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Webinar Take-Aways 

• Understanding Availability from a 

practical standpoint 

• Calculating different Availability 

ratings 

• Practical and Economic ways of 

enhancing Availability 
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Summary 

Availability is a performance measure concerned 

with assessing a maintained system or device, 

with respect to its ability to be used when needed. 

We overview how it is measured under its three 

different definitions, and via several methods 

(theoretical/practical), using both statistical and 

Markov approaches. We overview the cases 

where redundancy is used and where degradation 

is allowed. Finally, we discuss ways of improving 

Availability and provide numerical examples. 
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When to use Availability 

• When system/device can fail and be repaired 

– During “maintenance”, system is “down” 

– After “maintenance”, system is again “up” 

• Formal Definition: “a measure of the degree 

to which an item is in an operable state at 

any time.” (Reliability Toolkit, RIAC) 
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System Availability 

• A probabilistic concept based on: 

• Two Random Variables X and Y 

– X, System or device time between failures 

– Y, Maintenance or repair time 

• Long run averages of X and Y are: 

– E(X) Mean time Between Failures (MTBF) 

– E(Y) Expected Maintenance Time (MTTR) 
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Availability by Mission Type 

• Blanchard (Ref. 2): availability may be 

expressed differently, depending on the 

system and its mission. There are three 

types of Availability: 

• Inherent 

• Achieved 

• Operational 
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Inherent Availability: Ai 

* Probability that a system, when used 

under stated conditions, will operate 

satisfactorily at any point in time.  

* Ai excludes preventive maintenance, 

logistics and administrative delays, etc. 

MTTRMTBF

MTBF
Ai
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Achieved Availability: Aa 

* Probability that a system, when used 

under stated conditions, will operate 

satisfactorily at any point in time, when 

called upon.  

* Ai includes other activities such as 

preventive maintenance, logistics, etc. 
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Operational Availability: Ao 

* Probability that a system, when used 

under stated conditions will operate 

satisfactorily when called upon.  

* Ao includes all factors that contribute to 

system downtime (now called Mean Down 

Time, MDT) for all reasons (maintenance 

actions and delays, access, diagnostics, 

active repair, supply delays, etc.).  
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Ao Long Run average formula: 
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Numerical Example 
Event SubEvent Time Inherent  Achieved  Operational  

Up Running 50 50 50 50 

Down Wait-D 10     10 

Down Diagnose 5                   5 5 5 

Down Wait-S 3     3 

Down Wait-Adm 2     2 

Down Install 8 8 8 8 

Down Wait-Adm 3     3 

Up Running 45 45 45 45 

Down Preventive 7   7 7 

Up Running 52 52 52 52 

UpTime 147 147 147 147 

Maintenance 13 20 38 

Availability 0.9188 0.8802 0.7946 
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Formal Definition of Availability 

Hoyland et al (Ref. 1): availability at time t,  

denoted A(t), is the probability that the system 

is functioning (up and running) at time t.  

X(t): the state of a system at time “t”  

* “up” and running, [X(t) = 1],  

*  “down” and failed [X(t) = 0] 

A(t) can then be written: 

A(t) = P{X(T) = 1}; t > 0 
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Availability as a R. V. 

0,; 


 YX
YX

X
A

• The problem of obtaining the “density function” of A 

– resolved via variable transformation of the joint distribution  

• Based on the two Random Variables X and Y 

– time to failure X, and time to repair Y  

• Expected and Variance of the Availability r.v. 

• L10 (10th Percentile of A) = P{A < 0.1} = 0.1 

– First and Third Quartiles of Availability, etc.  

• Theoretical results, approximated by Monte Carlo 
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Monte Carlo Simulation 

• Generate n = 5000 random Exponential 

failure and repair times: Xi and Yi  

• Obtain the corresponding Availabilities:    

Ai = Xi /( Xi + Yi); 1≤ i ≤ 5000  

• Sort them, and calculate all the n = 5000   

Ai results, numerically  

• Obtain the desired parameters from them. 
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Numerical Example 

• Use Beta distribution for expediency 

– Ratio yielding Ai is distributed Beta(μ1; μ2) 

• Time to failure (X) mean: μ1 = 500 hours  

• Time to repair (Y): μ2= 30 hours  

• Generate n = 5000 random Beta values  

– with the above parameters μ1 and μ2 

• Obtain the MC Availabilities: Ai 



J. L. Romeu - Consultant (c) 2011 16 

Histogram of Example 

0.980.970.960.950.940.930.920.910.900.89

400

300

200

100

0

Beta500-30

F
re

q
u
e
n
c
y



J. L. Romeu - Consultant (c) 2011 17 

Estimated Parameters of Example 

MC Results for Beta(500,30) Example: 

Average Availability = 0.9435 

Variance of Availability = 9.92x10-5  

Life L10 = 0.9305 

Quartiles: 0.9370 and 0.9505 

P(A) > 0.95 ≈ 0.9499 → R0.949=3653  

2694.07306.01
5000

3653
1}95.0{1}95.0{  APAP
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Markov Model Approach 

• Two-state Markov Chain (Refs. 4, 5, 6, 7)  

• Monitor status of system at time T: X(T)  

• Denote State 0 (Down), and State 1 (Up) 

• X(T) = 0: system S is down at time T  

• What is the probability q (or p) that system 

S is Up (or Down) at time T, given that it 

was Down (or Up) at time T-1? 
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Markov Representation of S: 
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Numerical Example: 

• System S is in state Up; then moves to state 

Down in one step, with Prob. p10= p = 0.002  

– A Geometric distribution with Mean μ=1/p = 500 hours. 

• System S is in state Down; then moves to state 

Up in one-step, with Probability p01= q  = 0.033  

– A Geometric distribution, with Mean μ=1/q = 30 hours.  

• Every step (time period to transition) is an hour. 

• The Geometric distribution is the Discrete 

counterpart of the Continuous Exponential  



J. L. Romeu - Consultant (c) 2011 21 

Transition Probability Matrix P  
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Entries of Matrix P = (pij) correspond to the Markov 

Chain‟s one-step transition probabilities. Rows represent 

every system state that S can be in, at time T. Columns 

represent every other state that S can go into, in one step 

(i.e. where S will be, at time T+1).   
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Obtain the probability of S moving from 

state Up to Down, in Two Hours  
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Hence, the probability S will go down in two hours is: 
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Other useful Markov results: 

• If  p10
(2) = 0.003 => p11

(2) =1-p10
(2) =A(T)=0.993 

– system Availability, after T=2 hours of operation  

• Prob. of moving from state 1 to 0, in 10 steps: 

– (P)10 => p10
(10) = 0.017; includes that S could have gone 

Down or Up, then restored again, several times. 

• For sufficiently large n (long run) and two-states:   
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Example: Up = q/(p+q) = 0.943 ; Down = p/(p+q) = 0.057 
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Markov Model for redundant system  

• A Redundant System is composed of two 
identical devices, in parallel.  

• The System is maintained and can function 
at a degraded level, with only one unit UP. 

• The System has now three States: 0, 1, 2: 

– State 0, the Down state; both units are DOWN  

– State 1, the Degraded state; only one unit is UP 

– State 2, the UP state; both units are operating 
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Operational Conditions 

• Every step (hour) T is an independent trial 

• Success Prob. pij corresponds to a transition 

from current state „i‟ into state „j‟ = 0,1,2 

• Distribution of every change of state is the 

Geometric (Counterpart of the Exponential) 

• Mean time to accomplishing such change of 

state is: μ = 1/pij   



J. L. Romeu - Consultant (c) 2011 27 

Transition Probability Matrix P: 
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As before, the probability  of  being in state “j” after 

“n” steps, given that we started in some state “i” of S, 

is obtained by raising matrix P to the power “n”, and 

then looking at entry pij of the resulting matrix Pn.  
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Numerical Example 

• Probability p of either unit failing  

– in the next hour is 0.002 

• Probability q of the repair crew completing  

– a maintenance job in the next hour is 0.033 

• Only one failure is allowed  

– in each unit time period,  

• and only one repair can be undertaken  

– at any unit time    
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Probability that a degraded system  

(in State 1) remains degraded after 

two hours of operation: 

• Sum probabilities corresponding to 3 events  

– the system status has never changed.  

– one unit repaired but another fails during 2nd hour  

– remaining unit fails in the first hour (system goes 

down), but a repair is completed in the 2nd hour  
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Numerical Example: 
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The probability that a system, in degraded state, is still 

in degraded state after two hours, is: P2
11 = 0.9314 
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Mean time μ that the system S 

spends in the Degraded state  

• System S can change to Up or Down  

– with probabilities p and q, respectively 

• S will remain in the state Degraded  

– with probability 1- p- q (i.e. no change) 

• On average, S will spend a “sojourn” of 

– length 1/ (p + q) = 1/ 0.035 = 28.57 hrs 

– in the Degraded state, before moving out. 
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Availability at time T  

• A(T) = P{S is Available at T} 

• System S is not Down at time “T  

– Then, S can be either  Up, or Degraded  

• A(T) depends on the initial state of S 

• Find Prob. S is “Degraded Available” at T,  

– given that S was Degraded at T=0 (initially). 
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State Occupancies 

• Long run averages of system sojourns 

• Asymptotic probabilities of system S being  

– in each one of its possible states at any time T  

• Or the percent time S spent in these states 

– Irrespective of the state S was in, initially.  

• Results are obtained by considering  

– Vector П of the “long run” probabilities:   
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Characteristics of Vector П 
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Numerical Example 
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Solution of the system yields long run occupancy rates:  

   8861.0,1074.0,0065.0,, 210 
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Interpretation of results: 

• П2 = 0.8861 indicates that system S  

– is operating at full capacity 88% of the time.  

• П1 = 0.1074 indicates that system S  

– is operating at  Degraded capacity 10% of the time.   

• П0: probability corresponding to State 0 (Down) 

– is associated with S being Unavailable (= 0.0065)  

• “long run” System Availability is given by:  

– A = 1 - П0 = 1 - 0.0065 = 0.9935 
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Expected Times 

• For System S to go Down, if initially 

– S was Degraded (denoted V1), or Up (V2) 

• Or the average time System S spent in each  

– of these states (1, 2) before going “Down”.  

• Assume Down is an “absorbing” state  

– one that, once entered, can never be left  

• Solve a system of equations leading to  

– all such possible situations. 
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Numerical Example: 

One step, at minimum (initial visit), before system S goes Down.  

If S is not absorbed then, system S will move on to any of other,  

non-absorbing (Up, Degraded) state with corresponding probability,  

and then the process restarts: 

212221212
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033.0965.011

VVVpVpV

VVVpVpV





Average times until system S goes down yield: 

 V1= 4625 (if starting in state Degraded) and  

 V2 = 4875 (if starting in state Up).  
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Model Comparisons 

• The initially non-maintained system version,  
– would work an Expected  

– hours in Up state, before going Down (Ref. 7).  

• The fact that maintenance is now possible, and 
that S can operate in a Degraded state:  
– results in an increase of   

– hours in its Expected Time to go Down (from Up).  

• The improved Expected Time is due to the 
Sum of the Two Expected times to failures:  
– V2 = 3/2λ + μ/2λ2 = 750 + 4125 = 4875  

750004.0/32/3 

4125002.02/033.02/ 22 
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Conclusions 

• Availability is the ratio of:  

– Up.Time to Cycle.Time 

• Hence, we can enhance Availability by: 

– Increasing the device or system Life 

– Decreasing the maintenance time 

– Simultaneously, doing both above. 

• Decreasing maintenance is usually easier. 
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