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A Comparative Study of Goodness-of-Fit Tests
for Multivariate Normality*

JORGE Luis ROMEU AND AYDIN OZTURK

CASE Center of Syracuse University

A Monte Carlo power study of 10 multivariate normality goodness-of-fit tests is
presented. First, multivariate goodness-of-fit methods and non-normal alternatives
are classified according to their characteristics. Then, a measurement tool is defined,
validated, and used to assess the performance of the methods, which are then
ranked by type of alternative they best detect. Finally, Monte Carlo-derived empiri-
cal critical values for the 8 procedures, valid when samples are too small to invoke
asymptotic theory, are provided. T 1993 Academic Press, Inc.

1. INTRODUCTION AND MOTIVATION

This study describes a Monte Carlo power comparison of 10 goodness-
of-fit (GOF) tests for multivariate normality (MVN). We compare 2
implementations of the recently developed multivariate 0, procedure [22]
with a selection of the 8 best competitor methods found in the literature.

The new Q, procedure is a multivariate extension of the univariate Q,
test [20,21]. It is based on performing an orthogonal transformation
on the original, p-dimensional, multivariate data to obtain a new set of p
independent and identically distributed univariate samples. Then, we apply
the univariate Q, procedure for the several samples case to this transformed
set of multivariate data. And the multivariate hypothesis of normality can
now be equivalently tested using the multisample univariate Q,,.

To assess the power of the multivariate 0, we selected the best 8§ MVN
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GOF methods. We first developed a classification scheme, then divided
the existing methods into six groups, and finaly selected at least one
representative from each class for the comparison.

In Section 2, we justify and describe the new classification scheme of
multivariate normality tests, derived for this study. Then, based on this
classification scheme and on each method’s theoretical advantages and
disadvantages, we select the best 8 procedures. In Section 3, we discuss and
justify the statistical distributions selected as alternatives to the null
hypothesis of multivariate normality. And we describe their implementation.
Section 4 discusses a merit scale devised to (i) assess the performance of
the 10 procedures compared and (ii) classify the alternative distributions
selected. Section S presents the experimental results of our power study. We
compare all the methods with respect to the effect of sample size, number
of p-variates, tail probability, covariance structure (not all methods are
covariance invariant), and alternative chosen. Then, using the merit scale
defined in Sectiond4 as a measurement tool, the multivariate tests are
classified and ranked. Section 6 discusses and provides empirical critical
values for the 8 best methods compared, valid when samples are not large
enough to invoke asymptotic theory. Finally, in Section 7 we summarize
our results.

2. RATIONALE FOR METHOD SELECTION

Currently, there are not many GOF tests for multivariate normality and
those that exist are highly constrained. Some are extremely complex to
implement, so much so that they can handle only three or four p-variates.
Others require extensive numerical work to solve sets of nonlinear equa-
tions, posing serious convergence problems. Still other have unknown or
unsatisfactory statistical properties. Finally, several exhibit more than one
problem at the same time. It was not feasible to include them all in our
study. To select objectively among them, we reviewed three classification
schemes in the literature. The first one, by Gnanadesikan [6], considers
three categories: essentially univariate, joint normality, and views methods.
The second, by Cox and Small [3], considers two: coordinate dependent
and invariant methods. Finally, Koziol [13] also considers two catagories:
properly multivariate procedures and generalizations of univariate
procedures.

However, we found too much overlap among these classes to be of use
in our selection process. Therefore, we devised a new classification scheme
by dividing the existing methods into six classes, each with certain common
characteristics:
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2.1. Essentially Multivariate Procedures

These include methods based on general multivariate theoretical concepts,
among them our multivariate Q, procedure, Mardia’s methods of skewness
and kurtosis, and Foutz’s Equivalent Statistical Blocks (ESB) method.

The multivariate @, procedure is defined in the following way: Let
{X;}, i=1,..,n, be a p-variate sample of n identically distributed and
independent random vectors, having mean vector u and covariance
matrix 2. The multivanate Q, procedure tests whether this sample comes
from a multivariate normal distributuion in two steps:

(1) Performs a linear transformation,
{(X), s X, )~MVN, (1, )} = {(Z,, ..., Z,)~MVN,(0,1,)},
where
X=CZ+u and cC'=2z
(2) Tests these resulting p univariate independent samples, Z,,
j=1,.,p for joint normality using the multisample univariate Q,
procedure.

That is, first the test transforms the p-variate sample X;, i=1, ..,n,to p
independent and identically distributed normal standard samples of size »,
via the matrix C (equal to the Cholesky decomposition of X for our
Cholesky version and to X' for our Sigma Inverse version).

Then, the test rejects Hy: X ~ MV N(u, 2), at level a if

{ 1{(U,,‘,—6”(U,-))2 Vo, =WV,
max exp< — = + 3

}}< 1—(1—a)'”, (1)

1<i<p 2 ‘72u oy
where

U,,yj=%iicos 8.1Z, |
and

V,,'j=%isin 0:1Z; |
with

min | 1
0, n'[_x E;exPidt

and m, ., is the ith order statistic from the standard normal distribution.
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For, under the null hypothesis Hy: X ~ MV N(u, 2), the statistics

) U? . vV, —&V; 2
g(Qf:j')zg(Un.j’ Vn,j)z ’;}‘4‘ = ( 1))

2
gy gy

1<j<p  (2)

are approximately distributed as a Chi Squared with 2 degrees of freedom
[30]. And g(Q!/"Y= —2Ina (or exp{ —1 g(Q!/")} = «) provides an approx-
imate, fast converging, test of size a.

Foutz’s method [4] is a generalization of the Chi Squared GOF test. It
is based on ESB, a multivariate concept analogous to that of class intervals
in univariate statistics. Hence, it perpetuates the Chi Squared GOF test
problem of class definition and dependence.

Mardia [15] and Mardia ef al. [ 18] established a multivariate analytical
equivalent of univariate skewness and kurtosis by analyzing Corr(X, §%) ~
{B./(B-—1)}"?% Mardia regards this correlation as a measure of uni-
variate skewness and extends f, to the multivariate case: §, =
n? Y e {Cov(X,, Sy)}2

Mardia shows that such §, , is invariant under orthogonal transforma-
tions, and that its sample statistic

l n
b"’:r—zizgi’ 1<r, s<n, (3)

where g,, = (X, —X)' §~'(X,—X), is asymptotically distributed: {nb,,/6}
—x2, as n—» oo with v={p(p+1)(p+2)}/6 degrees of freedom. In a
similar way, Mardia redefines the measure of kurtosis as f, ,=
E{(X;—u) £ '(X;—w)}% i=1,..,n, which is the expected value of the
squares of Mahalanobis distances to the mean. Mardia shows that f, , is
also invariant under orthogonal transformations and that the statistic

| < S
bzp=;Z{(X.»—X)'S (X, —X)}? 4)

tends asymptotically to A"(u, 6?) with u={p(p+2)(n—1)}/{n+1)} and
o?={8p(p+2)}/n. Based on these measures, Mardia proposed two tests
(skewness and kurtosis) for multivariate normality. We selected both tests
for our Monte Carlo comparison.

2.2 Multivariate Methods of Marginal Analysis

These essentially multivariate procedures are based on some properties of
the marginal distributions. They include Royston’s extension of Shapiro and
Wilk, Smalil’s skewness/kurtosis, and the Box—Cox transformation methods
of marginal analysis.

Small’'s method [28] requires performing a Johnson [8] S, transforma-
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tion on each p-variate. After such transformation, the resulting marginal
skewness and kurtosis become, respectively, quasi independent and identi-
cally distributed as normal standard. Such transformations require lengthy
estimation and search processes for each iteration of the simulation.
Box-Cox marginal power transformation [6] poses the same inefficiency
problems. Individual searches on each p-variate would yield the initial
values for implementing one of the known stepwise optimization
procedures, to find the overall or joint optimal parameter A.

Royston’s W, on the other hand, offered several advantages [25]. First,
it is an extension of the wunivariate Shapiro and Wilk W [26] test, which
is known to be an omnibus test and has an excellent track record. Then the
optimization process was performed by Royston, who furnished a sort
table for the necessary parameters. Royston’s W is based on performing,
first, p marginal Shapiro and Wilk test statistics, say W,, j=1, .., p (which
are not independent), and then a Box-Cox type of transformation f, to
these W, (say z,=f(W,), j=1, .., p) to make them approximately standard
normal. Then the statistic K, = {® '{3&®(—z,)}}% j=1,.., p, where & is
the standard normal cdf, is calculated.

Royston shows that his multivariate statistic

lp
G=1—)2Kj~xf,, O<e<p, (5)

where e represents the equivalent degrees of freedom, e =p/{1 + (p —1)¢},
and ¢={1/p(p—1)}{X},;c;}. Royston provides a correction coefficient
for the correlation c; between X, and X, with tabulated parameters 4, p,
and v, dependent on the sample size. We also chose Royston’s method for

our comparison.

2.3. Regression Methods

Include procedures that regress some functions of the p-variate observa-
tions. One such procedure is the Andrews method [6], which requires, first,
a probability integral transformation for each coordinate element; then, a
search for each p-dimensional point of the hypercube, to find the minimum
distance to the nearest neighbor; finally, the computation of an exponential
function of this distance and the regression of this function on the
coordinate values of the unit hypercube.

The other is Cox and Small’s procedure [3], where each p-variate X is
regressed directly on all remaining others. For p=2, the statistics Q,
Jj,k=1,2, j#k, are a function of the regression statistics for the coefficients
of the squared terms in the regression:

Xkl=(so+5lejl+62ijl+’1kl’ N~ N(0,a,);

) ) (6)
I=1,.,n jk=12; j#k.
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For p=2 Cox and Small’s statistic (Q,,, @2}~ MVN,{0,2). Hence,
asymptotically,

1 r12(2—3rf2) : Q2 2
©n0(, 5l ) (8- o

To implement this method for, say, p =4 or p =8 requires the solution
of 4 and 8 regressions, of 9 and 35 terms, respectively. Mardia [19] states
that for the case p > 2, these statistics can be easily extended and are given
in Cox and Small [3]. We compared it for p =2 only.

2.4. Methods Based on the Union—Intersection Principle

These multivariate procedures are based on the extension of Roy's
univariate principle. They include tests based on extensions of skewness,
kurtosis, and Shapiro/Wilk W, developed by Malkovich and Afifi [147] and
generalized in the following way. If ()X, ~MVN,(u,2), i=1,..,n, and
(i1) the two inequalities

_[E{ex—ca(x) P

Bi(c) VX)) >0 and
Elc'X —c'8(X)} 4T ®
2 [ —C
[ﬁZ(C)} _[ {V(C’X)}z ] 9

hold for some p-dimensional vector ¢ #0, then the corresponding union—
intersection multivariate measures are defined:

B =m51xﬁ,(c)>0 and (B;V:max [Ba(c)—372 %)

The generalized union-intersection Shapiro and Wilk W procedure was
selected for our power comparison,

x7 aiu(i)]2

W =X X4 (X, %)

(10)

where X,, is the observation vector for which (X,,—X) 47 '(X,-X)=
max; ;<. {(X;—X) 47 '(X;—X), the a’s are the Shapiro and Wilk
tabulated coefficients, u;, = (X,, — X)) 4" '(X, - X), i=1, .., n and
X, - X4 'X,-X)» (X, - Xy 4 'X,,-X>).

The hypothesis of multivariate normality is rejected if min, W(c)<K,,,
where the vector ¢ satisfies the two conditions ¢'(X, —X)= (n—1)/(na,)
and ¢'(X,—X)= —1/na,, i=2, ., n
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2.5. Geometrical Methods

These methods are based on a geometric transformation of the coordinate
system. They include Koziol’s radii method, Koziol’s angles method, and
Andrews’ graphical method. The first two were chosen for our Monte
Carlo study since they were based on complementary criteria.

Andrews’ method [6] is informal and purely graphical and serves as the
conceptual basis for subsequent, more analytical work. It is constrained in
the number of variables it can handle. For the case (p = 2), each bivariate
observation, (X,;, X;;), i=1,..,n, is transformed to polar coordinates:
radius r; and angle ¢,. Angles are measured with respect to a fixed,
arbitrary line, taken as the axis of the abscissa, and are distributed
uniformly on (0, 2n). Radii are approximately distributed as y3. Several
types of graphs can be plotted and informal tests then performed.

Koziol’s radius and angles methods are geometrically inspired by the one
above. However, they are analytically derived and have no constraints
with respect to the number of p variates they can handle. Koziol's [11]
radii method is based on Andrews informal method. Invoking weak
convergence, Koziol provided a formal distribution theory, # (rf)—»xf,
as n—oo, and defined a Cramer-von Mises type of statistic Y,=
(X,— Xy S '(X,—-X),i=1, .., n, where z,=F(Y,) for, F =y?, and

Y . 2
Jn=Z{Z(i>—E"“nL/Q>} +(12n) 1. (11)

1

Via a Monte Carlo study, Koziol shows that the xf, critical values are
reasonable for p small or » large. Koziol’s angles method [12] is also based
on the weak convergence principle, where the underlying empirical process
can be approximated by a p dimensional Gaussian stochastic process.
Koziol then modifies the Rayleigh angles test (Mardia ef al. [18]) in the
following way to assess the uniformity of the angles in the hypersphere. Let

X =)

TS SR Sy e

i=1,..n (12)

Then, /;,, i=1, .., n are iid. with mean vector 0 and covariance matrix
p 'l,. Hence, R=n"'"371,—> MVN,(0, p~'1,), as n - 0. Therefore, the
Rayleigh statistic, pR'R, tends to x% as n — co. And, if ¢ and Z are replaced
by their respective estimate X, S in the above equations, Koziol shows (via
Monte Carlo for p small or n large) how the estimate of Rayleigh’s R, say
R* exhibits the property
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R* > MVN,(0, V), as n— oo with

AT (13)
v=p [1 ) Fom H

It is worth noting that Koziol's method is a conceptualization of
Andrew’s graphical geometrical approach. Koziol actually derived, using
weak convergence properties and distributional theory, an asymptotic
distribution for his statistic. These issues differentiate Koziol’s radii from
those discussed next.

2.6. Projection Methods

Projection methods wuse a reduction approach (e.g., Mahalanobis
distance) to project the multivariate observations into a one-dimensional
space. They include Malkovich and Afifi’s Cramer-von Mises (CVM) and
Kolmogorov-Smirnoff (K-S) projection methods, Andrews’ directional
method and Hawkins’, Anderson-Darling projection method.

Malkovich and Afifi [14] use the sample Mahalanobis distance to
reduce the dimensionality of the problem from p to 1. Then they apply
either the K-S or the CVM univariate GOF tests. Since the asymptotic
distributions of the resultant empirical statistics are unknown, their critical
values are obtained by Monte Carlo.

Andrews’ directional projection method also reduced the problem from
p dimensions to one dimension via a projection. However, the direction of
the unidimensional projection is not known but is selected to maximize the
non-normality of the data. The key issue remains finding the direction
where non-normality will be apparent.

The Hawkins [7] method, chosen for our power comparison, builds on
the work of Malkovich and Afifi [14] and proposes an exact rather than
an empirical distribution as a basis for the test. In addition, the Hawkins
test is conceived not only as a MVN GOF procedure, but also as one that
can be used to test for homoscedasticity, when in the presence of several
(say g) multivariate groups.

Hawkins defines the statistic ¥, = (X, —X,) & (X, —Xx), where k
runs on the 4 groups of size n, and % is the sample covariance matrix of
the kth group. Let &,, X, denote the covariance matrix and mean vector
of group k, resulting from the removal of X, from the sample. Since we
are concerned only with the GOF of a single multivariate sample let g =1
and v=n—g—1=n—2. Following Hawkins, we have that X, — X ~
N(O, (n,/(n,—1))2) is indepenent of v.%, ~ W(Z, v), the Wishart distribu-
tion with v degrees of freedom.

Then (since g=1), dropping the second subindex, the variable
T?=(n-1)X,-X,) S, "(X,—X,)/n follows a Hotelling distribution, and
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F={(v—p—1)T?})vp} ~F(p,v—p+1), i=1, .., n. Hawkins then shows,
after some algebraic manipulations, that

Fi={(n—p—1)nV}/{p{(n—1)—nV,}}. (14)

Then, letting 4,=2{F>F;} denote the tail area of F; under this
F,, ,., distribution, Hawkins states that, under H,, 4, is distributed as
a Uniform variate, say U(0, 1), and uses the Anderson-Darling statistic to
test for multivariate normality.

3. THE SELECTION OF ALTERNATIVE DISTRIBUTIONS

Careful selection of statistical alternatives is a key issue in GOF power
studies because (i) there are different ways in which a distribution can
depart from multivariate normality and (ii) nor every GOF approach may
be equally apt to discover all types of departures. For examples, the alter-
native distribution can be skewed, instead of symmetrical, and can be more
peaked or flatter than the standard normal. The distribution can be both
skewed and peaked or flat. The sample can come from more than a single
population (data contamination) or the distribution can be non-normal
but closely related to the normal (quasi-normal). We considered such
situations in our selection of statistical alternatives, in the following way:

To assess the effect of pure skewness on the power of the test the
Generalized Lambda Distribution (GLD) families, with lambda parameters
corresponding to \/ B,=0.89, pB,=3.2 (for severely) and \/E =04,
B, =3.0 (for moderately skewed), were selected. To assess the effect of flat
distributions (platykurtic), we selected the uniform U(0, 1) (severe) and the
GLD for \/ﬂ—, =0, f,=24 (moderate). For long tailed distributions
(leptokurtic) we used the ¢, Student ¢ with 8 degrees of freedom. To assess
the joint effect of skewness and kurtosis on the power of the test, we
selected the yZ,, commensurate with the parameters of the first GLD and
the 15 defined above. All these five multivariate distributions were obtained
by (i) generating the above defined marginal distributions directly
(using the IMSL routines) and (ii) combining them via the correlation
coefficient p.

To assess the effect of data contamination on power, we selected
parameters p, and p from the model:

PoMVN, (1, 1)+ (1 —po) MVN (43, L3). (15)

This model yields many possible combinations, even with this restricted
form. Based on a study by Johnson {8] gnd seeking a mildly versus a
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severely contaminated alternative, we chose p; = (0, ..., 0) and u;=(1, .., 1)
and coveriance matrices as

Lopi oo opi

where p, =0.5 and p, =0.9. The mixing parameter p, was chosen as 0.5 for
severely, versus 0.9 for mildly contaminated data.

To assess the effect of an alternative with normal marginals, we selected
Morgenstern and Kinchine distributions. A necessary though not sufficient
condition for multivariate normality is that all marginals be univariate
normally distributed. Moregenstern and Kinchine distributions with
parameters y =0.5, 1.0, were generated, for the bivariate case, by a three
step algorithm (Johnson er al. [9]). For the case p>2, elliptically
contoured distributions [1], which tend rapidly to marginal and joint
normality, were used to assess a similar effect. To assess quasi normality,
we selected two elliptically contoured distributions: Pearson’s types I1 and
VII [2, 8, 10], with parameter m = 10. Both these distributions are close to
being multivariate and marginally normal, for p > 4.

Bivariate regression, a specialized alternative, was included to study the
Cox and Small procedure. If Y,, Y,~N(0,1) and de®, and we let
X, =Y, and X,=Y,+dY?+Y,, then (X,, X,) is distributed as a bivariate
regression with parameter d.

To assess the effect of scale, location, and covariance on power, we used
the same covariance matrices defined in (16). And to compare these
methods on a true parity basis, we also simulated the null (i.e., multivariate
normal) with covariance matrix as in (16). We obtained empirical 90th,
95th, and 99th percentiles for each test statistic (two sided for Mardia’s
Kurtosis) for selected sample sizes n and number of p-variates. These
empirical critical values were, in general, quite different from those of the
tabulated asymptotic distributions and will be discussed in Section 6.

4. THE MEASUREMENT TooOL

Since the ways in which a multivariate distribution can depart from
normality are many and complex, we sought to define areas where one
(or more) method(s) would tend to perform better. To define such areas
we classified the multivariate statistical alternatives defined in Section 3,
according to their location in the bivariate skewness vs kurtosis plane

(Fig. 1).
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Fig. 1. Schematic of statistical alternatives to Bivariate normal, with respect to skewness
and kurtosis.

4.1. Classification of the Alternative Distributions

Departing from coordinates (8.0, 0.0) of the skewness vs. kurtosis
plane (values for the bivariate normal) we moved away in every direction
(following a trajectory parallel to the coordinate axes). We then assessed
each statistical alternative degree of non-normality based on the length of
its trajectory to the coordinates of the bivariate normal. We grouped our
15 statistical alternatives, by the degree in which they departed from
normality, into four increasing classes or levels: quasi, mildly, moderately,
and severely non-normal. In addition, we considered the way in which these
distributions departed from normality: skewness, kurtosis, or a combination
of these problems (Table I).

2. The Merit Scale

To aid in objectively comparing the ten MVN GOF procedures selected,
we defined a merit scale. Ordinal in nature, this measurement tool has three
possible scores: (i) score 0, if the performance of a given parameter is
assessed as poor, (ii) score 1, if the performance is assessed as intermediate,
and (iii) score 2, if it is assessed as good. For example, to assess the empiri-
cal power levels of the tests, in each of our statistical alternatives, we gave
a score 0 if the test attained a low power, score 1 if an intermediate power,
and score 2 if a high power.

Since our comparison was performed under several, sometimes
conflicting, qualitative and quantitative criteria, we divided these criteria
into two groups:
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TABLE 1

Statistical Alternative Class Scheme

Alternative Parameter Severity class Shape class Merit ranking
Chi square df.=10 Severe Combined 15
Bivar. reg. d=0.5 Severe Combined 14
GLD-1 \/-ﬂ—, =15 Severe Purely skewed 13
Uniform U0, 1) Severe Purely kurtic 12
Mixtures p=05 Moderate Combined 1l
Student ¢ df =8 Moderate Combined 10
Bivar. reg d=02 Moderate Combined 9
GLD-3 V'/ﬁ_l =07 Moderate Purely skewed 8
GLD-2 B,=68 Moderate Purely kurtic 7
Pearson VII m=10 Mild Combined 6
Kinchine »=05;10 Miid Combined 5
Mixtures p=09 Mild Purely skewed 4
Pearson I1 m=10 Mild Purely kurtic 3
Morgenstern +=10 Mild Purely Kurtic 2
Morgenstern »=0.5 Quasi-normal Quasi-normal 1
Bivariate normal Standard Normal Normal 0

(1) Those that measure general (qualitative) characteristics of a test.

(2) Those that measure performance (power of a test) under different
statistical alternatives.

The following examples of general characteristics are expressed as
opposites:

(1) The test can handle any number of p-variates (scoring2) or
exhibits algorithmic problems that seriously hinder the number of
p-variates it can handle (scoring 0).

(2) the test exhibits a very small correlation effect (score2) or
exhibits such a dependence that the power s corrupted (score of 0).

(3) The test is practically sample size independent (i.e., the statistic
converges very rapidly to its asymptotic distribution) or requires a very
large sample to attain its asymptotic values.

The merit scale was first validated using our statistical alternative
classification scheme: we reversed the roles of the merit scores matrix
values, now adding them by statistical alternatives instead. The four levels
of non-normality and two qualitative types of alternatives (skewness and
kurtosis) defined in Section 4.1 were reproduced and the non-normal
statistical alternatives were reclassified and ranked in them as in our
original scheme. These results (i) validated our merit scale and (ii)
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TABLE II
Classification and Ranking of MVN GOF Procedures

Procedure Specialization  Correlation p-variates Convergence  Rank
M-skew Skewness Independent Unconstrained  Slow 1
@,-Cholesky  General Independent Unconstrained  Fast 2
M-kurt Kurtosis Independent Unconstrained  Very slow 3
Koziol 3° Kurtosis Independent  Unconstrained  Empirical 4
Hawkins Kurtosis Independent  Unconstrained  Empirical 4
Royston W General Dependent Unconstrained  Slow 6
Malkovich Skewness Independent  Unconstrained  Empirical 7
Q,-Sigma General Dependent Unconstrained  Fast 8
Cox—Small Mild depart. Dependent Constrained Slow 9
Koziol angles Skewness Dependent Constrained Slow 10

provided an experimental framework where the best procedures for each
type of aiternative could now be analyzed.

Then, we used the validated merit scale to compare an rank the 10 muiti-
variate procedures in the context of this multi-criteria problem. In Table II
we show the procedure rankings, obtained overall, by combining the
qualitative characteristics and power merit scores into a single figure-of-
merit. We also classified the procedures by type of departure they specialize
in, and recorded their characteristics with respect to correlation, p-variates,
and convergence rate.

5. EXPERIMENTAL RESULTS

In this section, results are summarized by type of non-normal alternative
and individual procedure. For details, see Romeu [23].

S.1. Analysis by Type of Non-normal Departures

Classification and ranking of the MVN GOF methods by the type of
departure they best detect and specialize in:

(1) Methods that perform better under severe departures of both
type (skewness and kurtosis): our Cholesky implementation of Q,, Sigma,
and Royston’s methods.

(2) Methods that perform better under severe and moderately kurtic-
prone alternatives: Mardia’s Kurtosis, Hawkins and Koziol's Chi Square
tests.

683 46 2-11
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(3) Methods that perform better under severe and moderately
skewed-prone alternatives: Mardia’s Skewness, Malkovich-Afifi, and
Koziol’s Angle methods.

(4) Method that performs better under very mild skewness depar-
tures from normality: Cox and Small.

Table III shows our non-normal alternatives class scheme with the
corresponding best GOF methods in each. Note the clear distinction in
procedure specialization. Under purely and severely skewed (kurtic) entries
of TableIIl, we find the MVN GOF methods which are, respectively,
skewed (kurtic) prone. Their specialization is such that skewed-prone
methods fail to detect severe (but purely) kurtic departures from normality,
and viceversa. Note, however, that the multivariate Q, detects all types of
moderate and severe departures from normality with good power.

TABLE 111

Classification of Procedures within Best Alternatives

Severity Skewness Kurtosis Combined
Mildly non-normal Mixtures p=0.9 Morgenstern y=1.0  Kinchine y = 1.0
Cox-Small Royston W Pearson VII
Mardia-skew Pearson 11 Mardia-skew
Mardia-kurt Mardia-kurt
Koziol »* Cox-small
Hawkins
Moderately non-normal  GLD-3 GLD-2 BIV.REG. d=0.2
Mardia-skew Mardia-kurt Mixtures p = 0.5
Q. Cholesky Koziol 2 Student 14
Royston W Royston W Mardia-skew
Koziol angle Hawkins Mardia-kurt
Q, Sigma Q, Cholesky Cox-Small
Hawkins
Severely non-normal GLD-1 Uniform Chi-square
Mardia-skew @, Cholesky Mardia-skew
Q, Cholesky Royston W @, Cholesky
Royston W Mardia-kurt Royston W
Koziol angle Koziol y? Malkovich
Malkovich Hawkins Koziol angle
Q, Sigma BIV.REG 4=0.5
Mardia-skew
Cox-Small

Q, Sigma
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5.2. Analysis by Individual Procedures

Based on all the above factors we summarize the power study results, for
each of 10 procedures:

I. Methods that Detect General Severe/Moderate Non-normality.

(1) Cholesky-Implementation of Q,: Handles an unconstrained
number of p-variates and sample sizes; converges rapidly to its asymptotic
distributution; power rises steadily with n and p and exhibits no correlation
effect or algorithmic problems. Detects with good power all types of
severely and moderately non normal alternatives analyzed. Cholesky
implementation of @, rates second best in the overall ranking of the 10
methods compared.

(2) Sigma Inverse Implementation of Q,: Similar to Cholesky, but
with lower power and dependence on the underlying (and unknown)
correlation structure Power increases slowly with p and ». Sigma ranks
eighth in our rating of the 10 methods.

(3) Royston’s W: Also handles any number of p-variates and sample
sizes, but is severely affected by correlation. Works best when correlation
and sample sizes are small, but these factors are usually not under the
control of the investigator. Royston’s ranks sixth in our overall evaluation
of 10 ten tests.

I1. Skewness-Prone Methods.

(1) Mardia’s Skewness: Handles any number of p-variates and
sample sizes; power rises steadily with n and p and converges slowly to its
asymptotic distribution, requiring empirical critical values for # small. Fails
to detect pure kurtosis problems, but is excellent with skewed or combined
alternatives of all severity degrees and is not affected by correlation.
Mardia’s Skewness ranks first in our overall method classification.

(2) Malkovich and Afifi's W: Test behavior is similar to that of
Mardia’s Skewness, but with a lower power. Requires empirical critical
values, which are very sensitive to sample size. It ranks seventh in our
overall classification.

(3) Koziol’s Angles Method: Has severe difficulties in handling more
than three p-variates due to algorithmic problems (this difficulty increases
with p) and is affected by correlation. Otherwise, it behaves like Mardia’s
Skewness test,with higher power for n small. However, given its algorithmic
problems (see next section), its use is not recommended. Koziol’s Angles
test ranks last in our overall classification.
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I11. Kurtosis-Prone Methods.

(1) Mardia’s Kurtosis: Handles any number of p-variates and sample
sizes; tends very slowly to its asymptotic distribution, requiring the use of
empirical critical values even when n is moderate. Fails to detect pure
skewness departures; power rises steadily with n and p. As for the Skewness
test, it is very stable and reliable, ranking third in our overall method
classification.

(2) Koziol's Chi Square Method: Similar to Mardia’s Kurtosis test in
behavior, but with lower power. It requires the use of empirical critical
values, ranking fourth in our overall classification.

(3) Hawking® Method: Easy to implement projection method,
also similar to Mardia’s Kurtosis, with lower power. Requires empirical
critical values and ranks fourth, tied with Koziol's Chi Square, in our
classification.

IV. Mild Non-normality Methods.

(1) Cox and Small's Method: Difficult to implement with more
than a few p-variates (two or three, feasibly) due to the large amount of
computing it requires for p > 3; power is mildly affected by correlation, but
rises slowly with n; converges slowly to its asymptotic distribution. It is
excellent with mild types of non-normality. Cox-Small is a skewness-prone
test with specialization on very small departures, ranking ninth among all
tests analyzed.

6. EMPIRICAL CRITICAL VALUES

Many of the multivariate procedures compared in our power study
converged very slowly to their nominal (asymptotic) critical values. Others
were affected by the underlying (and in practice unknown) correlation
among the p-variates. Mardia [16, 17] performed a limited power study on
such convergence problems. Malkovich and Afifi [14] compared the
empirical powers of Mardia’s Skewness and Kurtosis tests, among others,
with their own multivariate W. They used lognormal, uniform, Student ¢,
and mixtures of normals with various p-variates. Giorgi and Fattorini [5]
compared empirical powers for both Mardia’s tests, for Malkovich and
Afifi’s, and for several directional tests, using multivariate Chi Square and
lognormal alternatives. Their results agree with ours in recommending both
Mardia’s skewness and kurtosis tests for n large.
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6.1 Simulation

Since our power comparison required parity conditions under the null,
we obtained, by Monte Carlo, the necessary (empirical) critical values to
achieve parity.

Critical values were obtained by running 10,000 replications (for p =2)
and 5000 replications (for p > 2). Generating under the null (multivariate
normal) distribution, we calculated, each time, the corresponding GOF
statistics using Egs. (3), (4), (5), (7), (10), (11}, (12), and (14). Then we
sorted them to obtain the corresponding percentile estimators. The simula-
tions were implemented in Syracuse University’s IBM 3090, for p=2, 3, 4,
and for p=35, 6, 8, 10 in Cornell’s National Supercomputer Facility vector
processor. The values were obtained for sample sizes #=25(25)200 and
correlation matrices as in Eq. 16, for p=0.5, 0.9.

Tables of results in the Appendix show the 90th, 95th, 99th percentiles
(e.g- .90), by sample size n and p-variate p. At the bottom of each column,
and for comparison, we also give (when available) the asymprotic critical
value. Note how slowly most methods converge to (and how far they can
be from) the asymptotic critical values for # small or medium, and/or p
medium or large.

Cornell’s Supercomputer made this experiment possible for p>4, by
reducing the increasingly large simulation time. The sets of programs sub-
mitted to both computers were indentical. There is, however, a large
difference in the results for Koziol’s Angles method. The reason lies in the
algorithms involved (see Eq. (12)) and the accuracy of both computers in
handling them.

6.2. Discussion

Mardia’s skewness (Eq. (3)) empirical critical values (ecv) converged
slowly to asmptotic values (n =200), were not affected by correlation, and
were hardware robust (results in both machines were similar). Mardia’s
kurtosis ecv (Eq. (4)) converged much more slowly (n > 200) but were also
hardware robust and correlation independent. Cox and Small’s ecv
converged slowly (n=200) to asymptotic values and were also harware
robust.

Koziol’s Angles ecv converged slowly (n=200) to its asymptotic values,
depended on correlation, and were severely affected by the hardware being
used. Note, in Eq. (12), how eigenvalues and eigenvectors are calculated,
the resulting matrices being multiplied to yield a scalar in the denominator
of a fraction. The accuracy of the hardware determines the results obtained,
which can greatly differ in both machines.

Royston’s W (Eq. (5)) ecv were also correlation dependent, in spite of
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Royston’s correction for correlation. Note how, for p =0.5, the ecv values
are close to the asymptotic values (and not for p =0.9). Apparently, some
residual correlation remains, even after the correction, when p increases.
This problem gets worse as p increases. Royston’s ecv also converge slowly
to asymptotic values (n = 200).

Malkovich and Afifi’'s ecv do not have asymptotic values, since the
procedure is empirical. Its ecv are not affected by correlation and are
machine independent. Hawkins’ ecv are also correlation independent and
machine robust, as are Koziol’s Chi Square ecv.

Our ecv are based on 10,000 replications and are given for any correla-
tion p, except in Royston’s W and Koziol’s Angles procedures. These two
procedures exhibited severe algorithmic and correlation dependence
problems. Their ecv are based on 5000 replications and are given
individually for p=0.5, 0.9. The accuracy of our ecv’s was investigated
{31, 32] using approximated 95% confidence intervals. Upper bounds for
10,000 replications yield 3%, 4%, 6% of the tabulated values, correspond-
ing to the 90th, 95th, 99th percentiles, respectively.

These ecv (i) allow the practitioner to use the empirical procedures, and
(ii) correct the only serious problem detected for both Mardia’s tests: their
slow convergence to the asymptotic values. Before using the ecv, and as an
accuracy check for their validity in other hardware, a small simulation,
under the null, for desired, n, p, p is recommended.

7. SUMMARY

We have provided new classification schemes for the MVN GOF proce-
dures and the multivariate nonnormal statistical alternatives. We have
devised a measurement tool to compare procedure performances in this
context.

We have selected, described, and empirically compared the powers of
eight well known MVN GOF methods with two implementations of a
newly developed statistic: the multivariate Q,. We have established areas
where each of these methods perform better or worse. And, based on all
these factors, we have ranked them.

Finally, we have provided empirical (Monte Carlo) critical values, for
selected (small) sample sizes and p-variates, for the eight besr tests
compared. These empirical critical values are recommended when the
sample sizes and/or the number of p-variates are such that we are unable
to invoke the asymptotic theory and, hence, to safely use the asymptotic
distribution of the test statistics.
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Size p=2 p=2
T Moy 1y

1842 2145 , . . 2 03 5386 5789 66.15 108.00 11336 124.22189‘94196.32 209.94

. 1224 1475 1672 2253 2540 2850 . I8 4499 5415 62.09 66.80 76.49 125,02 131.78 146.09 219,37 227.97 246 15
75 704 g3} 1297 1486 1728 2313 2628 2955 3612 4327 47.52 5660 65.27 7001 80.63 13025 138.00153.40230.35 238.86 258 68
100 728 97 1313 1521 1777 2331 26.84 3014 3750 43.73 4776 5707 6635 7145 8229 13299 139.65 153.73 234.00 243,03 261.33
125 742 925 1325 1530 1765 2385 27.30 30.3¢ 3748 4443 4835 5693 67.10 7195 82.10 13519 141.00 155.48 237.46 247.69 266.75
150 747 ¢34 1347 1547 1795 2323 2866 3082 3766 44.72 4886 5744 67.60 7258 82.10 135.74142.34155.95 239.75 248 41 265.31
175 752 9.31 1331 1547 1796 23.00 2756 3067 3735 4469 4873 57.09 6809 72.73 8208 136.6
200 7.60 938 13.43 1547 1792 2328 2762 3063 3768 4508 48.9
© 778 949 1328 1599 1831

25 0913 0.895 0.855 0.888 0868 0.825 0.858 0.838 0.787 0.828 0.806 0.796 0,77 0.717 0.730 0.705 0.646 0.659 0633 0.577
50 0.953 0.944 0924 0943 0932 0919 0931 0919 0893 0919 0906 0.878 0.906 0.892 0.860 0.876 0.862 03828 0.845 03830 0.796
75 0.965 0.959 0947 0960 0953 0937 0955 0.947 0936 0947 0939 0920 0939 0939 0912 0922 0912 0.89; 0.904 0.894 0.870
100 0971 0,967 0.956 0.969 0964 0.957 0965 0960 0.948 0.960 0.954 0.949 0956 0.949 0934 0944 0937 092 0.931 0924 0.906
125 0.975 0971 0962 0974 0979 0.960 0977 0967 0.957 0.968 0,964 0.953 0965 0.960 0950 0.956 0951 0.938 0.946 0.940 0.926
150 0,976 0973 0967 0576 0973 0.966 0975 0971 0,963 0.973 g.969 0959 097; 0.966 0.953 0.964 9959 0.950 0.956 0.951 0.94)
175 0.978 0975 0970 0.978 0976 0969 0.978 0.974 0967 0976 0973 0.965 0974 0971 0963 0.969 0.965 0.957 0.963 0.959 0.95p
200 0.979 0977 0971 0.980 0978 0972 0979 0.977 097 0979 9976 0970 0.977 0974 0967 0973 0979 0.963 0.963 0.965 0.956
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TABLE A-3

Smali Sample Empirical Critical Values for Mardia’s Kurtosis Test: Lower Values

Sizee p=2 p=2 p=2 p=3 p=3 p=3 p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6 p=8 p=8 p=8 p=10p=10p=10
n Moo Mes Moo Moo Mos Mos Moo Nos  Mog  MNoo Mes Mo Moo MNes Mg Moo Nes Moo Moo MNoes Moo

25 —122 -133 -152 —1.38 —1.49 —1.67 —1.48 —1.61 —1.80 —1.61 —1.76 —2.10 —1.69 —1.79 —2.00 —1.87 —1.97 —2.16 —2.04 —2.14 —231
50 —1.35 —1.51 —1.75 —1.49 —1.63 —191 —1.58 —1.74 —2.03 —1.65 —-1.79 —=2.09 —1.77 —1.93 -2.20 —1.91 —2.09 —2.38 —2.04 —2.21 —249
75 —1.44 —1.59 —191 —1.55 —1.75 —-2.05 —1.64 —1.84 —2.17 —1.69 —190 —2.27 —1.77 —1.97 —230 —-1.90 —2.11 —2.45 —2.04 —2.23 —2.59
100 —144 —162 —195 —1.54 —1.75 —2.11 —1.65 —1.86 —2.23 —1.72 =192 —2.34 —1.78 —1.99 —237 —190 -2.10 —-2.52 —2.01 —2.23 —2.61
125 —1.50 —~1.67 -2.03 —1.57 —1.78 —2.15 —1.65 —1.85 —2.23 —1.73 —1.94 235 —1.75 —1.96 —2.34 —1.89 —-2,09 —2.53 —2.00 —2.21 —2.62
150 —1.50 ~1.71 —=2.12 —1.56 —1.75 —2.18 —1.64 —1.86 —2.26 —1.70 —1.92 —2.32 —1.74 ~1.97 —2.37 —1.89 —2.13 —2.56 —1.96 —2.22 —2.69
175 —149 —1.71 —2.11 —~1.59 —1.79 —2.27 —1.69 —1.90 —2.32 —1.73 —1.96 —2.39 —1.77 —2.03 —2.44 —1.86 —2.08 —2.56 —1.98 —2.19 —2.64
200 —1.52 -176 —2.14 —1.61 —1.83 —2.21 —1.67 —1.88 —2.33 —1.70 —1.93 —2.38 —1.78 —2.02 —243 —1.88 —2.13 —2.59 —1.98 —2.21 —2.67
w  —1.65~1.95-258 —1.65 —1.95 —2.58 —1.65 —1.95 —2.58 —1.65 —1.95 —2.68 —1.65 —1.95 —2.58 —1.65 —195 —2.58 —1.65 —195 —2.58

8¢

TABLE A-4

Small Sample Empirical Critical Values for Mardia’s Kurtosis Test: Upper Values

Size p=2 p=2 p=2 p=3 p=3 p=3 p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6 p=8 p=8 p=8 p=10p=10p=10
no Nea Mes s Mos MNoe Moo Mos Moo Moo Mos Moo Moo MNos Moo Moo MNes  MNeg Moo MNes Moo

=
3

25 0.87 123 205 063 091 161 049 076 138 026 050 107 009 028 071 —029 —008 032 —065 —-046 —009
50 1.21 160 258 106 145 238 094 128 205 077 111 185 063 093 157 039 069 127 014 040 096
75 136 179 280 121 162 249 108 {46 227 103 138 217 089 123 19 073 107 171 048 0.76 135
100 143 185 291 135 178 263 125 164 248 116 157 231 106 141 208 084 1.16 183 065 096 153
125 146 190 293 135 1.74 262 127 1.72 254 118 152 227 112 145 218 096 132 198 082 117 184
150 1.51 194 281 146 185 274 135 170 259 128 166 244 118 153 226 102 141 230 090 125 193
175 1.55 200 278 146 187 263 138 173 257 130 171 247 122 160 232 113 144 206 099 140 199
200 1.54 195 299 148 189 277 141 175 255 132 166 244 130 169 238 113 149 212 101 138 206
oo 1.65 195 258 1.65 195 258 165 195 258 165 195 258 165 195 258 165 195 258 1.65 195 258




TABLE A-5
Small Sample Empirical Critical Values for Royston’s W Test: p=0.5

Size p=2 p=2

n

.90

Nas

p=2 p=3 p=3 p=3 p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6 p=8 p=8 p=8 p=10p=10p=10

/K]

N9

Nos

No9 Moo MNos Mo Moo Mos  MNos Moo Mos Mo Moo Mes Mo  Mso  MNes Mo

25
50

75
100
125
150
175
200

?

4.56
450
407
4.63
4.31
425
4.41
473
4.61

598
593
5.43
598
5.60
5.80
5.88
6.31
599

9.28
9.29
8.61
9.43
8.93
9.05
9.25
9.94
9.21

5.55
5.82
5.72
5.64
5.76
5.71
595
5.83
6.25

7.19
7.40
139
713
741
733
748
7.48
7.81

11.15 655 845 1241 825 1007 1426 875 1056 1526 1047 12.80 18.66 11.92 14.56 2101
1097 652 828 1269 845 1037 1509 8.85 1072 1609 1092 1321 1897 1232 1471 19.46
11.26 6.81 842 1265 837 1042 1534 932 11.18 1563 11.04 1324 18.17 12.65 1498 2122
11.05 667 841 1296 836 1031 1474 9.08 11.18 1590 11.19 1342 19.07 1301 1572 21.35
1087 690 857 1233 817 992 1448 926 11.50 1626 1139 13.63 1791 1266 1530 21.37
1.19 699 876 1320 853 1075 1520 927 11.24 1586 11.26 13.68 1875 1298 1528 2238
11.03 705 899 1353 883 1097 1579 949 11.80 1691 1143 13.70 18.76 13.01 1559 20.66
11.55 688 878 1292 897 11.09 1580 9.26 1135 1633 11.59 14.02 1909 1320 1551 21.50
1134 780 949 1328 924 11.07 1509 1065 12.59 16.81 13.36 1551 2009 1599 1831 23.21

2 Asymptotic values calculated for p =0.0.

TABLE A-6
Small Sample Empirical Critical Values for Royston’s W Test: p =09

Size p=2 p=2 p=2 p=3 p=3 p=3 p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6 p=8 p=8 p=8 p=10p=10p=10
R Neo MNos Noo Moo Mos Mo Moo Mos MNos Moo MNes Mo MNoo Mos  MNoe  MNeo  MNos Mo Moo  MNos  MNoo
25 358 484 831 470 602 991 592 749 1134 611 779 1165 687 878 1324 724 909 1382 7.57 939 1446
50 353 484 776 493 662 11.01 593 741 1099 641 830 1253 688 8.63 1323 745 9.22 1362 781 962 14.52
75 431 561 879 490 650 1071 599 764 1151 639 819 1200 691 869 1279 759 949 1355 7.71 9.58 14.25

100 3.65 501 808 4384 624 939 613 783 1190 649 843 1231 7.14 893 1381 767 935 1337 779 9.77 1395

125 411 560 895 490 626 966 604 781 1232 629 822 1285 7.15 912 1299 772 957 1431 783 982 13.88

150 4.17 559 902 505 6.65 1047 608 784 1180 660 829 1209 731 915 1349 766 9.61 1376 791 9.87 1439

175 417 552 9.14 498 648 1019 637 806 1264 644 831 1295 719 890 1381 766 9.68 1434 796 990 1474

200 356 491 789 486 625 999 598 787 1190 662 854 1281 7.25 880 1326 773 941 1413 825 1029 1485

0’ 338 461 757 370 498 80! 389 519 826 401 533 842 410 543 854 421 555 869 428 563 878

¢ Asymptotic values calculated for p =0.5. Note how the empirical critical values for this table are affected by residual correlation.
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TABLE A-7

Smali Sample Empirical Critical Values for Koziol's Chi Squared Test

Size p=2 p=2
n Nge MNos

p=3 p=3
195

p=3 p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6 p=8 p=8 p=8

Nog Moo Mes Moo Moo Moes Moy Moo  MHos Mg Neo Mos N

p=10p=10p=10

M0 N9 M99

25 0.167 0.211
50 0.173 0.218
75 0.172 0.220
100 0.169 0.214
125 0.178 0.222
150 0.174 0.219
175 0.170 0.215
200 0.173 0.219

0.318
0.336
0.331
0.325
0.333
0.331
0.333
0.342

0.158
0.156
0.158
0.158
0.159
0.160
0.162
0.162

0.193
0.199
0.199
0.203
0.200
0.200
0.205
0.203

0.154
0.155
0.153
0.156
0.153
0.156
0.155
0.154

0.274
0.287
0.276
0.290
0.275
0.282
0.290
0.278

0.157
0.150
0.152
0.152
0.152
0.151
0.152
0.148

0.193
0.188
0.187
0.192
0.188
0.190
0.192
0.183

0.282
0.272
0.273
0.275
0.278
0.274
0.280
0.267

0.166
0.152
0.150
0.148
0.147
0.151
0.150
0.149

0.207
0.191
0.187
0.188
0.181
0.188
0.187
0.187

0.290
0.284
0.270
0.275
0.261
0.267
0.281
0.267

0.191
0.159
0.154
0.152
0.148
0.150
0.147
0.148

0.235
0.198
0.192
0.1950
0.186
0.186
0.183
0.183

0.323
0.291
0.278
0.275
0.267
0.269
0.270
0.268

0.281
0.296
0.287
0.306
0.296
0313
0.308
0.299

0.193
0.193
0.193
0.195
0.188
0.194
0.194
0.191

0.230 0.276 0.367
0.166 0.214 0.301
0.162 0.195 0.285
0.155 0.193 0278
0.152 0.188 0277
0.149 0.186 0.271
0.147 0.185 0.271
0.147 0.183 0.267

TABLE A-8

Small Sample Empirical Values for Hawkins® Test

Size p=2 p=2
no Mo Mos

p=3 p=3

N0 Nos

p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6
Nos  MNog Nos Moo .95

p=8

Moo Mo .90 .90 Nos  Hos

p=10p=10p=10

.90 N5 .99

25 1.040 1.301
50 1.066 1.332
75 1.054 1.316
100 1.044 1.299
125 1.065 1.325
150 1.051 1.298
175 1.049 1.322
200 1.057 1.317

1.952
2.004
1.950
1.917
1.930
1.955
1.942
1.957

0977
0.990
0.993
1.014
0.996

1.202
1.236
1.235
1.242
1.229
1.002 1.255
1.017 1.244
1.000 1.242

0.981
0.986
0.980
0.989
0.961
0.987
0.981
0.975

1.765
1.840
1.787
1.847
1.821
1.888
1.868
1.784

1.205
1.219
1.192
1.224
1.179
1.238
1.212
1.188

1.844
1.777
1.721
1.799
1.726
1.761
1.712
1.722

0.943
0.951
0.961
0.967
0.955
0.965
0.967
0.942

1.171
1.147
1.186
117§
1.175
1.192
1.187
1.165

1.752
1.664
1.682
1.687
1.714
1.707
1.735
1.638

0919
0936
0.944
0950
0935
0.950
0958
0.956

1.148
1.158
1.161
1.162
1.141
1.181
1.184
1.177

1.716
1.636
1.653
1.700
1.662
1.675
1.729
1.705

0.914
0.928
0.943
0.935
0.928
0.942
0.939
0.936

1.125
1.134
1.150
1.146
1.150
1.141
1.149
1.152

1.667
1.630
1.667
1.638
1.629
1.648
1.649
1.617

0.920 1.131 1.705
0913 1123 1.711
0914 1.126 1.646
0924 1115 1577
0.925 1.140 1.673
0918 1.143 1.648
0928 1.134 1.615
0924 1.115 1.595

0ge
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TABLE A-9

Small Sample Empirical Critical Values for Cox and Small's Test (for p=2)

Sizez n=25 n=50 n=75 n=100 n=125 n=150 n=175 n=200

7 9o 512 482 473 4.74 472 4.68 4.64 4.65 4.61

Mos 679 639 6.19 6.23 6.11 6.07 6.20 6.07 599

.99 11.04 994 9.92 9.55 9.48 944 9.17 9.50 9.21
TABLE A-10

Small Sample Empirical Critical Values for Koziol’s Angles Test: for p =0.5

Sizep=2 p=2 p=2 p=3 p=3 p=3 p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6 p=8 p=8 p=8 p=10p=10p=10
n o MNgo Mos Moo Moo Mos MNos Moo Mos Mo Moo Mos Moo Moo Mos Moo Moo  MNos Mo MNoo  MNos Moo
25 453 587 907 642 835 1430 998 1801 1975 11.54 17.64 * 992 11.83 1663 11.09 13.50 1892 12.14 14.11 1894
50 445 594 9.15 650 830 1315 830 1048 1575 13.67 2430 * 1096 13.55 18.24 13.02 1549 21.06 1493 17.39 24.10
75 459 593 876 673 876 1485 9.88 13.81 66.17 1223 1998 * 1130 1406 19.72 13.67 1627 2250 15.58 18.64 2392

100 462 606 948 664 837 1401 859 1085 1652 1149 1589 * 1157 1413 19.68 13.77 1639 2292 1601 18.63 24.72

125 452 582 874 675 890 1488 1020 14.65 8265 11.79 1635 * 1156 1436 2020 14.06 16.65 22.26 16.38 19.13 2474

150 464 585 906 696 899 1578 1085 17.92 68.56 1266 1843 * 11.69 1422 1980 13.78 1627 22.56 16.34 19.38 2542

175 467 612 937 657 865 1298 1238 3318 8715 11.86 1580 * 1194 1446 20.26 1396 1649 2145 1635 19.01 25.12

200 461 599 907 661 867 1410 1760 * * 1296 2223  *  11.59 1425 2035 1415 1656 2283 1640 19.26 2537
oo 461 599 921 625 781 11.34 780 9.49 1328 924 11.07 1509 1065 12.59 16.81 13.36 1551 2009 1599 1831 2321

Note. * indicates extremely large empirical critical values due to algorithmic problems. Note the difference with p =6,
Supercomputer Facility.

8, 10, calculated at Cornell

LSdL LId-40-SSINA00D

(9%
(F%)
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TABLE A-11

Small Sample Empirical Critical Values for Koziol’'s Angles Test for p =0.9

Size p=2 p=2 p=2 p=3 p=3 p=3 p=4 p=4 p=4 p=5 p=5 p=5 p=6 p=6 p=6 p=8 p=8 p=8 p=10p=10p=10
n No MNos Moo M 90 N.9s Nos  MNoo  Mos Moo N 90 Nes Mo Moo Nos Mg Moo MNos N9 Noo  Mos Moo

10.06 1226 18.08 1252 1522 2272 1450 1575 2498
10.82 13.06 18.14 14.63 17.87 26.21 18.10 2227 32.72
11.23 13.55 1824 1501 18.63 26.53 19.18 24.12 35.88
11.13 13.51 18.76 1533 18.77 26.67 20.37 24.84 36.82
11.40 1387 19.95 15.64 19.09 27.56 19.89 24.57 36.74
11.23 13.64 18.85 1578 19.39 27.64 19.87 2404 34.76

25 453 579 886 709 971 21.79 1032 1680 21.12 13.17 20.30
50 471 620 9.09 7.1 973 1817 9.02 1277 46.74 1522 2470
75 448 582 913 735 10.18 2505 1092 1621 4228 1399 23.52
100 4.53 590 9.04 672 867 14.12 994 1437 3419 1775 47.27
125 458 604 958 7.00 9.08 17.61 1086 16.12 158.5 17.28 48.13
150 457 609 9.17 723 954 1624 1086 1556 90.23 1534 3140
175 450 578 864 7.62 1058 30.79 1059 1636 2555 1342 19.71 11.65 14.15 19.21 1535 18.70 27.50 20.78 25.60 36.71
200 462 606 906 741 997 3060 9.60 1200 * 1330 2082 11.53 1376 1942 1569 1892 2557 20.54 2591 3843
oo 461 599 921 625 781 1134 780 949 1328 924 11.07 1509 1065 1259 1681 13.36 1551 2009 1599 1831 23.21

#® R X * O # * »

Note. * indicates extremely large empirical critical values due to algorithmic problems. Note the difference with p =6, 8, 10, calculated at Cornell
Supercomputer Facility.
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