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Problem statement 

 Complexity of Environmental Problems 

 Too many variables in the system 

 Interactive/non linear structure  

 Difficulty in conducting experimentation 

 Proposed solutions  

 Implement Design of Experiments (DOE) 

 In the Laboratory or with simulation models 

 EVOP approaches to experimentation 



Examples of Environmental Projects 

 Salinity, Ph., temperature, invasive species  

 In the survival of indigenous species 

 Best mining and agricultural practices 

 In the life (length, quality) of specific species 

 Contaminants, light, water velocity, flora 

 On indigenous species of the ecosystem 

 Dam building and ecosystem destruction 

 Difficulty to experiment in real environment 

 Or to re-create the complete environment in lab 
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A Recent NCER Announcement 
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Susceptibility and Variability in Human Response to Chemical Exposure 

URL: http://www.epa.gov/ncer/rfa/2013/2013_star_chemical_exposure.html 

Open Date: 06/10/2013  -  Close Date: 09/10/2013 

 

Summary:  The U.S. Environmental Protection Agency (EPA), as part of its 

Science to Achieve Results (STAR) program, is seeking applications 

proposing research to study life stage and/or genetic susceptibility in order 

to better characterize sources of human variability in response to chemical 

exposure.  The adverse outcome pathways (AOP) concept has the 

potential to serve as a framework for using susceptibility indicators, 

biomonitoring, and high throughput screening (HTS) data in an integrated 

manner to predict population responses to novel, potentially harmful, 

chemicals. While much emphasis has been placed on improved bio 

monitoring and HTS approaches, research is needed to understand the 

underlying factors that influence human susceptibility and to develop tools 

and methods for ID and use of susceptibility indicators in this context. 

 

https://exchange.syr.edu/owa/redir.aspx?C=5FHXc-bgFUKSQQPmljulFQmrnfQ1OtAIavQYMGVWpYR2wFxz6zV9NyKxy5-rlqerEyMEFLqtorY.&URL=http%3a%2f%2fwww.epa.gov%2fncer%2frfa%2f2013%2f2013_star_chemical_exposure.html


An Industrial Experiment Example 

 Duress of bathroom tiles 

 Factors: time, temperature and concentration 

 Responses: average duress, variation 

 Methods of experimentation 

 Lab: bake tiles in furnace at factor levels 

 Use actual tile manufacturers 

 In different places, that use different factors 

 Problems associated with both approaches 

 Reproducing original conditions and inclusion 
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DOE Definition  

 DoE consists in the planning activities for 

organizing and carrying out the “best” 

strategy for testing a statistical hypothesis 

 Definition Keywords: 

 planning activities (before the event) 

 best strategy (seeks optimization) 

 hypothesis testing (statistical analysis) 



Steps to Perform DOE 

• Set experimental objectives 

• Select process variables 

• Select an experimental design 

• Execute the experimental design 

• Check that data are consistent with 

experimental design assumptions  

• Analyze and interpret results 

• Conclude/Restart the loop 

 



DOE Responses can be: 

 Location parameter: average life length, 

number of individuals per unit, etc. 

 Dispersion parameter: variance or standard 

deviation of life length, of individuals per unit. 

 Certain factors impact variation, not location 

 Variation has many useful applications 

 Comparison with upper/lower specification limits 

 Variation is often slighted or ignored 

Jorge Luis Romeu, Ph.D. (C) 9 



Jorge L. Romeu © 2009 

http://web.cortland.edu/romeu 

Analyzing Variation as a Key Factor  
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Process Capability Indices: 
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• DoE considers several important issues: 

– desired precision of the results 

– significance level we can absorb 

– sample size required by problem 

– sampling schemes and estimators 

– This requires the manipulation of the Factors 

– Before Experimentation Begins 

– Not always possible in environmental work 

Design of  Experiments 



Planning a DoE Involves 

 Determination of the response(s) Y 

 Determination of the factors (X1, X2, X3, X4,…) 

 Determination of the model functional form 

 Determination of the interaction forms (X1*X2)  

 Determination of the sample size (runs) 

 Determination of the experimental precision 

 Determination of the error we can absorb 

 Determination of the randomization plan 



Model Hypotheses are: 

 Educated guesses 

 The result of experience or observation 

 They are obtained by: 

 Restating the problem in statistical terms 

 They are either true or false 

 The Null and Alternative hypotheses 

 Null (H0): always the status quo 

 Alternative (H1): negation of the Null! 



Some Modeling Problems 

 What if variances are different? 

 Power of the test in experimental design 

 Errors ( provide the sample size 

 Blocking when there are too many factors 

 Assessing model assumptions (validation) 

 What happens with model violations? 

 How can we resolve such problems? 

 Not always done, or done incompletely 



Choice of Sample Size 

 Important Experimental Design Problem! 

 Can be obtained by pre-specifying: 

 The precision of the experiment  

 Probabilities of types I and II errors ( 

 Knowing the population variances 2 

 Obtain the required percentiles (z,z) 

 corresponding to the respective table values 

 for the respective probabilities (1- and (1- 



Assessing Model Assumptions 

 Data Independence 

 Normality of the data  

 Homogeneity of variances 

 DOE Results are only valid  

 when all assumptions hold true 

 Check graphically, at the very minimum 

 Robustness: degree of test validity under 

model assumption departures 



Assumption Violations 

 Lack of independence 

 Heterogeneous variances  

 Non-Normality of data 

 transformation of the data (Log, square root) 

 alternative non parametric procedures 

 Always check model assumptions 

 At least graphically 

 to insure validity of your results! 



Three types of DOE experiments 

 Laboratory Experiments 

 Not always possible to reproduce the situation 

 Certain elements may not be included 

 Missing factors and their interaction 

 That can also affect the response 

 Simulation Experiments 

 Not always possible to model complete situation 

 EVOP (Evolutionary operations) 

 Not entirely under experimenter’s control 
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A Simulation Experiment Example 

 Given a network of water masses 

 For both, civilian and industrial use 

 Optimize some performance measures 

 e.g. operational, social, political, ecological 

 Subject to a set of (conflicting) political, labor, 

socio-economic, etc. constraints 

 Maintaining levels of production, employment 

 Tax revenues, social services, economic, etc. 



A Network of Interconnected Water Masses 

Lakes, 

Rivers, etc 

Water 

Table 

Domestic 

Consumption 



Example: River Port w/Lagoon 

Water Table 

Max Max 

Min 
Min 

Lagoon 
River 

Port 

Pump 

Schematic of the River Port and Lagoon aquatic ecosystem. 



Controlled Variables:  Economic 

 Replenishing Levels (MIN)                                                                                                                       

  Reservoir Capacity (MAX)                                                                

 Ordering Schedule                                                                

 Transfer Policy                                                                       

 Usage Policy                                                                           

 Shortage Policy                                                                       

 Profitability 

  System’s Initial Conditions 



Controlled Variables: Social 

 Allocation to each sector  

 Size of the Reservoirs  

 Transfer Policy 

 Generation of electricity 

 Hospitals and schools 

 Transportation uses 

 Recreation uses 



Controlled Variables:  Ecologic 

 Wetland Area 

 Wetland Depth 

 Transfer Speed 

 Water Table Use 

 Pollution Level 

 Fish/Foul Population 



WetLand v. Level 

L 

W 



Uncontrolled Variables 

 ECONOMIC 

 Political issues  

 Labor issues 

 Water Theft 

 Water Leaks 

 Markets 

 Financial 

 ECOLOGIC 

 Evaporation 

 Temperature 

 Salinity 

 Reproduction 

 Weather 

 Water Table 



And Associated Costs 

 Of Importing Water from other places 

 Transferring from Social to Economic  

 Allocation to various constituencies 

 Of Water shortages and rationing 

 Indirect costs (labor, political, social) 

 Ecological costs (degradation, loss) 

 Total costs (compound response) 
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Wetland Size

Canal capacity

Seasonality

Transfer Policy

Recreation

Industrial

Sanitary

Simlation of Finger Lakes Ecosystem



Example of a Simple DOE 

680 581 

636 502 

744 1146 

1096 688 

River Port Capacity 

One Two 

Water 

Transfer 

Policy 

A/3 

A/2 

Seasonality 

Dry 

Rain 

Complete Factorial Experiment for the Simulation 

Response: 

Total Cost 
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Experimental Results 

 Factor 1: Ecosystem capacity 

 of the Lake 

 of the River Canal 

 Factor 2: Water Transfer Policy 

 between water masses and Water Table 

 Factor 3: Seasonality (Spring/Fall) 

 Interaction: F1 * F3 

 All other variables were non-significant 
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Table 2: Analysis of Variance Table for the Simulation Experiment 

          Source                   D. F.     Mean Square            F Value          P-Value 

River Canal 

Capacity 

1 1219401 588.71 0.000 

Water Transfer 

Policy 

1 1828892 882.96 0.000 

Seasonality 

(Spring/Fall) 

1 58186 28.09 0.000 

Enviro-Site x 

Policy 

1 373104 180.33 0.000 

Table 3: Examples of model-derived quantitative information  

Factor                Change Effected            Effect on Response 

River Canal Capacity One to two ships capacity Size decreases 

Water Transfer Policy Transfer: 1/3 to 1/2 of water 

mass availability  

Size increase:  

Seasonality Spring into Fall Season Size decreases 

Capacity x Seasonality Spring/one ship; Fall/Two Size decreases:  

Statistical Results 



Some Modeling Applications 

 Design and Optimization of Systems 

 Identification of System Key Factors 

 Analysis of System Key Factors  

 Arbitration and Conflict Resolution 

 Evaluation of Decisions/Strategies 

 Evaluation of Robust Strategies 

 Trade-offs and Sensitivity Analyses 

 What-if, Time to catastrophic fails, etc. 



            Composite Objective Functions 
 

Ecologic: Xi is number of occurrences of ith item: 

 
 

 

Economic: Yi = aiXi is cost of No. ith item occurrences: 

 
 

 

 

 

 

Arbitration and Trade-Off: α is the preference or weight: 
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Example of modeling approach: 

 Minimize Total Water Operations Cost 

 Subject to: 

 Maintaining specified labor levels 

 Reducing pollution to specified levels  

 Maintaining specified social levels 

 Maintaining specified consumption levels 

 Increasing overall health indices  
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Trade-Off Examples 

Scenario Ecologic Health Industry Education Recreation Other 

Best Ecologic X1 Y1 Z1 W1 L1 M1 

Best Health X2 Y2 Z2 W2 L2 M2 

Best Industry X3 

Best Education X4 

Best Recreation X5 

Best Other X6 

Analyze Maxi-min and 

Mini-max results 



Some DOE Model Limitations: 

 Analyzes limited variables (here, k=3) 

 For, 2^K Factors/Interacts are generated 

 The Effect of Interaction, when k > 2 

 Can affect results, if present and strong 

 Need to find Robust Responses  

 Handling specific “noise variables” 

 Need to Identify “significant few” variables 

 To reduce model Size, maintaining Info level. 



Consequences … and Solutions 

 Large number of factors to analyze 

 Strong factor interaction may exist 

 Dependent on the model structure 

 Requires special methods for analysis 

 Different objective of models derived:  

 To describe/study, forecast or control 

 Robust Parameter analysis capability 

 To derive a response equation that is 

 Resilient to “noise” or uncontrolled factors 



Some Variable Id Methods  

 Full Factorial Designs 

 Fractional Factorial Designs 

 Plackett-Burnam Designs 

 Latin Hypercube Sampling 

 Regression Selection methods 

 Principal Components/PCA 

 Other modeling approaches: 

 Taguchi Methodology  

 



Full Factorials 

 Most expensive (in time and effort) 

 Prohibitive with current number of factors 

 Most comprehensive information 

 Provides info on all factor interactions 

 Two Examples with a 2^3 Full Factorial 

 First case: mild interaction (AB only) 

 Second: strong and complex interaction 

 Notice how the Model-Estimations vary 



Example 2^3 Full Factorial Design: 

 Variables Used 

 A = Replenishing Levels (MIN)                                                                                                                       

  B = Reservoir Capacity (MAX)                                                                

 C = Transfer Policy 

 Mild interaction assumed 

 A* B only 



Meta Model: Yijkl = 8.33 + 4.04A + 1.88B + 4.81C + 0.92AB 

True Model:  Y = 10 + 4*A + 2*B + 5*C + AB +  
 

Full Factorial Experiment 2^3  

Run A B C AB AC BC ABC Avg. 

1 -1 -1 -1 1 1 1 -1 -1.07 

2 1 -1 -1 -1 -1 1 1 3.72 

3 -1 1 -1 -1 1 -1 1 -0.58 

4 1 1 -1 1 -1 -1 -1 12.04 

5 -1 -1 1 1 -1 -1 1 7.75 

6 1 -1 1 -1 1 -1 -1 15.45 

7 -1 1 1 -1 -1 1 -1 11.09 

8 1 1 1 1 1 1 1 18.31 

TotSum 66.71 

Effect 8.08 3.75 9.62 1.84 -0.62 -0.65 -2.08 

Regression Estimations 

RegCoef A B C AB b0 

Estimat. 4.04 1.88 4.81 0.92 8.34 

TRUE 4 2 5 1 10 

Mild Interaction (AB only) 



Fractional Factorial Designs 

 Analyzes only a Fraction of Full Factorial 

 Reduces substantially time/effort 

 Confounding of Main Effects/Interactions 

 If Interactions present, this is a problem 

 Only for Powers of Two (no. of runs) 

 Numerical Example: Half Fractions 

 Of the previous Full Factorial –and others 

 Assess Model-Estimation agreement 



First Fraction:  L1 

Run A B C=AB Avg. 

1 1 -1 -1 -0.33 

2 -1 1 -1 -0.33 

3 -1 -1 1 -0.33 

4 1 1 1 1.00 

TotSum 0.00 

Effect 7.429 3.130 11.460 

Signif. No No Yes 

Second Fraction:  L2 

  

Run A B C=AB Avg. 

1 -1 -1 -1 -1.00 

2 1 1 -1 0.33 

3 1 -1 1 0.33 

4 -1 1 1 0.33 

TotSum 0.00 

Effect 8.728 4.375 7.784 

Signif. Yes No Yes 

Untangling Confounded Structure 

(L1+L2)/2 8.079 3.753 9.622 

(L1-L2)/2 -0.649 -0.623 1.838 

Effects 8 4 10 

True Model:  Y = 10 + 4*A + 2*B + 5*C + AB +  

Y1 = 7.3 + 3.71A + 1.57B + 5.73C* 

 Y2 = 8.33 + 4.36A + 2.18B + 3.89C* 

C *: Factor C is confounded with AB 

Notice how, by averaging both 

Half Fraction results, we obtain 

the Full Factorial results again. 

Fractional Factorials 



Re-analyzing the 2^3 Full Factorial: 

The same Variables are used, but 

With Stronger Interaction 

 A = Replenishing Levels (MIN)                                                                                                                       

  B = Reservoir Capacity (MAX)                                                                

 C = Transfer Policy 

 Stronger interaction assumed 

 A*B, A*C, B*C 

 Overall: A*B*C 



Model Parameters 

Variables     A         B      C     AB     AC     BC  ABC 

RegCoef 3 -5 1 -12 8 -10 -15 

RegEstim 1.94 -4.38 1.73 -12.14 7.34 -10.52 -15.26 

MainEffEst 3.88 -8.76 3.47 -24.28 14.68 -21.05 -30.51 

MainEffcts 6 -10 2 -24 16 -20 -30 

  

Var. of Model 12.5173 StdDv 3.53799 

Var. of Effect 2.0862 StdDv 1.44437 

Student T (0.025DF)  2.47287 

C.I. Half Width  3.57177 

Factor A B C AB AC BC ABC 

Signific. Yes Yes No Yes Yes Yes Yes 

Full Factorial: Complex, Stronger Interaction 

Y    = 3A  - 5B   + C - 12AB   + 8AC  -  10BC  - 15ABC  

RegEstim 1.94A -4.38B 1.73C -12.14AB +7.34AC -10.52BC -15.26ABC 

True Model and Estimated Meta Model: 



Half Fraction Analysis: 

First  Half(a) 

Run A B C=AB Y1 Y2 Y3 Avg. Var Model 

2 1 -1 -1 -15.03 -16.54 -16.04 -15.87 0.59 -14 

3 -1 1 -1 7.18 9.21 5.28 7.22 3.87 6 

5 -1 -1 1 -16.75 -19.75 -22.02 -19.51 6.97 -22 

8 1 1 1 -31.61 -27.62 -33.04 -30.76 7.89 -30 

TotSum -56.21 -54.7 -65.82 -58.91 19.32 

Effect -17.17 5.92 -20.81 ModlVar. 4.83 StdDev= 2.2 EffVar 

Signif.  Yes    Yes     Yes T(.975,df) 2.75 CI-HW= 3.49 StdDev 

  Half(b) Second  

Run A B C=-AB Y1 Y2 Y3 Avg. Var Model 

1 -1 -1 -1 -5.64 -0.28 9.43 1.17 58.32 2 

4 1 1 -1 4 1.47 2.49 2.65 1.62 2 

6 1 -1 1 49.73 54.94 56.86 53.84 13.62 54 

7 -1 1 1 5.99 7.88 2.56 5.48 7.26 2 

TotSum 54.08 64.01 71.34 63.14 80.82 

Effect 24.92 -23.44 27.75 ModlVar. 20.2 StdDev= 4.49 EffVar 

Signif.   Yes   Yes       Yes T(.975,df) 2.75 CI-HW= 7.14 StdDev 

(a+b)/2 3.88 -8.76 3.47 MainEff “C” 

(a-b)/2 -21.05 14.68 -24.28 Interact C=AB 

Coefs 6 -10 2 

NOTE: FRACTIONAL FACTORIAL RESULTS, GIVEN THE STRONG 
INTERACTIONS, ARE POOR. 

Corresponding Half Fractions 
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Plackett-Burnam (PB) Designs 

 Are Fractional Factorial (FF) DOEs 

 Analyses “holes” between adjacent FFs 

 Reduces time/effort, considerably 

 Confounding of Main Effects/Interactions 

 Numerical Example: 11 main effects 

 Compare PB to a 2^11 Full Factorial 

 Not all Interactions are strong/significant 

 Counter Example: strong interactions 



Plackett-Burnam w/o Interaction 

 A=Replenishing Levels (MIN)                                                                                                                       

  B=Reservoir Capacity (MAX)                                                                

 C=Ordering Schedule                                                                

 D=Transfer Policy                                                                       

 E=Allocation to each sector  

 F=Size of the Reservoirs  

 G=Generation of electricity 

 H=Hospitals and schools 

 I=Wetland size                                                             

 J=Water Table 

 K=Fish/Foul Population 



Placket-Burnam Design (no interaction) 

Run  A  B  C  D  E  F  G  H  I  J  K  Avg 

1 1 -1 1 -1 -1 -1 1 1 1 -1 1 36.14 

2 1 1 -1 1 -1 -1 -1 1 1 1 -1 24.39 

3 -1 1 1 -1 1 -1 -1 -1 1 1 1 0.5 

4 1 -1 1 1 -1 1 -1 -1 -1 1 1 -5.96 

5 1 1 -1 1 1 -1 1 -1 -1 -1 1 2.62 

6 1 1 1 -1 1 1 -1 1 -1 -1 -1 31.26 

7 -1 1 1 1 -1 1 1 -1 1 -1 -1 21.12 

8 -1 -1 1 1 1 -1 1 1 -1 1 -1 -10.54 

9 -1 -1 -1 1 1 1 -1 1 1 -1 1 15.92 

10 1 -1 -1 -1 1 1 1 -1 1 1 -1 12.02 

11 -1 1 -1 -1 -1 1 1 1 -1 1 1 7.33 

12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11.66 

Factors A B C D E F G H I J K Bo 

RegCoef 6 2 0 -4 -6 0 -2 4 8 -8 0 12 

RegEst. 4.5 2.3 -0.1 -4.3 -3.6 1.4 -0.8 5.2 6.1 -7.6 -2.8 12.2 

MainEff 12 4 0 -8 -12 0 -4 8 16 -16 0 n/a 

EstimEff 9.1 4.7 -0.2 -8.6 -7.2 2.8 -1.5 10.4 12.3 -15.2 -5.6 12.2 

Signific. Yes Yes No Yes Yes No No Yes Yes Yes Yes Yes 



Plackett-Burnam with Strong Interaction 

 A=Replenishing Levels (MIN)                                                                                                                       

  B=Reservoir Capacity (MAX)                                                                

 C=Ordering Schedule                                                                

 D=Transfer Policy                                                                       

 E=Allocation to each sector  

 F=Size of the Reservoirs  

 G=Generation of electricity 

 H=Hospitals and schools 

 I=Wetland size                                                             

 J=Water Table 

 K=Fish/Foul Population 



Model with Strong Interaction Structure 

Factors A B C D E F G H I J K Bo 

RegCoef 6 2 0 -4 -6 0 -2 4 8 -8 0 12 

Factors A B C D E F G H I J K 

MainEff 12 4 0 -8 -12 0 -4 8 16 -16 0 

FacEstim -98.6 61.1 41.3 -86.5 98.4 66.4 79.7 51.8 -26.6 37.6 -96.0 

RegPar. 6 2 0 -4 -6 0 -2 4 8 -8 0 

RegEstim -49.3 30.5 20.6 -43.2 49.2 33.2 39.8 25.9 -13.3 18.8 -48.0 

Signific. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Interaction: 2*A*B-4*H*I+G*J+D*E 

Plackett-Burnam (n=12 rows) Analysis Results: 

Results are seriously confounded and numerically erroneous. 



There are two groups of significant 

variables after Plackett-Burnam: 

Positive: B, C, E, F, G, H, J;  

and  

Negative: A, D, I, K. 

 

We Perform a Resolution IV FF  

To one of the two groups 



Re-Analyzing the Group of 

Positive Variables:  

B, C, E, F, G, H,  and J  
  

 B=Reservoir Capacity (MAX) 

  C=Ordering Schedule 

 E=Allocation to each sector  

 F=Size of the Reservoirs  

 G=Generation of electricity 

 H=Hospitals and schools 

 J=Water Table 



Performing a Resolution IV FF to the  

“Positive” group: B, C, E, F, G, H, J 

Factors  B  C  E  F  G  H  J  Bo 

TRUE 12 4 0 -8 -12 0 -4 12 

EffectEstim  12.14 2.53 1.17 -7.20 -11.82 0.39 -3.49 13.59 

RegCoef  6 2 0 -4 -6 0 -2 12 

RegEst.  6.07 1.26 0.59 -3.60 -5.91 0.19 -1.75 6.80 

Signific.     Yes       Yes       No      Yes     Yes       No        Yes  

Notice how, once all the (erroneously estimated) variables 

of the “same sign” were re-analyzed as a sub-group. 

Plackett-Burnam estimations then became closer to the 

True parameter values, both in sign and in magnitude. 



Example of Latin Hypercube Sampling Segments 

Sample 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

B 2 3 1 5 4 6 9 8 10 7 

I 4 2 7 1 5 9 10 8 6 3 

J 8 6 2 7 1 5 4 3 9 10 

Latin Hypercube Example  

Assume we have a three dimensional (p = 3) problem in variables B, I, J 

(reservoir capacity; wetland size and water table use) and that these are 

respectively distributed Normal, Uniform and Exponential,. Assume that 

we want to draw a random sample of size n = 10. Divide each variable, 

according to its probability distribution, into ten equi-probable segments 

(Prob. = 0.1 = 1/10), identifying each segment with integers 1 through 10. 

Then, draw a random variate (r.v.) from each of the ten segments, for 

each of the three variables B, I, J. Finally, obtain the 10! permutations of 

integers 1 through 10. Randomly assign one of such permutations (e.g. 

segments 2,1,5,4,6,9,8,10,7 for B), to each of the variables, select the 

corresponding segment r.v., and form the vector sample, as below: 



Latin Hypercube Sampling Modeling 

 Multiple regression analysis approach 

 Sampling at “best” points in sample space 

 Regression selection methods 

 To obtain most efficient Meta Model set 

 Provides a list of Alternative Meta Models 

 Some, not as efficient -but close enough 

 Their factors can be “controlled” by the user 

 Can be reduced via Principal Components 



Variable  Factor1  Factor2   

x1          0.930    0.030 

x2          0.883   -0.249 

x3         -0.097    0.989 
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Loading Plot of x1, ..., x3

Example of Varimax Factor Rotation : 

Project Variables X1 and X2 on F1 

Then, Project Variable X3 on Factor 2. 



Jorge L. Romeu © 2009 

http://web.cortland.edu/romeu 

Taguchi Methodology 

 Analyzes both Location and Variation 

 Of the performance measure of interest 

 Best combination of both these together 

 To obtain the most efficient Model 

 Optimize Location, resilient to Variation 

 Minimize Variation, resilient to Location 

 Determine regions of joint optimality 

 Determine Variation is NOT an issue 

 Done equivalently by implementing a DOE. 
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Taguchi SN Ratios 

• Smaller the better (for making system response as small as possible): 

SNS = - 10 *Log[1/n (∑yi
2)] 

 

• Nominal the best (for reducing variability around a target): 

SNT =  10 * Log (y2 / s2) 

 

• Larger the better (for making system response as large as possible): 

SNS = - 10 *Log[1/n (∑ 1/yi
2)] 

 

These SN ratios are derived from the quadratic loss function. 

The preferred parameter settings are determined through analysis of the 

“signal-to-noise” (SN) ratio, where factor levels that maximize appropriate 

SN ratio are optimal. There are three standard types of SN ratios that 

depend on the desired performance response: 
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Example of Taguchi Methodology 

X1 X2 X3 X4 X5 1 2 3 4 Var LnVar Average TaguchiSN 

1 1 1 -1 -1 194 197 193 275 1616.25 7.39 214.75 -46.75 

1 1 -1 1 1 136 136 132 136 4.00 1.39 135.00 -42.61 

1 -1 1 -1 1 185 261 264 264 1523.00 7.33 243.50 -47.81 

1 -1 -1 1 -1 47 125 127 42 2218.92 7.70 85.25 -39.51 

-1 1 1 1 -1 295 216 204 293 2376.67 7.77 252.00 -48.15 

-1 1 -1 -1 1 234 159 231 157 1852.25 7.52 195.25 -45.97 

-1 -1 1 1 1 328 326 247 322 1540.25 7.34 305.75 -49.76 

-1 -1 -1 -1 -1 186 187 105 104 2241.67 7.71 145.50 -43.59 

  VARIABLES  ANALYZED 

 Response: Wet Land Size  

 X1=Reservoir Capacity (MAX)                                                                

 X2=Generation of electricity 

 X3=Hospital Capacity  

 X4=Social Services 

 X5=Fish/Foul Population 

 Z1 and Z2 are two noise variables 



SN Ratios: 

Blue: Closer to Target 

Green: Maximize Yield 

Red: Minimize Yield 

Examples of Taguchi’s SN Ratios 



Analysis for Joint Location-Variance 
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Regression Analysis for the Main Effect influence 

Coef Std Err t Stat P-val Lower 95 Upper 95 

Intercept 197.13 7.88 25.01 0.00 181.00 213.25 

X Var 1 -27.50 7.88 -3.49 0.00 -43.62 -11.38 

X Var 2 56.88 7.88 7.21 0.00 40.75 73.00 

Regression Analysis for the Variance Influence 

Coef Std Err t Stat P-val Lower 95 Upper 95 

Intercept 6.77 0.78 8.70 0.00 4.77 8.77 

X Var 1 -0.82 0.78 -1.05 0.34 -2.82 1.18 

X Var 2 0.69 0.78 0.88 0.42 -1.31 2.69 



Optimal Solution: Estimated Yield: 

Overlaying both plots (for location and variation) we Y = 197.12 - 27.5X1 + 56.9X2 

seek to Minimize simultaneously Yield  and  Variation. Y (1, -1) = 112.72 

Jointly applying the two above (cols. 3 & 8).  Estimated Variation: 

The Optimum is around (1, -1), yielding Y = 6.77 - 0.82X1 + 0.69X2 

Estimated Minimum Output  = 113;  Min Variation = 5.3 Y (1, -1) = 5.26 

Graphical Combined DOE Approach 



Pan-American Advanced Studies Institute 
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Synopsis of Program: 

 

The Pan-American Advanced Studies Institutes (PASI) Program is a 

jointly supported initiative between the Department of Energy (DOE) and 

the National Science Foundation (NSF). Pan-American Advanced 

Studies Institutes are short courses ranging in length from ten to twenty-

one days, involving lectures, demonstrations, research seminars, and 

discussions at the advanced graduate, post-doctoral, and junior faculty 

level.  

 

PASIs aim to disseminate advanced scientific and engineering 

knowledge and stimulate training and cooperation among researchers of 

the Americas in the mathematical, physical, and biological sciences, the 

geosciences, the computer and information sciences, and the 

engineering fields. Proposals in other areas funded by NSF may be 

considered on an ad hoc basis as long as they are multidisciplinary; in 

this case, lead investigators must consult with the PASI Program before 

proposal submission.  



Pan-American Advanced Studies Institute 

 US-Latin American Scientists/Researchers 

 Modeling of Environmental Problems 

 Modelers: statistics & applied math (O.R.) 

 Environmental Science Specialists 

 From USA: EPA, GLRC, Other Universities 

 From LA: Mexico, Brazil, Argentina, Chile, 

Colombia, Ecuador, Puerto Rico, others 

 Via the Juarez Lincoln Marti Int’l Ed. Project 

 http://web.cortland.edu/matresearch  
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Conclusions 

 DOEs are complex methodologies 

 Size and interactions are serious issues 

 Existing methods, not fully compliant 

 But promise, if worked around 

 Some Models are useful 

 For strategic and tactical decisions 

 In crisis, and to assess/avoid them 

 In theoretical and applied studies 

 A PASI for Latin America in preparation 


