engineering Stats

Final Project: ARENA Simulation (Fall 2017)

Assume you are an Airport Security Operation manager. <u>You want to find how your operation will be</u> <u>affected with changes in Passenger Input Flow and Security Screening Probability</u>.

Simulate, using the attached ARENA program, these two situations.

- 1. The original Operation, with Initial Arrival Rate and Security Screening Probability.
- 2. A <u>Second Operation</u> with <u>Group Dependent values</u> of above parameters.

Run both, collect and analyze data; then, determine the impact of changes in the Operation.

Simulation Parameters:

- 1. The <u>arrival time distribution</u> is Group Dependent with mean time in minutes.
- 2. The processing time distribution is constant (do not change).
- 3. The <u>Security Processing distribution</u> is also Group Dependent.

<u>Collect data from your Group ARENA simulation FOR SIX BATCHES¹, for variables:</u>

Number of passengers passing process (No. OUT), waiting time in Q, No. Waiting in Q, resource UTILIZATION, Total Cost (obtain these results <u>PER BATCH or Replication</u>).

Obtain <u>Confidence Intervals for the variables of interest</u> from the simulation output:

Implement Minitab Normality GOF tests for all variables (Test probably will reject).

Implement <u>CI for the differences</u> between the proposed and new configuration parameters (using all the above parameter estimations) using the t test and assuming Normality.

Implement <u>Hypothesis tests on</u> (H0) the initial configuration vs. (H1) the new one, using the Paired Sample t test and Wilcoxon test.

Obtain <u>Power of the Test for the Hypothesis Tests</u> above, for Alternative $\mu_1 = \mu_0 + D$, (where D = ½ Std-Dev of the variable being tested)

Obtain the sample size "n" for a Hypothesis Tests that detects a difference of D = $\frac{1}{2}$ Std-Dev. between the parameters being tested, (for α =0.05; and β =0.1)

¹ Batch and replication here, are used as synonymous.

Group Distribution Parameters:

The Exponential Distribution is given with its Mean Time (in minutes).

The Security Parameter (e.g. p=0.97) goes inside the ARENA Pass Security Module. It means that:

If p < 0.97 then the passenger is CLEARED; otherwise, it is DENIED.

<u>Group No.</u>	<u>Arrival Dist Par</u>	<u>Chk Dist Par</u>	Security Param
One	Expon(2)	Trian(.75,1.5,3)	P = 0.97
Two	Expon(3)	Trian(.75,1.5,3)	P = 0.94
Three	Expon(4)	Trian(.75,1.5,3)	P = 0.95
Four	Expon(2)	Trian(.75,1.5,3)	P = 0.96
Five	Expon(3)	Trian(.75,1.5,3)	P = 0.97
Six	Expon(4)	Trian(.75,1.5,3)	P = 0.95
Seven	Expon(2)	Trian(.75,1.5,3)	P = 0.94
Eight	Expon(4)	Trian(.75,1.5,3)	P = 0.96
Nine	Expon(3)	Trian(.75,1.5,3)	P = 0.95

FOR THE SECOND RUN EACH GROUP SHOULD <u>SUBTRACT ONE UNIT TO ARRIVAL Exp Mean</u> [E.G. FOR GRP ONE IS Exp(1)]. For now, leave Triangular Distribution as is; AND <u>ADD TWO</u> <u>UNITS TO THE SECURITY PARAMETER</u> (E.G. FOR GRP ONE IS P= 0.03 + 0.02 = 0.05)

ECS526 TA can show you how to change the simulation parameters, run the simulation, and identify in its output the results of interest.

JLR.