## Hurricane Harvey

MFE634 Quality Engineering/Syracuse University Student Group one;/April 14, 2018.

## Introduction

This presentation is about the quality analysis that we performed on the biggest and the most expensive hurricane to ever hit USA. Hurricane Harvey.

#### • <u>SIX SIGMA</u>:

• We will be analyzing all the aspects of hurricane Harvey under the context of Six Sigma-DMAIC process.



The Define Phase: The purpose of this step is to clearly articulate the business problem, goal, potential resources, project scope and highlevel project timeline.



## Background

- On August 2017, Hurricane Harvey made landfall in the US, causing unprecedented flooding, which inundated hundreds of thousands of homes, displaced more than 30,000 people, and prompted more than 17,000 rescues.
- It is the most damaging and costly hurricanes in US history.
- It reached category 4 level wind speeds and caused massive flooding throughout the southern Texas.

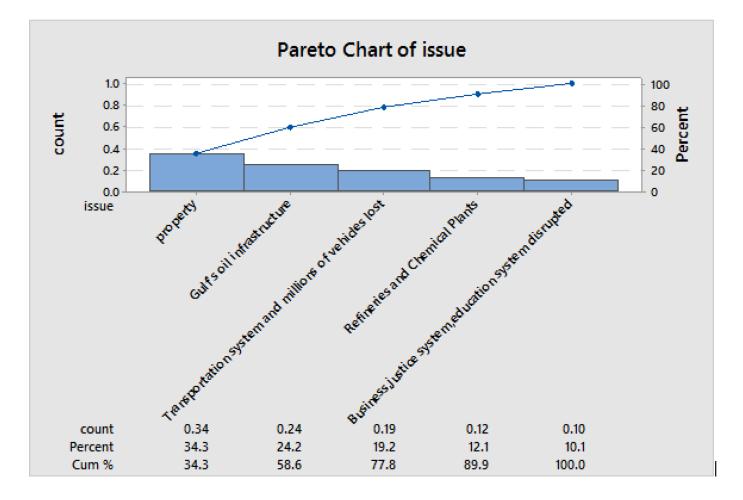
## The Differences

- WHY IT CAUSED SO MUCH DAMAGE?
- Because upper-level winds in the atmosphere usually steer big hurricanes and keep them moving after they make landfall. With Harvey, those steering winds broke down, and a high pressure system to the northwest kept Harvey locked in place. Around 14 trillion to 15 trillion gallons of water had fallen on Houston and its surrounding areas. And 5 trillion more gallons are still expected to come.
- There was no evacuation order issued before the storm hit.
- WHY IT REMAINED ON HUSTON AREA FOR SO LONG?
- In Harvey's case, a big high-pressure system over the southeastern U.S. is trying to push the storm in one direction, but a big high pressure system over the southwestern U.S. is trying to push the storm in the opposite direction.
- WHY WAS IT THE MOST DISTRUCTIVE STORM OF 2017
- Because it caused extreme rainfall and flood, and it lasted too long.

#### THE ACTUAL TIMELINE

On August 25, 2017, Harvey hit Port Aransas and Port O'Connor near Corpus Christi with 130 m.p.h. winds. The category 4 hurricane left 250,000 people without power. On August 25, 2017, Harvey hit Port Aransas and Port O'Connor near Corpus Christi with 130 m.p.h. winds. The category 4 hurricane left 250,000 people without power. On August 26, Harvey moved on to Houston. It remained there for Your days. Two reservoirs. The highways became overflowed waterways. Between 25 and 30 vercent of Houston's Harris County was flooded. That is an area as arge as New York City and Chicago combined. It was home to 4.5 million people. On August 29, Harvey made landfall for a third time as it hit the coastal cities of Port Arthur and Beaumont Texas on the border of Louisiana. It dumped 26 inches of rain in 24 hours. It flooded Port Arthur, a city of 55,000 people. Water entered one-third of the city's building, including shelter.

On August 31, an Arkoma chemical plant in Crosby, Texas, ignited. The chemicals required refrigeration to stay inert. When the storm disabled the cooling equipment, temperatures rose and the chemicals ignited. On September 1, Harvey dropped 10 inches of rain on Nashville, Tennessee.


## Damaging Elements of the Hurricane

- FLOODING
- The floods could cause that number to balloon, and additional factors could make Harvey a \$30 billion storm.
- TORNADOES
- WIND and STORM SURGE
- Usually, severe winds that tear off roofs and uproot trees are a major source of damage during hurricanes. But in Harvey's case, storm surge damage brought by the storm's winds likely won't be as extensive as inland flood damage from rivers that overflow their banks. The insured losses from just the winds and storm surge could reach more than \$2.3 billion.
- HAIL

## AREAS OF MAXIMUM DAMAGE

- Property (colonials, residential-43-65 billion)
- Human life
- Gulf's oil infrastructure
- Economic impact
- Power (electricity) lost
- Transportation system and millions of vehicles lost
- Refineries and Chemical plants
- Business, justice system, education system disrupted

Pareto Analysis the following analysis was done based upon division of funds for relief Loss of property was greatest as seen



Based on the Pareto Analysis we can categorize the major losses as :

> Economic impact

Loss of infrastructure and Life

> Impacts along the coast

## Major damage

# Loss of Infrastructure and Life

- 500,000 homes were affected, and of those 500,000 homes, an estimated 90,000 suffered severe damage from flooding.
- Almost 200,000 more homes suffered extensive flooding that impaired immediate occupancy
- An additional 200,000 suffered short-term impaired functionality

#### Breakdown of forecast losses from tropical storm Harvey

Overall losses\* (\$bn)

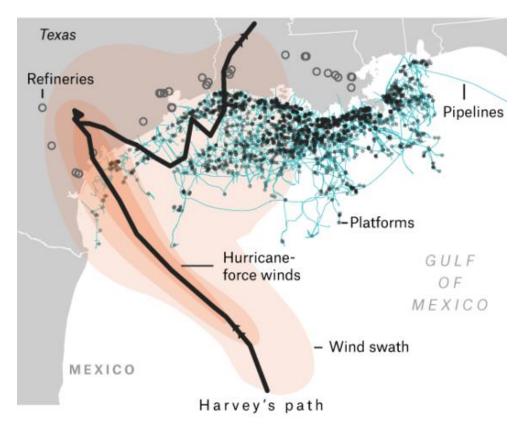


### LOSS OF LIFE

- The majority of deaths 62 were caused by wind, rain and floods, which led to drownings or trees falling on people.
- Meanwhile, 26 deaths were caused by "unsafe or unhealthy conditions" related to the loss or disruption of services
- deaths caused by medical conditions, electrocution, traffic accidents, flood waterrelated infections, fires and burns



## HUMAN LIFE DISTRUPTED COMPLETELY

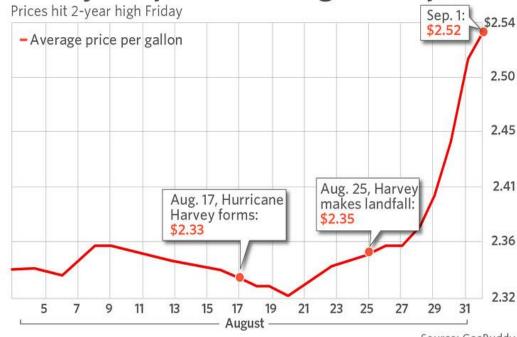

#### Common Problems After a Disaster

- Long-term health problems
- PTSD and Depression
- Stress from loss of possessions
- Stress from loss of job/livelihood
- Communicable disease due to lack of clean water
- Replacing Lost or Damaged Documents like Birth/Death Certificates Driver's License

# Impacts along the Coast

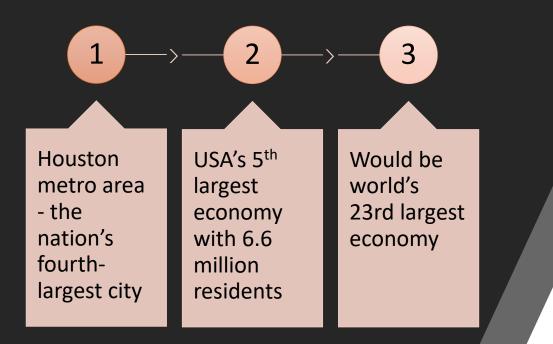
- Affected the Gulf Coast-responsible for large portion of the U.S. petroleum refining capacity
- Numerous large Petrochemical plants were shut down
- Released toxic pollutants that pose a threat to human health.
- An example would be Chevron Phillips Chemical plant in Sweeny, Texas. When it shut down due to Hurricane Harvey, it released into the air more than 100,000 pounds of carbon monoxide, 22,000 pounds of nitrogen oxide, 32,000 pounds of ethylene, and 11,000 pounds of propane
- In the Gulf area, 1 million vehicles were ruined beyond repair

#### Hurricane Harvey didn't spare the Gulf's oil infrastructure



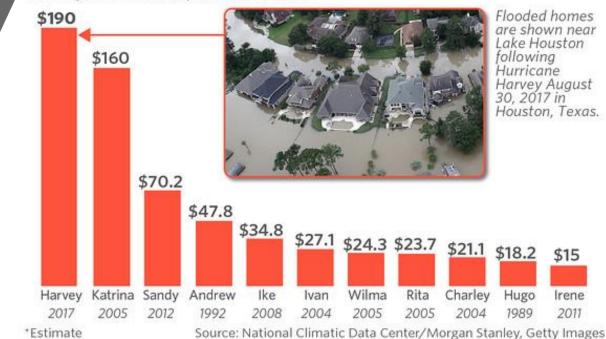

SOURCES:NOAA'S NATIONAL HURRICANE CENTER, BUREAU OF OCEAN ENERGY MANAGEMENT, ENERGY INFORMATION ADMINISTRATION

FiveThirtyEight


- Forced 25 percent of oil and gas production to shut down in the region
- Played a role in increasing energy prices by 2.8% in August
- Gasoline prices rising by 6.3%.
- Prices increased for input prices for a wide variety of goods and services.

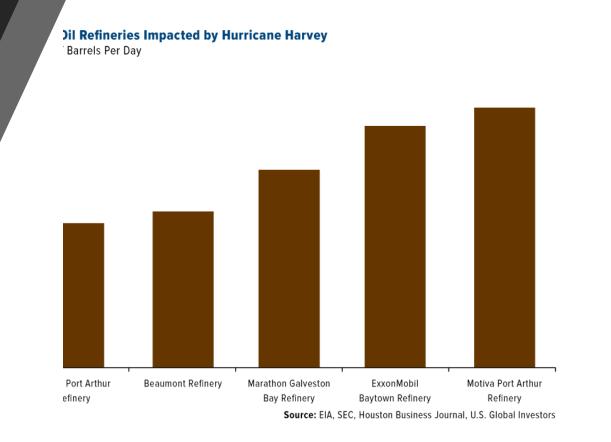
#### Harvey's impact on retail gasoline prices



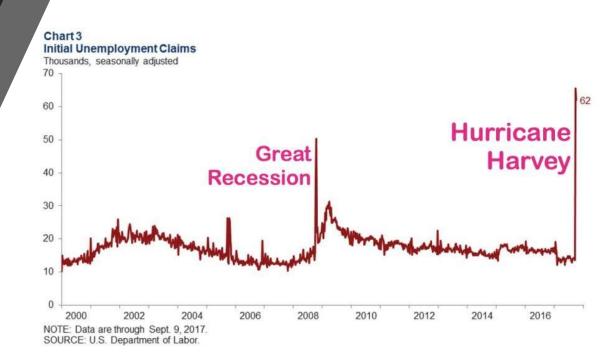

Source: GasBuddy

## Economic Impact




#### **Costliest U.S. storms**

Damage in billions, adjusted for inflation



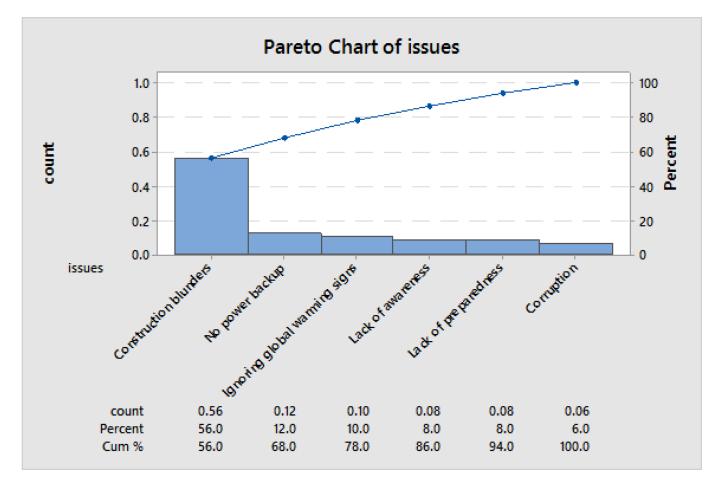

A third of Houston's economy is directly tied to the oil and gas industry

- Nation's number one gasolineproducing state.
- Largest oil refinery in the U.S, Located in Port Arthur with a capability to produce 600,000 barrels a day was shut down.



- Also home to non-energy companies, such as KBR, Waste Management and the food service giant Sysco-All shut down
- Several hospitals, both major airports and the Port Of Houston-shut down
- Spiked Unemployment




## Major reasons for failure

- Construction blunders
- No Power Backup
- Ignoring global warming signs
- Lack of awareness
- Lack of preparedness
- Corruption

#### Pareto Analysis:

-Found that Construction blunders did most damage

-Other categories also indirectly or directly are related to Construction Blunders

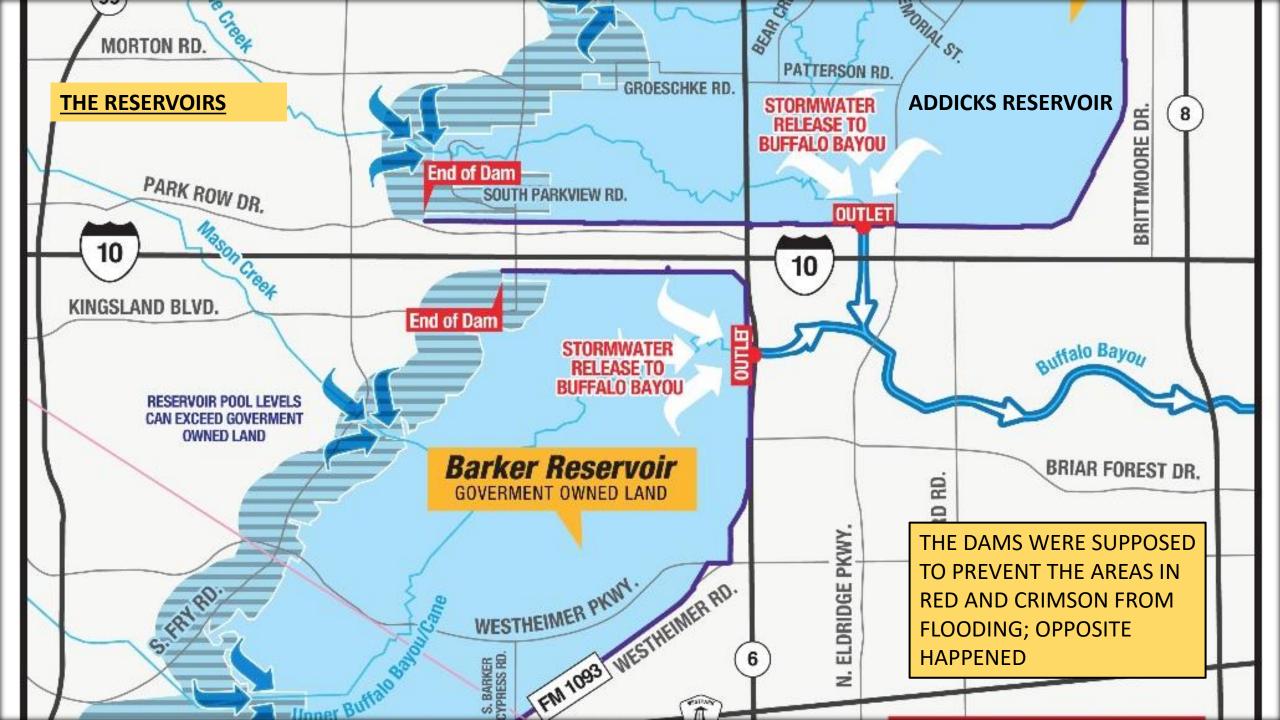


## Construction blunders

- The New Orleans Pumps
- The Reservoirs
- Wetland Infrastructure
- No protection along the coast

## THE PUMPS

 In New Orleans, a network of pumps is supposed to move water out of the city, but three of five turbines that power the pumps are reportedly not working, and more than 10 percent of the pumps themselves are down for repairs.


## THE RESERVOIRS

Huston has two major reservoirs:

- THE ADDICKS RESERVOIRS
- THE BARKER RESERVOIRS

These two reservoirs were meant to protect the adjacent regions from flooding, however, sadly they became the major reason why the neighboring regions were flooded.

https://projects.propublica.org/graphics/harvey-reservoirs



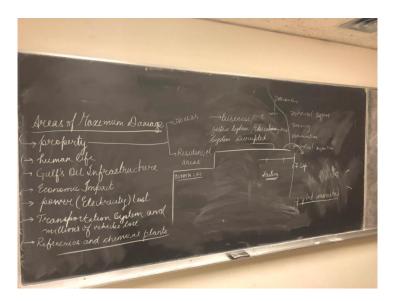
The city is flat. No hindrance – Urban Sprawl- Clearing Wetlands

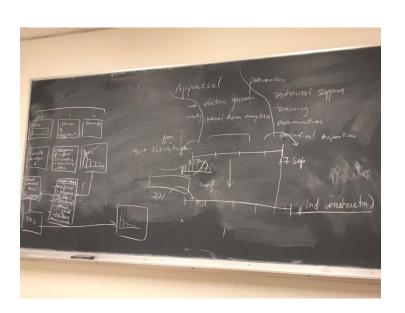
Between 1992 and 2010, 25,000 acres (about 10,000 hectares) of natural wetland and Prairie infrastructure wiped out-Urban Sprawl

Region lost the ability to handle nearly four billion gallons (15 billion liters) of storm water.

That's equivalent to \$600 million worth of flood water detention capacity

Reason - No Zoning Laws


#### NO PROTECTION ALONG COASTAL AREA


A coastal barrier built just off the coast to blunt a hurricane storm surge remains the holy grail for protecting Houston, Galveston and the area's vast and vulnerable refineries and petrochemical plants. But the price tag could run as high as \$11 billion to protect a sixcounty stretch of coastline

## Critical to Quality Characteristics

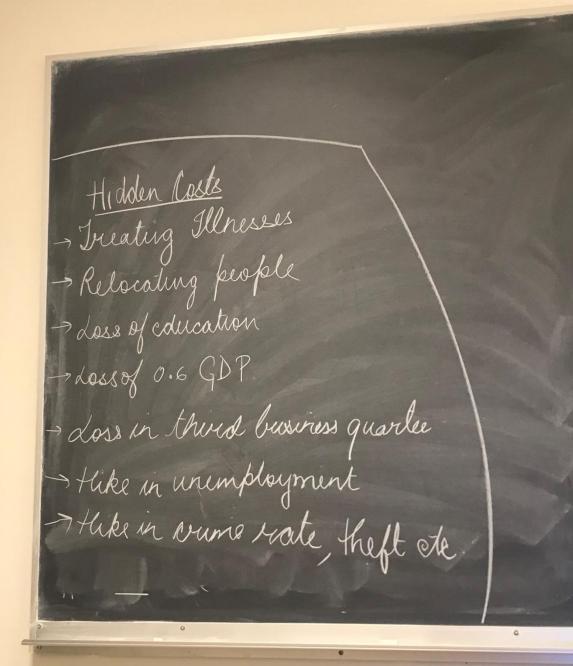
**CTQs** are the key measurable **characteristics** of a product or process whose performance standards or specification limits must be met in order to make a high quality product which performs the desired functions.

- We will get to know about CTQC's by doing a doing a COPQ analysis related to the several failures that we have discussed so far.
- To build a COPQ we performed a brainstorming session and created an affinity diagram.








## Brainstorm and the Affinity Diagram

## COPQ related to failure

| Cost of Poor Quality                                  |                                     |                                         |                                      |                                                                   |  |  |  |
|-------------------------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------------------------------|--|--|--|
| Process                                               | Internal Failure                    | External Failure                        | Appraisal                            | Prevention                                                        |  |  |  |
| <pre>Prepare(include both long and short term):</pre> | t                                   |                                         |                                      |                                                                   |  |  |  |
| Monitoring Hurricane                                  | Inspection Equipment Failure        |                                         | Test all equipment                   | Technical Support, Periodical Inspection                          |  |  |  |
| Emergency Notification                                |                                     | False Notification                      |                                      | Recheck                                                           |  |  |  |
| Building Reinforce                                    |                                     |                                         | Test Structural Strength             |                                                                   |  |  |  |
| Prepare to Evacuate                                   | Evacuation team failure             | False Evacuation Runs                   | Mock Drills for Evacuation           | Have Plenty of Staff and Trained Professionals                    |  |  |  |
| Power Backup Guarantee                                | Equipment Failure                   | Business, Communication Failure         |                                      | Make Available Alternative Power Resource                         |  |  |  |
| Reservoir Protection                                  | Dam Failure, Construction Problem   | Flooding                                | Reservoir Inspections                | Build Walls Higher, Leave More Space Around Dam                   |  |  |  |
| Build Shelters                                        | Shelter Collapsing                  | People Getting Injured/Dying            | inspection of Shelters               | Tents Support, Use Good Quality Material, Flood<br>Proof Shelters |  |  |  |
| Stock Emergency Supplies                              | Storage Equipment Failure, Shortage | Theft, Lost                             |                                      | Periofical Inspection                                             |  |  |  |
| Protect Property(temporary methods)                   |                                     | Damage to Property                      |                                      | Periofical Inspection                                             |  |  |  |
| During:                                               |                                     |                                         |                                      |                                                                   |  |  |  |
| Send Emergency Team                                   |                                     |                                         |                                      |                                                                   |  |  |  |
| Evacuation Notices                                    |                                     | False Notics                            |                                      | Recheck                                                           |  |  |  |
|                                                       | The Construction problem, Tents     | The Residents Were Relutanted to        |                                      |                                                                   |  |  |  |
| Move Victims to Shelter                               | Shortage                            | Evacuate                                |                                      | Tents Support                                                     |  |  |  |
|                                                       |                                     | Complaints Were Raised by               | Standerization of Food and Water     |                                                                   |  |  |  |
| Provide Necessity for Life                            | Water and Food Shortage             | Residents                               | Supply                               |                                                                   |  |  |  |
|                                                       |                                     | Complaints Were Raised by               | Enmergency Eletrical Supply, Eletric |                                                                   |  |  |  |
| Provide Power                                         | Eletricity and Fule Shortage        | Residents                               | Generater                            | Backup                                                            |  |  |  |
| Rescue                                                | Inspection Equipment Failure        |                                         | Limited 911 Services                 |                                                                   |  |  |  |
| Diagnose wounded                                      | Equipment Shortage                  | Wrong Diagnosis                         |                                      | Training                                                          |  |  |  |
| Treat Wounded                                         | Equipment Shortage                  | Wrong Treatment                         |                                      | Technical Support, Medical Support, Recheck                       |  |  |  |
| The Wounded Transfer                                  | Vehicle Damage and Shortage         |                                         |                                      | Examination                                                       |  |  |  |
| After:                                                |                                     |                                         |                                      |                                                                   |  |  |  |
| Draw Water to Ocean                                   | Pumps Shortage                      |                                         |                                      | Pumps Support                                                     |  |  |  |
|                                                       |                                     | The Residents Were Relutanted to        |                                      |                                                                   |  |  |  |
| Return of Victims                                     | Vehicle Damage and Shortage         | Return                                  |                                      | Deport Colonias                                                   |  |  |  |
| Home, Schools, Hospitals Rebuilding                   | Materials and Equipment Shortage    |                                         |                                      | Insurance                                                         |  |  |  |
| The Disease Control                                   | Medicine Shortage                   | The Residents Were Relutanted to Return |                                      | Periofical Inspection                                             |  |  |  |
| Prepare for The Next Hurricane                        |                                     |                                         |                                      | Periofical Inspection, Training                                   |  |  |  |
| Build Coastal Barrier                                 |                                     |                                         |                                      | Longer Enough Coastal Barrier Support                             |  |  |  |

## Hidden Costs

- Indirect costs
- Can be long term or short term



Based upon all the analysis that we have done above, we have come up with a list of potential projects that can be performed.

- A: Rebuild the two reservoirs
- B: Improve Emergency response time
- C : Create hurricane survivor App
- D: Build coastal barrier

Providing the timely information of hurricane

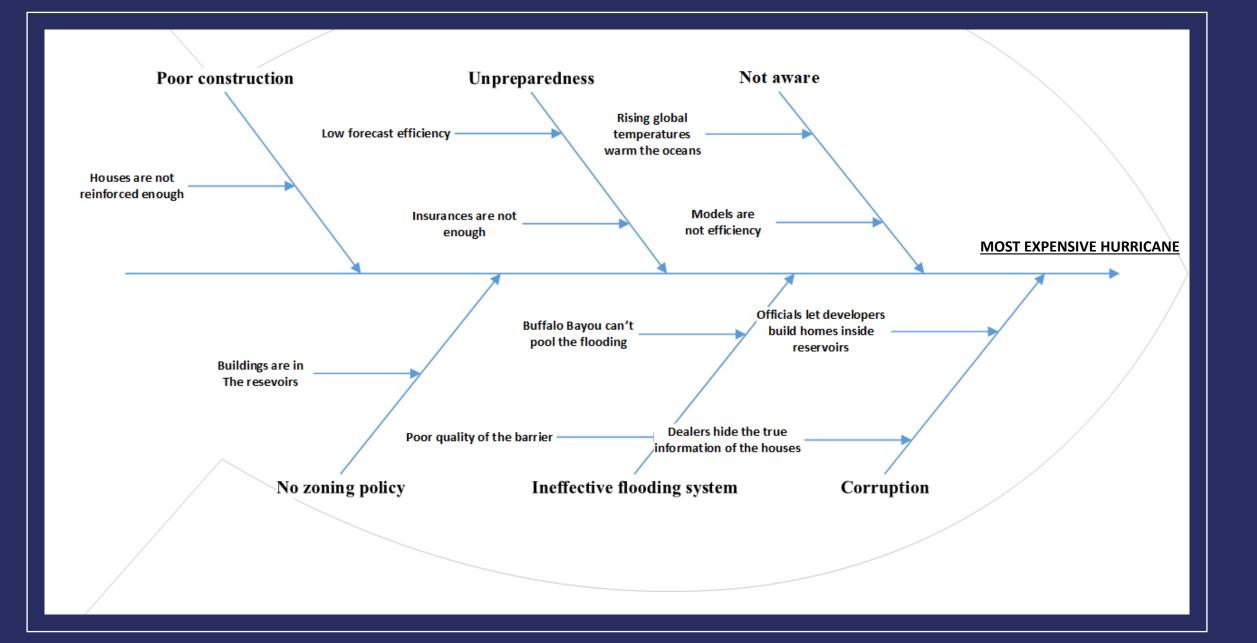
Provide the amount of emergency suppliers

Providing rescue service

## **Evaluate Projects**

| Project | Savings (\$billion) | Probability | Cost (\$mil) | Time(years) | РРІ  |
|---------|---------------------|-------------|--------------|-------------|------|
| А       | 30                  | 0.9         | 2000         | 1           | 13.5 |
| В       | 1                   | 0.8         | 180          | 0.5         | 8.88 |
| С       | 0.4                 | 0.5         | 10           | 1           | 8    |
| D       | 20                  | 0.2         | 1000         | 2           | 2    |

#### **PROJECT SELECTION:**


By looking at the above PPI for each project, Rebuild the two reservoirs takes highest project priority. And Improve Emergency response time and Create hurricane survivor App also have high project priority.

## Measure Phase

In the Measure Phase, the team refines the measurement definitions and determines the current performance or the baseline of the process

Define the Current State

- Collect Data on the Current State
- Identify any unforeseen problems/opportunities
- Create detailed process flow charts/value stream maps



## KEY PERFORMANCE INDICATORS (KPIs)

| Project Name          | Division                                         | Key Performance Indicators                             |
|-----------------------|--------------------------------------------------|--------------------------------------------------------|
|                       | Increase the capacity of reserves                | The volume of reserves                                 |
|                       | Improvement of the reserves construction quality | The strength of walls                                  |
| Rebuild the reservoir |                                                  | Water permeability                                     |
|                       |                                                  | The distance between reserves<br>and illegal residence |

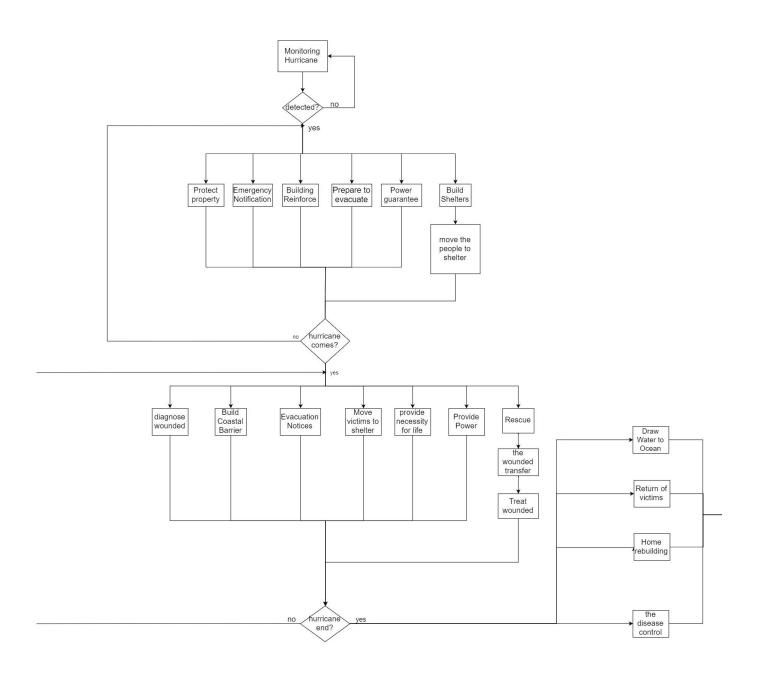
## KEY PERFORMANCE INDICATORS (KPIs)

| Project Name | Division                                     | Key Performance Indicators    |  |
|--------------|----------------------------------------------|-------------------------------|--|
|              | Providing timely information of<br>hurricane | time<br>distance<br>strength  |  |
|              | 0                                            | Number of emergency suppliers |  |
|              |                                              | the accuracy of GPS           |  |
|              | Providing rescue service                     | the response time             |  |
|              |                                              | customer evaluation           |  |

## KEY PERFORMANCE INDICATORS (KPIs)

| Project Name                                                            | Division                         | Key Performance Indicators |
|-------------------------------------------------------------------------|----------------------------------|----------------------------|
| Emergency response To decrease the response time of time emergency team | To decrease the response time of | Number of people           |
|                                                                         |                                  | Number of station          |
|                                                                         | Number of helicopter             |                            |

### For emergency response team Data Collection Plan


| Performance<br>Measure*                             | Data Source/Location               | How will Data Be<br>Collected                | When Will Data Be<br>Collected? | Who Will Collect<br>Data    |
|-----------------------------------------------------|------------------------------------|----------------------------------------------|---------------------------------|-----------------------------|
| # of people to be relocated                         | Gov. population<br>department      | record in system                             | Every Year                      | Disaster<br>prevention team |
| # of people in every<br>emergency team              | Gov. emergency<br>department       | record in system                             | Every Year                      | Disaster<br>prevention team |
| # of emergency<br>station in the whole<br>city      | Gov. emergency<br>department       | record in system                             | Every Year                      | Disaster<br>prevention team |
| # of helicopter                                     | # of local helicopter<br>available | Manual recording<br>or recorded in<br>system | Every time before<br>it happens | Disaster<br>prevention team |
| # of rescue<br>equipment in every<br>emergency team | Gov. emergency<br>department       | record in system                             | Every time before it happens    | Disaster<br>prevention team |



Sources: U.S. Department of Agriculture, U.S. Coast Guards. Environmental Protection Agency, FEMA, U.S. Department of Health and Human Services, U.S. Small Business Administration, National Flood Insurance Program, Texas Commission on Environmental Quality

### FLOW CHART

- This is the current flow chart for the emergency response services
- We will later in the presentation show how we consolidated it and improved upon the response time.



#### Analyze Phase



- Analyze and report on the data collected in the Measure Phase
  - Determine Process Velocity Determine Process Capability Calculate DPMO
    - Perform Statistical Analysis
- Identify any Bottlenecks in the process
- Determine sources of Defects / Variation

# The Emergency Response Time(DOE)

#### After research, we found the following:

16 major stations

It took an average of 12 days to about 2300 rescue service people to save 780,000 people in need.

Based on the above results, we have made the following design of experiments the output being RESPONSE TIME and the 3 factors effecting this output are AIR AID(a), NUMBER OF PEOPLE PER STATION(b) AND THE NUMBER OF STATIONS(c). Data:

| average days | NUMBER OF STATIONS | NUMBER OF PEOPLE(B) | AIR AID(A) |
|--------------|--------------------|---------------------|------------|
| 20.0         | 10                 | 20                  | 0          |
| 6.0          | 10                 | 20                  | 2          |
| 16.0         | 10                 | 50                  | 0          |
| 5.0          | 10                 | 50                  | 2          |
| 12.0         | 25                 | 20                  | 0          |
| 3.5          | 25                 | 20                  | 2          |
| 10.0         | 25                 | 50                  | 0          |
| 3.0          | 25                 | 50                  | 2          |
|              |                    |                     |            |
|              |                    |                     |            |

#### Result:

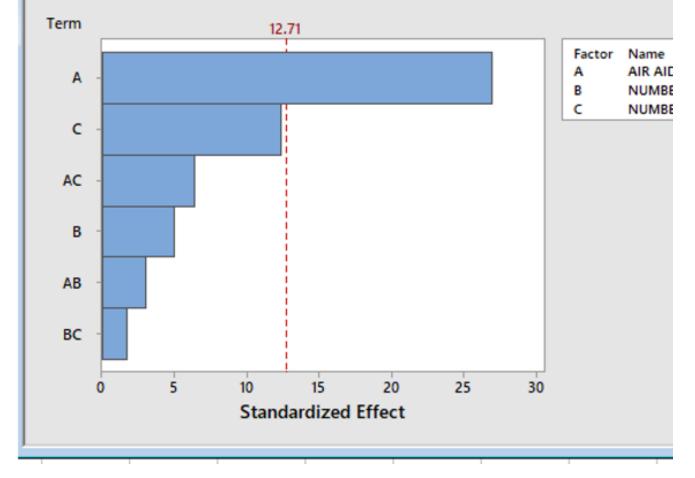
Coded Coefficients

| Term                                     | Effect  | Coef   | SE Coef | T-Value | P-Value | VIF  |
|------------------------------------------|---------|--------|---------|---------|---------|------|
| Constant                                 |         | 9.438  | 0.187   | 50.33   | 0.013   |      |
| AIR AID(A)                               | -10.125 | -5.063 | 0.187   | -27.00  | 0.024   | 1.00 |
| NUMBER OF PEOPLE (B)                     | -1.875  | -0.937 | 0.187   | -5.00   | 0.126   | 1.00 |
| NUMBER OF STATIONS                       | -4.625  | -2.313 | 0.187   | -12.33  | 0.052   | 1.00 |
| AIR AID(A) *NUMBER OF PEOPLE(B)          | 1.125   | 0.563  | 0.187   | 3.00    | 0.205   | 1.00 |
| AIR AID(A) *NUMBER OF STATIONS           | 2.375   | 1.188  | 0.187   | 6.33    | 0.100   | 1.00 |
| NUMBER OF PEOPLE (B) *NUMBER OF STATIONS | 0.625   | 0.312  | 0.187   | 1.67    | 0.344   | 1.00 |

#### Regression Equation in Uncoded Units

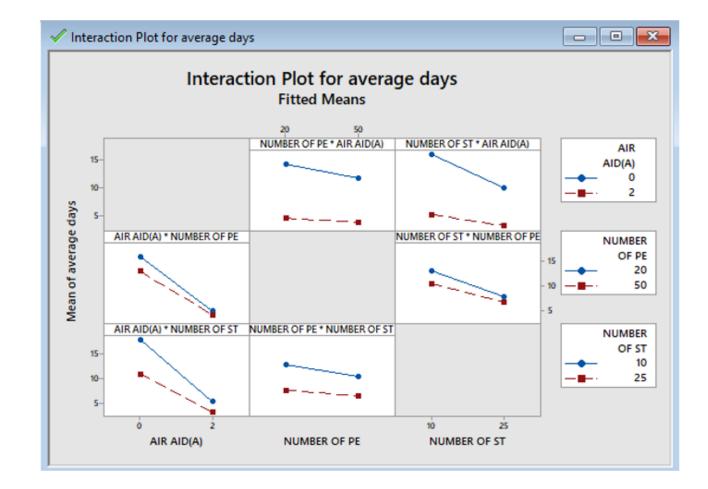
average days = 27.87 - 9.146 AIR AID(A) - 0.1486 NUMBER OF PEOPLE(B) - 0.5639 NUMBER OF STATIONS + 0.0375 AIR AID(A)\*NUMBER OF PEOPLE(B) + 0.1583 AIR AID(A)\*NUMBER OF STATIONS + 0.00278 NUMBER OF PEOPLE(B)\*NUMBER OF STATIONS




### PARETO CHART

The boundary(red dotted line) is 12.71. It's obviously that only A is above the boundary. C is close to the boundary. Other factor is far away from the boundary.

#### Effects Pareto for average days


#### Pareto Chart of the Standardized Effects

(response is average days,  $\alpha = 0.05$ )



## MINITAB OUTPUT

• From the result of Minitab, it is obviously that the slopes of the 2 line in all segments of the plot are nearly the same, so the conclusion could be drawn that all interaction effects are not significant. They would have been significant if the lines were intersection.



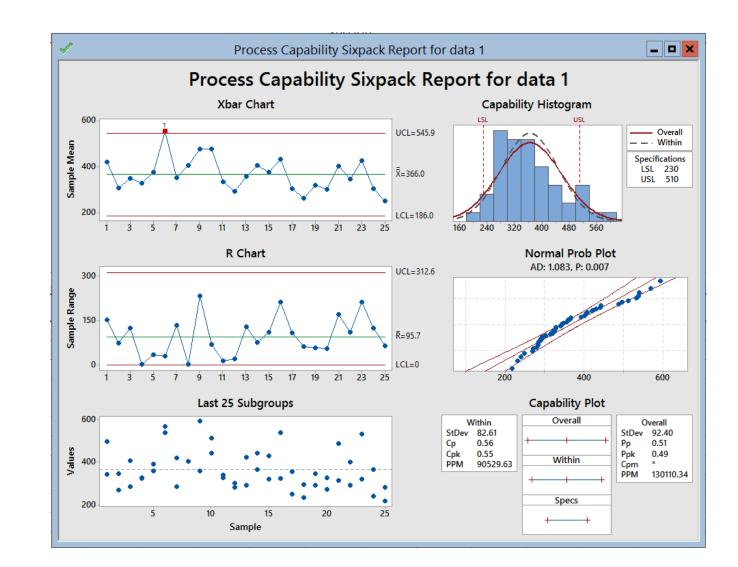
### THE ANALYSIS

Description: There are 3 factors that might influence response: Air Aid, Number of People, and Number of stations. Holding experiments under 8 situations to find out which factor is most significant to response.

Conclusion: Interaction influences are all not significant to the response. For single factor, only air aid is significant to response, number of stations are close to being significant, and number of people is not significant.

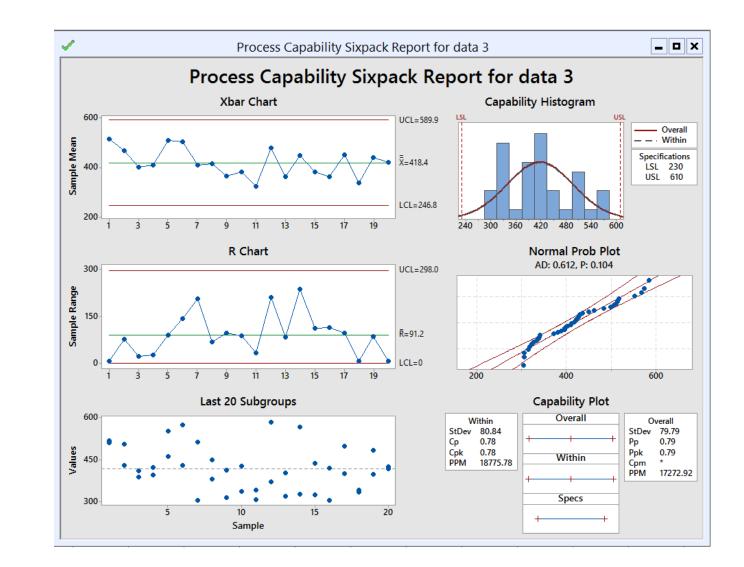
# STATISTICAL PROCESS ANALYSIS

**Statistical process control** (SPC) is a method of **quality control** which employs **statistical** methods to monitor and **control** a **process**.


Here we are attempting to analyze the capacity of the current reservoirs in Huston which were incapable of storing the rain water and lead to massive flooding.

The current holding capacity of the two reservoirs combined is about 510 GL

We are using the capability six pack for doing this.


#### CAPABILITY ANALYSIS

- So, we can observe that the process is not very capable as both Cpk and Ppk are below 1.
- We have the X bar which has 1 outlier.
- In the R chart we can see that about 4 points are dangerously close to becoming outliers



STATISTICAL PROCESS CONTROL-after increasing the ucl to 610, its in control

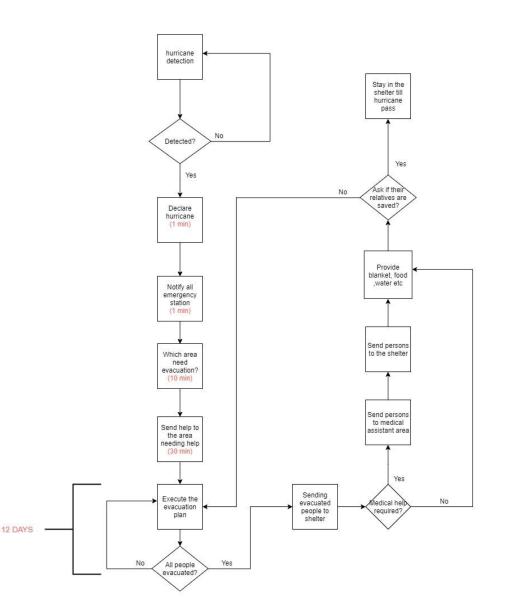
- Based on the results that we saw above, we have increased the upper limit from 510 GL and kept the lower limit the same(230 GL)
- It is very evident that the capability of the process has increased, also we do not have any outliers in the X bar chart.



## THE ANALYSIS

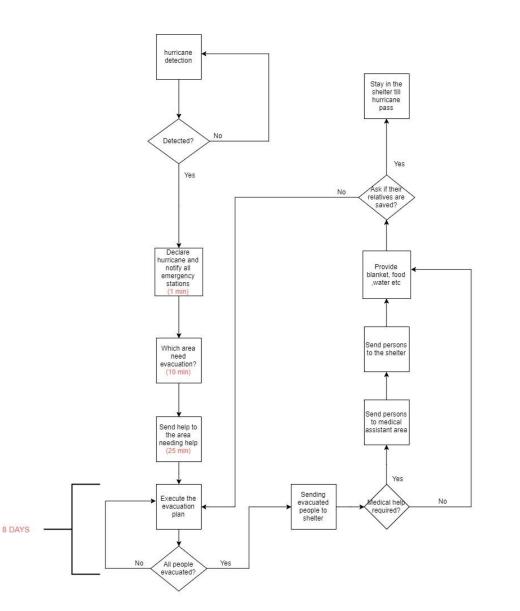
The comparison of the above two six packs tells us that increasing the upper limit, or in other words the capacity of the reservoirs would have an effect on the capability to store rain water more efficiently.

> Based on this evaluation, we have performed a QFD analysis which will be discussed in the further slides.


## VALUE STREAM MAPPING

VSM is a technique used to document, analyze and improve the flow of information or materials required to produce a product or service.

Here we have used VSM to make the emergency response services more efficient.

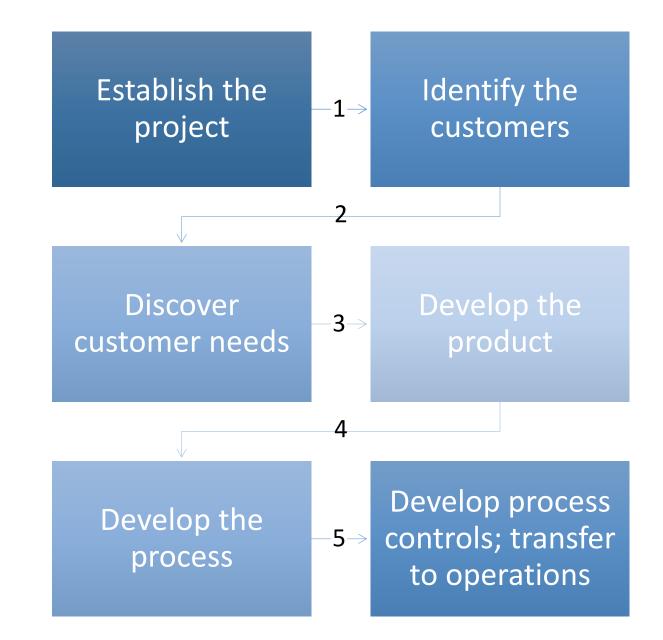

#### CURRENT PROCESS

- As discussed earlier, the team of 2300 rescues people took about 12 days to rescue 780,000 people from the areas in need.
- The flow chart shown here represents in consolidated form the steps and timings involved in doing the same.

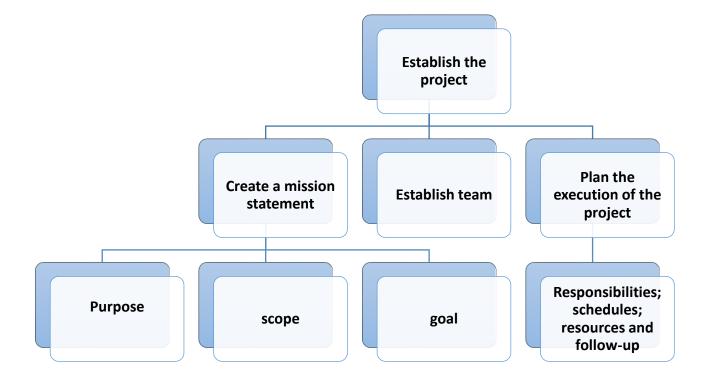


#### THE FUTURE PROCESS

- In this VSM we can see that the execution of the evaluation plan has become more accurate by adding AIR AID, which was the most important factor in the results of the DOE analysis, and INCREASING NUMBER OF STATIONS, which was the second most important factor from the DOE analysis.
- The timing has come down from a little over 12 days to 8 days.




# QUALITY PLANNING ROADMAP


A FRAMEWORK THAT HELPS IN PLANNING AND RE-PLANNING OF PRODUCTS AND SERVICES.



## The Six Steps



# Establish the Project



## Mission statement

#### Scope: CONSTRUCTION BLUNDERS—THE RESERVOIRS

Goal and Purpose: to increase the capacity of the two reservoirs and improve their infrastructure to prevent them from overflowing in case of a flood like Harvey.

# Establish a Team:

#### **Design Department**

Suppliers

Government representatives

**Finance department** 

Engineers

Planning and Construction department

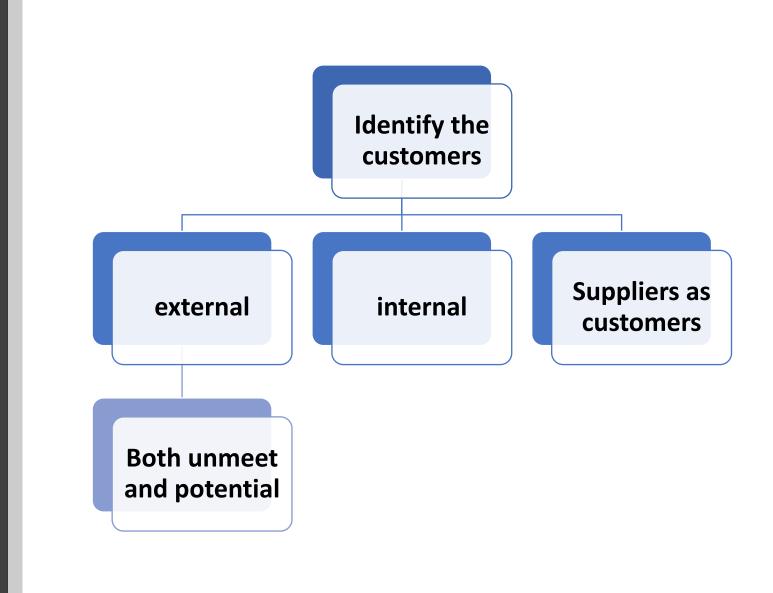
**Quality Department** 

Experts and Specialists on reservoir construction

Architects

Safety department

**Project Managers** 

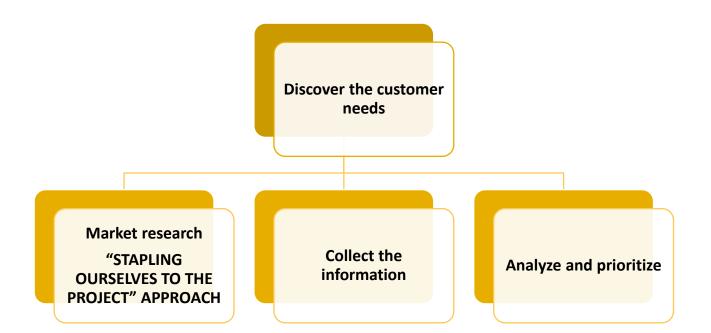

CEO

## Plan execution

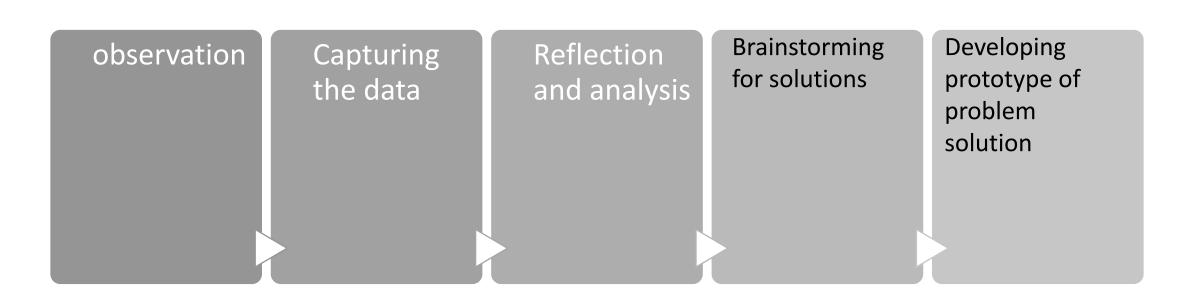
Different departments will have different responsibilities however, the teams will have to be crossfunctional for example The design department, engineering department and the architects can work together to come up with the pseudo models and blueprints, engineering drawings and designs.

The resource and raw material scheduling can be done using project management tools like Microsoft project, Newfarma, Primavera etc.

## Identify the Customer




## External and Internal Customers




- Our biggest and most influential external customer would be the government and the residents of the state who are directly affected by flooding. Both are powerful and influence the economy
- All the teams working on the project along with the construction workers and suppliers will be the internal customers.
- Tools like flowcharts, pareto charts and spreadsheets can be used to identify the customer.

## Step 3: discover the customer needs.



### Market research "STAPLING OURSELVES TO THE PROJECT" APPROACH



| CUSTOMER           | NEED                         |
|--------------------|------------------------------|
| GOVERNMENT         | IMPROVED RESERVOIR STRUCTURE |
| RESIDENTS/CITIZENS | SAFE LIVING ENVIRONMENT      |

- The table above is based on the research done previously on the effects of hurricane Harvey. Voice of customer was captured and others tools were used for research purposes.
- Based on data collected, brainstorming sessions were conducted and the main reason for major destruction was flooding.
- Causes of flooding were uncovered, analyzed and prioritized and poor infrastructure came out to be the major issue.

## Develop the Product

Group together related customers' needs

Identify alternative product features

Develop detailed product features

Finalize product design

### Develop the Process

Identify alternative process features

**Develop detailed process features** 

Establish initial process capability index

Finalize product design

## FEMA

| Process Steps                                                           | Failure mode                                                                  | Severity<br>1-10<br>10 = most severe | Occurrence<br>1-10<br>10 = highest prob. of occurrence | Detection<br>1-10<br>10 = lowest prob. of detection | RPN <sup>1</sup> | Improvement<br>Action                                 |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|-----------------------------------------------------|------------------|-------------------------------------------------------|
| Constructing the new design of the reservoirs                           | Design can't meet the actual requirement.                                     | 7                                    | 10                                                     | 1                                                   | 70               | Revise the design                                     |
| Get the new Design approved from stakeholders like the government       | Design is not approved                                                        | 5.5                                  | 10                                                     | 1                                                   | 55               | Revise to accommodate<br>new requirements             |
| Disperse illegal residents                                              | the Residents are reluctant to remove.                                        | 9                                    | 8                                                      | 2                                                   | 144              | Provide alternative accommodation                     |
| Contacting suppliers and<br>contractors for availability of<br>material | Material and labor not available                                              | 9                                    | 2.5                                                    | 1                                                   | 22.5             | Import labor and material                             |
| Resources delivered by the suppliers                                    | Resources do not meet quality standards                                       | 7                                    | 5                                                      | 5                                                   | 175              | Redelivery the right resources                        |
| Construction team begins to rebuild the reservoir                       | Construction team fails to entirely follow the blueprint.                     | 9.5                                  | 2                                                      | 7                                                   | 133              | Regular inspection                                    |
| Pilot test                                                              | Pilot test fails                                                              | 10                                   | 1                                                      | 1                                                   | 10               | Redo all the steps above to see why pilot test failed |
| Pre-handover<br>Inspection of the project                               | Quality department finds that<br>reservoirs fail to meet quality<br>standards | 10                                   | 1                                                      | 1                                                   | 10               | Revise and re-implement quality standards             |
| Periodic inspection and maintenance                                     | Failed to uncover problems at early<br>stages of construction                 | 9                                    | 4                                                      | 10                                                  | 360              | Select monitoring<br>Person                           |

## Develop Process Controls and Transfer to Operations

Identify controls needed and design feedback loop

Optimizing self control by self inspection

Establish audit of process

Verify process capability in operations

Transfer plans to operations

|   |                                                                                                                                               | Control Plan                                                       |                                                                                                            |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| # | Process Step Risk minimization                                                                                                                | Target                                                             | Monitoring<br>Team                                                                                         |
| 1 | Adequate upfront planning. Clear scope, expectations and customer(government) requirements                                                    | Will avoid scope creep                                             | Risk management team                                                                                       |
| 2 | Negotiation with people who need to be moved and providing them with rehabilitation facility                                                  | Reduce risk of reluctance to move                                  | partner with influential people like<br>politicians and NGOs to convince<br>residents or hire a negotiator |
| 3 | Bidding process should be done carefully, a background<br>quality check should be done for the legitimacy of all<br>suppliers and contractors | Reduced risk of low quality resources and blunders in construction | Project management team                                                                                    |
| 4 | Set-up regular inspections; a pilot run should be<br>conducted after completion of every stage of the<br>project                              | Reduced risk of project failing in the later stages                | Inspection team, quality team and maintenance team                                                         |

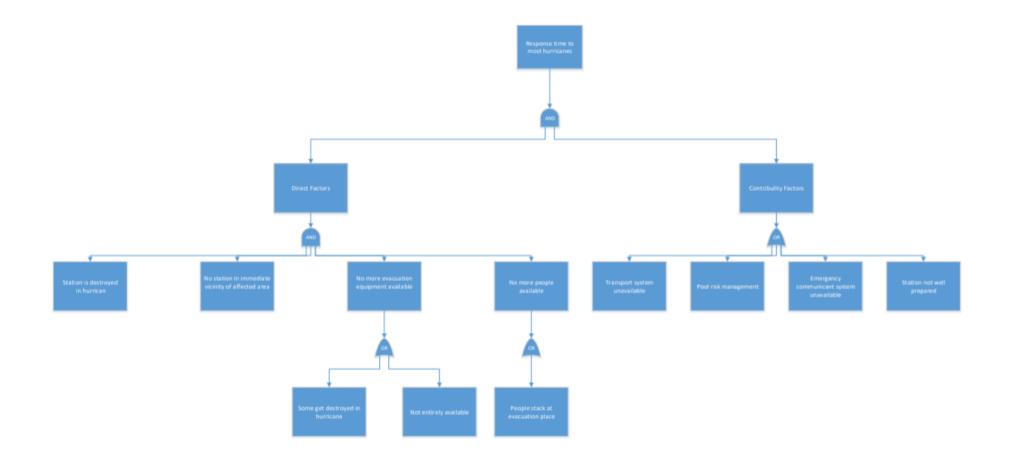
### Improve phase

The purpose of this step is to identify, test and implement a solution to the problem; in part or in whole. This depends on the situation. Identify creative solutions to eliminate the key root causes in order to fix and prevent process problems.

- Brainstorm potential Ideas / Solutions to address the defects/causes identified in the Analyze Phase
- Evaluate & Select the best solutions
- Pilot Test selected solutions
- Implement Solutions

## FEMA for rebuild reservoirs

| Process Steps                                                              | Failure mode                                                                     | Severity<br>1-10<br>10 = most severe | Occurrence<br>1-10<br>10 = highest prob. of<br>occurrence | Detection<br>1-10<br>10 = lowest prob. of<br>detection | RPN <sup>1</sup> | Improvement<br>Action                           |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|------------------|-------------------------------------------------|
| Constructing the new design of the reservoirs                              | Design can't meet the actual requirement.                                        | 7                                    | 10                                                        | 1                                                      | 70               | Revise the design                               |
| Get the new Design<br>approved from<br>stakeholders like the<br>government | Design is not approved                                                           | 5.5                                  | 10                                                        | 1                                                      | 55               | Revise to<br>accommodate<br>new<br>requirements |
| Disperse illegal residents                                                 | the Residents are reluctant to remove.                                           | 9                                    | 8                                                         | 2                                                      | 144              | Provide<br>alternative<br>accommodation         |
| Contacting suppliers and<br>contractors for<br>availability of material    | Material and labor not<br>available                                              | 9                                    | 2.5                                                       | 1                                                      | 22.5             | Import labor and material                       |
| Resources delivered by the suppliers                                       | Resources do not meet quality standards                                          | 7                                    | 5                                                         | 5                                                      | 175              | Redelivery the right resources                  |
| Construction team<br>begins to rebuild the<br>reservoir                    | Construction team fails to entirely follow the blueprint.                        | 9.5                                  | 2                                                         | 7                                                      | 133              | Regular<br>inspection                           |
| Pilot test                                                                 | Pilot test fails                                                                 | 10                                   | 1                                                         | 1                                                      | 10               |                                                 |
| Pre-handover<br>Inspection of the project                                  | Quality department<br>finds that reservoirs fail<br>to meet quality<br>standards | 10                                   | 1                                                         | 1                                                      | 10               |                                                 |
| Periodic inspection and maintenance                                        | Failed to uncover<br>problems at early stages<br>of construction                 | 9                                    | 4                                                         | 10                                                     | 360              | Select monitoring<br>Person                     |


### RELIABILITY ANALYSIS

The ability to measure emergency preparedness—to predict the likely performance of emergency response systems in future events—is very critical to see if the future VSM that we have made will be helpful or not

## FMEA

| PROCESS STEPS                                       | FAILURE MODE                             | SEVERITY | OCCURRENCE | DETECTION      | RPN   |
|-----------------------------------------------------|------------------------------------------|----------|------------|----------------|-------|
| Declare hurricane and notify all emergency stations | Emergency communicant system unavailable | 7        | 8          | 3 5            | 5 280 |
| Declare numbane and notify an emergency stations    | Emergency communicant system unavailable | ,        | c          | , .            | 280   |
| Detect which area needs help?                       | Detection system failed                  | 9        | 5          | 5 3            | 3 135 |
| Send help to the area needing help                  | transport system unavailable             | 10       | 5          | ; <del>7</del> | 7 350 |
| Execute the evauation plan                          | Station not well prepared                | 8        | 4          | L 8            | 3 256 |
|                                                     | Not enough evauation equipment           | 10       | 7          | ,              | 5 420 |

As seen above, the process steps, Send help to areas needing help and Detect if all people are evacuated have the highest RPN. Based on this we have made an FTA.



### FAULT TREE ANALYSIS

### Control phase

We are targeting preparedness and awareness in the Control segment of our DMAIC process, for which we have come up with the idea of an app.

- The purpose of this step is to sustain the gains. Monitor the improvements to ensure continued and sustainable success. Create a control plan. Update records as required.
- Develop a Control Plan
- Continually Monitor Performance
- Take Corrective Action
- Mistake Proof the Solution as best as possible
- Create a Culture around the new process

# CDOV for application using companion

CDOV- Concept, Design, Optimize, Verify This is another kind of process used for Six Sigma.

We have performed a CDOV in the application called Quality Companion to develop an smart phone app that will assist people in Hurricanes like The Hrricane Harvey.

### Team Members & Roles $\, imes \,$ Project Today Team Members & Roles Project Name: HURRICANE HARVEY Team Roles **Project Leader:** Mentor/Coach: GROUP1 CHEN Champion: Sponsor: GOVERNMENT ANDY Executive/VP: Financial Analyst: GEORGE LIZA Process Owner: FANG

### Team Members

| Name       | Email | Role              | Department | Job Title | Business Phone |
|------------|-------|-------------------|------------|-----------|----------------|
| GROUP 1    |       |                   |            |           |                |
| GROUP1     |       | Project Leader    |            |           |                |
| GOVERNMENT |       | Sponsor           |            |           |                |
| ANDY       |       | Champion          |            |           |                |
| GEORGE     |       | Executive/VP      |            |           |                |
| LIZA       |       | Financial Analyst |            |           |                |
| CHEN       |       | Mentor/Coach      |            |           |                |
| FANG       |       | Process Owner     |            |           |                |

| IURRICANE HARVEY                                                                                                                                            | < Pr                      | oject Today ×                                                               |                                                  |                                    |                                   |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|-----------------------------------|-----------------|
| Nanagement                                                                                                                                                  | Pr                        | oject Too                                                                   | day                                              |                                    |                                   |                 |
| Project Charter                                                                                                                                             | Prol                      | ect Name:                                                                   |                                                  |                                    |                                   |                 |
| ⋟ Financial Data                                                                                                                                            | -                         | RRICANE HARVEY                                                              |                                                  |                                    |                                   |                 |
| 🍇 Team Members & Roles                                                                                                                                      |                           |                                                                             |                                                  |                                    |                                   |                 |
| 👮 Tasks                                                                                                                                                     |                           | ect Leader:<br>DUP1                                                         | Sponsor:<br>GOVERN                               | MENIT                              | Methodology<br>CDOV               | •               |
| loadmap                                                                                                                                                     |                           | oject Status 8                                                              |                                                  |                                    | CDOV                              |                 |
| Concept                                                                                                                                                     |                           | -                                                                           |                                                  |                                    |                                   |                 |
| VOC Plan                                                                                                                                                    | Stat                      | us:<br>rogress                                                              | <ul> <li>Start Date</li> <li>4/1/2018</li> </ul> |                                    | Due Date:<br>9/29/2018            |                 |
| VOC Summary                                                                                                                                                 |                           | -                                                                           | 47 17 20 10                                      |                                    | 5,25,2010                         |                 |
| Pairwise Comparison Matrix                                                                                                                                  | Proj                      | ect Health:                                                                 |                                                  |                                    |                                   |                 |
| III Pugh Matrix                                                                                                                                             | Gre                       | en                                                                          | -                                                |                                    |                                   |                 |
| Design<br>House of Quality Matrix 1<br>House of Quality Matrix 2<br>Design FMEA<br>House of Quality Matrix 3<br>Process Map<br>Process FMEA<br>DDE Planning | Curr<br>DM<br>Read<br>Yes | rrent Phase<br>ent Phase:<br>AIC - Define<br>dy for Phase Gate R<br>se Data | C D C eview:     Ready                           | D V                                |                                   |                 |
| Optimize                                                                                                                                                    | Ore                       | der Phase Name                                                              |                                                  | Start Date                         | Phase Gate<br>Review Date         | Duration (days) |
| 🔡 DOE Analysis                                                                                                                                              | 1                         | Concept                                                                     |                                                  | 4/1/2018                           | 4/10/2018                         | 9               |
|                                                                                                                                                             | 2                         |                                                                             |                                                  | 4/11/2018                          | 5/31/2018                         | -               |
| 📩 Monte Carlo Simulation                                                                                                                                    |                           | besign                                                                      |                                                  | 4/11/2010                          | 5/51/2010                         | 50              |
|                                                                                                                                                             |                           | Ontimize                                                                    |                                                  | 5/21/2010                          | 6/20/2019                         | 50              |
| Verify                                                                                                                                                      | 3                         |                                                                             |                                                  | 5/31/2018                          | 6/30/2018<br>7/6/2018             | 30              |
|                                                                                                                                                             |                           | Verify                                                                      | rde                                              | 5/31/2018<br>6/30/2018<br>7/9/2018 | 6/30/2018<br>7/6/2018<br>8/1/2018 |                 |

### DEFINING THE PROJECT START AND END DATES AND THE TEAM MEMBERS WHO WILL BE WORKING ON IT.

### HURRICANE HARVEY

Management Project Today Project Charter 💁 Financial Data 🚴 Team Members & Roles 뉟 Tasks Roadmap Concept VOC Plan VOC Summary

III Pugh Matrix

Design FMEA

Process Map

4 Design

Hairwise Comparison Matrix

A House of Quality Matrix 1

House of Quality Matrix 2

A House of Quality Matrix 3

### Project Name

EMERGENCY RESPONDERS FOR SUCH SITUATIONS

VOC Plan ×

Voice of the Customer (VOC) Plan HURRICANE HARVEY Prepared Date: Prepared By GROUP 1 4/12/2018 Participants: HARGUNJEET KAUR BHATIA , LIJIAOKAI ZENG, FANG HAO, JIAJING CHEN Who is the customer? What products, services, or other output do they cor Are there subgroups or segments of customers CUSTOMERS-GOVERNMENT, RESIDENTS What do you want to know? What is your purpose in collecting VOC data? TO GAIN KNOWLEDGE ABOUT HOW AWARE PEOPLE ARE ABOUT DISASTER MANAGEMENT AND TO SPREAD AWARENESS ABOUT DISASATERS LIKE HURRICANE HARVEY TO BETTER PREPARE THE RESIDENTS AND

### VOC Plan ×

### What data source(s) will you use?

| Proac      | tive Data                             | Rea | ctive Data                           |
|------------|---------------------------------------|-----|--------------------------------------|
| V S        | urvey (telephone, online, mail, etc.) | 1   | Customer service calls/messages      |
| V F        | ocus group                            | V   | Technical support calls/messages     |
| V Ir       | nterviews                             | 1   | Complaints                           |
| S          | ales visits/calls                     |     | Sales reporting and trends           |
| V U        | Iser/usability testing                | 1   | Web page analytics                   |
| ▼ S        | ocial media                           | V   | Customer relationship mgmt. analysis |
| <b>V</b> C | comment cards                         | 1   | Warranty claims                      |
| V N        | /larket research                      |     | Product return information           |
| Other      | :                                     | Oth | er:                                  |
| HISTO      | DRIC DATA AND CONSTRUCTION DETAILS    | CH  | ANGES AND IMPROVEMENTS               |

### Who will collect the data?

For any type of data source that involves direct interaction with the customer (e.g., interviews, focus groups, user/ usability tests, surveys), using an objective 3rd party will help avoid bias.

THE DATA COLLECTION PROCESS SHOULD BE OUTSOURCED TO A COMPANY WITH EXPERTISE IN DATA CONSULTING TO ACT AS A 3rd PARTY TO COLLECT DATA WITHOUT BIAS

### What is your sampling plan?

### What is your sample size?

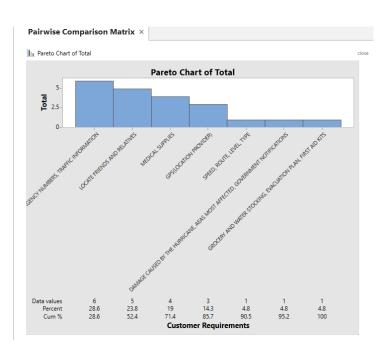
What is your anticipated response rate (for proactive data sources)?

Are there any factors or characteristics of your customers that might cause variation in the data they provide? For example, perhaps your west coast customers and east coast customers have different perceptions of your customer service line's availability. In this case, be sure to sample from both coasts, as well as record the time zone of the responding customer when collecting data.

ACCORDING TO THE SAMPLE SIZE CALCULATION SOFTWARE THAT WE USED (RAOSOFT) WITH A MRGINAL ERROR OF 4% AND A CONFIDENCE INTERVAL OF 95% WITH A POPULATION SIZE OF 2.3BILLION RESIDENTS; OUR SAMPLE SIZE COMES OUT TO BE 600.

### What is your timeframe?

2 MONTH FOR DATA COLLECTION 1 MONTH FOR DATA ANALYSIS 2 MONTHS FOR APPLICATION PRODUCTION


| VOC Summary ×                 | Pairwise Comparison Matri                  | ix                                                                         |                                                                                       |
|-------------------------------|--------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Participants:                 |                                            |                                                                            |                                                                                       |
| Translation to Critical Custo | omer Requirements Table                    |                                                                            |                                                                                       |
| Customer                      | Voice of<br>Customer                       | Key<br>Customer Issue(s)                                                   | Customer Requirements                                                                 |
| Who is the customer?          | Actual customer statements or<br>comments. | The real customer concerns, values,<br>or expectations.                    | What are the specific and<br>measurable customer<br>requirements?                     |
| RESIDENTS                     |                                            | LACK OF INFORMATION ABOUT<br>HURRICANE ITSELF AND ITS<br>ACCURACY          | GPS(LOCATION PROVIDER)                                                                |
| RESIDENTS                     |                                            | LACK OF ACCURATE<br>INFORMATION ABOUT<br>PREPARING FOR THE HURRICANE       | SHELTERS NEARBY,<br>VULNERABILITY LEVEL,<br>EMERGENCY NUMBERS, TRAFFIC<br>INFORMATION |
| RESIDENTS                     |                                            | LACK OF ACCURATE<br>INFORMATION ABOUT STEPS TO<br>TAKE AFTER THE HURRICANE | DAMAGE CAUSED BY THE<br>HURRICANE, AEAS MOST<br>AFFECTED, GOVERNMENT<br>NOTIFICATIONS |
| RESIDENTS                     |                                            | LACK OF ACCURATE<br>INFORMATION ABOUT STEPS TO<br>TAKE AFTER THE HURRICANE | LOCATE FRIENDS AND RELATIVES                                                          |
| RESIDENTS                     |                                            | LACK OF INFORMATION ABOUT<br>HURRICANE ITSELF AND ITS<br>ACCURACY          | SPEED, ROUTE, LEVEL, TYPE                                                             |
| RESIDENTS                     |                                            | LACK OF ACCURATE<br>INFORMATION ABOUT<br>PREPARING FOR THE HURRICANE       | MEDICAL SUPPLIES                                                                      |
| RESIDENTS                     |                                            | LACK OF ACCURATE<br>INFORMATION ABOUT STEPS TO<br>TAKE AFTER THE HURRICANE | GROCERY AND WATER STOCKING<br>EVACUATION PLAN, FIRST AID<br>KITS                      |

### Summary

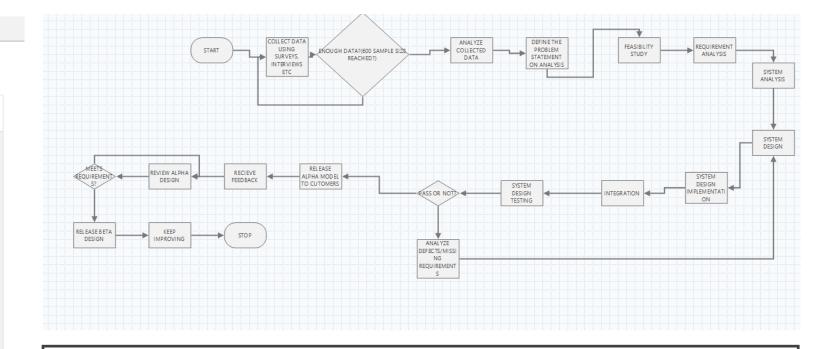
Conclusion

CUSTOMERS WANT A RELIABLE SOURCE OF INFORMATION WHICH CAN KEEP THEM UP TO DATE WITH THE SITUATIONS AND EVERYTHING THAT IS HAPPENING WHEN A HURRICANE OCCURS

## CAPTURING THE VOICE OF THE CUSTOMER



| Pair | wise Comparison Matrix ×                                                        |       |                      |         |     |
|------|---------------------------------------------------------------------------------|-------|----------------------|---------|-----|
| Cust | omer Requirements Table                                                         |       |                      |         |     |
| ID   | Requirement                                                                     | Total | Importance<br>Rating | Critica | al? |
| 1    | GPS(LOCATION PROVIDER)                                                          | 3     | 3                    | Y       | •   |
| 2    | SPEED, ROUTE, LEVEL, TYPE                                                       | 1     | 1                    | Y       | •   |
| 3    | DAMAGE CAUSED BY THE HURRICANE, AEAS MOST<br>AFFECTED, GOVERNMENT NOTIFICATIONS | 1     | 1                    | Y       | •   |
| 4    | MEDICAL SUPPLIES                                                                | 4     | 3                    | Y       | •   |
| 5    | LOCATE FRIENDS AND RELATIVES                                                    | 5     | 4                    | Y       | •   |
| 6    | SHELTERS NEARBY, VULNERABILITY LEVEL, EMERGENCY<br>NUMBERS, TRAFFIC INFORMATION | 6     | 5                    | Y       | •   |
| 7    | GROCERY AND WATER STOCKING, EVACUATION PLAN,<br>FIRST AID KITS                  | 1     | 1                    | Y       | •   |


| P | airw  | ise Comparison Mati                                                                  | ix          |                        |                                                                                    |                                                                                    |                              |                           |                  |                             |
|---|-------|--------------------------------------------------------------------------------------|-------------|------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|---------------------------|------------------|-----------------------------|
| ٨ | lote: | table rows are created by                                                            | adding      | rows to                | the Custome                                                                        | r Requiren                                                                         | nents Tab                    | le.                       |                  | ±                           |
|   |       |                                                                                      | ₽           | 1                      | 3                                                                                  | 6                                                                                  | 5                            | 2                         | 4                | 7                           |
|   | ID    | Requirement                                                                          | Requirement | GPS(LOCATION PROVIDER) | DAMAGE CAUSED BY THE HURRICANE.<br>AEAS MOST AFFECTED, GOVERNMENT<br>NOTIFICATIONS | SHELTERS NEARBY, VULNERABILITY LEVEL,<br>EMERGENCY NUMBERS, TRAFFIC<br>INFORMATION | LOCATE FRIENDS AND RELATIVES | SPEED, ROUTE, LEVEL, TYPE | MEDICAL SUPPLIES | GROCERY AND WATER STOCKING, |
|   | 1     | GPS(LOCATION PROVID                                                                  | ER)         |                        |                                                                                    |                                                                                    |                              |                           |                  |                             |
|   | 3     | DAMAGE CAUSED BY TI<br>HURRICANE, AEAS MOS<br>AFFECTED, GOVERNME<br>NOTIFICATIONS    | ST          | 1                      |                                                                                    |                                                                                    |                              |                           |                  |                             |
|   | 6     | SHELTERS NEARBY,<br>VULNERABILITY LEVEL,<br>EMERGENCY NUMBERS<br>TRAFFIC INFORMATION |             | 6                      | 6                                                                                  |                                                                                    |                              |                           |                  |                             |
| ± | 5     | LOCATE FRIENDS AND<br>RELATIVES                                                      |             | 5                      | 5                                                                                  | 6                                                                                  |                              |                           |                  |                             |
|   | 2     | SPEED, ROUTE, LEVEL, T                                                               | YPE         | 1                      | 2                                                                                  | 6                                                                                  | 5                            |                           |                  |                             |
|   | 4     | MEDICAL SUPPLIES                                                                     |             | 4                      | 4                                                                                  | 6                                                                                  | 5                            | 4                         |                  |                             |
|   | 7     | GROCERY AND WATER<br>STOCKING, EVACUATIO<br>PLAN, FIRST AID KITS                     | N           | 1                      | 3                                                                                  | 6                                                                                  | 5                            | 7                         | 4                |                             |

## THE PAIRWISE COMPARISON MATRIX

### House of Quality Matrix 1 $\, imes\,$

### Performance Criteria Matrix

|        | Direction of Improve                                                               | ment              | <b>†</b> •  |             |                        |                        |                        |
|--------|------------------------------------------------------------------------------------|-------------------|-------------|-------------|------------------------|------------------------|------------------------|
|        |                                                                                    | ID                | 1           | Cor         | npetitive              | e Evaluat              | ion                    |
|        |                                                                                    |                   |             | (Cus        | tomer Re               | equireme               | ents)                  |
| Custom | ner Requirements<br>Citera<br>Berformance                                          | Importance Rating | Reliability | Our Company | Competitor A's Product | Competitor B's Product | Competitor C's Product |
| 1      | GPS(LOCATION PROVIDER)                                                             | 3                 | 3           | 4 -         | 4 •                    | 3 •                    | 3 •                    |
| 3      | DAMAGE CAUSED BY THE<br>HURRICANE, AEAS MOST AFFECTED,<br>GOVERNMENT NOTIFICATIONS | 1                 | 1           | 5 •         | 1 •                    | 4 •                    | 1 •                    |
| 6      | SHELTERS NEARBY, VULNERABILITY<br>LEVEL, EMERGENCY NUMBERS,<br>TRAFFIC INFORMATION | 5                 | 3           | 4 •         | 3 •                    | 3 •                    | 4 •                    |
| 5      | LOCATE FRIENDS AND RELATIVES                                                       | 4                 | 9           | 4 •         | 2 🔹                    | 2 🔹                    | 3 •                    |
| 4      | MEDICAL SUPPLIES                                                                   | 3                 | 9           | 3 -         | 2 -                    | 2 -                    | 4 -                    |
| 7      | GROCERY AND WATER STOCKING,<br>EVACUATION PLAN, FIRST AID KITS                     | 1                 | 3           | 3 •         | 3 •                    | 4 •                    | 4 •                    |
| 2      | SPEED, ROUTE, LEVEL, TYPE                                                          | 1                 | 1           | 2 •         | 3 👻                    | 5 🕶                    | 2 -                    |
|        | Raws                                                                               | Score             | 92          |             |                        |                        |                        |
|        | Relat                                                                              | ive %             | 100%        |             |                        |                        |                        |

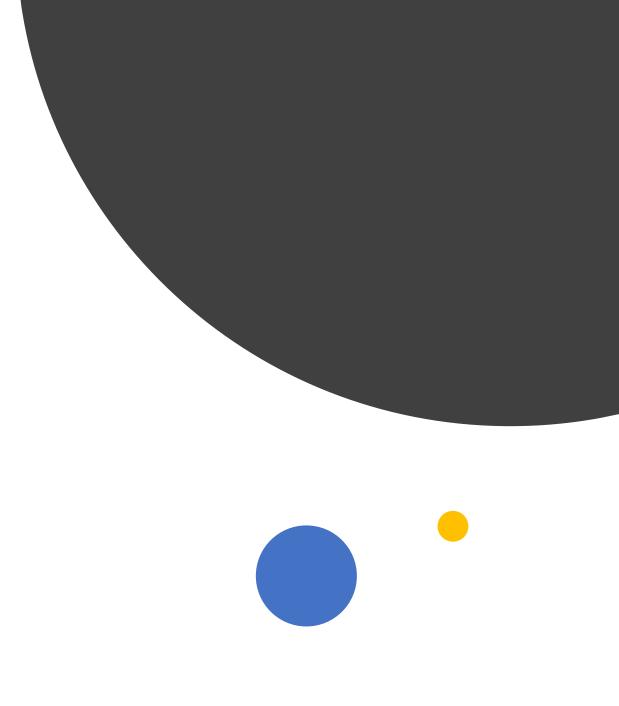


### THE HOUSE OF QUALITY MATRIX AND PROCESS FLOW MAP.

## PROCESS FMEA

| Process Ma                          | p P                                     | rocess FME                                                                                        | A × |                                                                                                                    |     |                                                                                   |     |     |
|-------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|-----|-----|
| Process Step /<br>Process Parameter | Potential Failure<br>Mode               | Potential Failure<br>Effects                                                                      | SEV | Potential Causes                                                                                                   | occ | Current Controls                                                                  | DET | RPI |
| DATA<br>COLLECTION                  | ENOUGH DATA<br>NOT AVAILABLE            | TIME FOR<br>COMPLETION<br>WILL INCREASE<br>AS MORE TIME<br>WILL BE<br>REQUIRED TO<br>COLLECT DATA | 4   | AVAILABLE<br>DATA IS<br>UNRELIABLE,<br>NOT ENOUGH<br>DATA OR<br>DIFFICULT TO<br>ACCESS DATA<br>ABOUT<br>HURRICANES | 4   | GOOD DATA<br>COLLECTION<br>TEAM                                                   | 1   | 10  |
| DATA ANALYSIS                       | UNRELIABLE<br>ANALYSIS<br>TECHNIQUES    | INEFFECTIVE<br>SYSTEM DESIGN                                                                      | б   | LOTS OF DATA<br>TO ANALYSE,<br>LOW NUMBR<br>OF DATA<br>ANALYSTS                                                    | 5   | ADEQUATE<br>STAFFING<br>BASED ON<br>SKILLS AND<br>AMOUNT OF<br>DATA<br>EXTRACTED  | 4   | 12  |
| FEASIBLITY STUDY                    | ALL FACTORS<br>NOT INCLUDED<br>IN STUDY | DATA ANALYSIS<br>NEEDS TO BE<br>REDONE                                                            | 6   | RESULTS OF THE<br>STUDY ARE NOT<br>CONSISTANT<br>WITH DATA<br>ANALYSIS<br>RESULT                                   | 5   | GOOD<br>ANALYST,<br>SEVERAL<br>MEETINGS TO<br>SEE<br>EVERYTHING IS<br>CONSISTANT  | 4   | 12  |
| REQUIREMENT<br>ANALYSIS             | MISSED<br>IMPORTANT<br>REQUIREMENTS     | INEFFECTIVE<br>SYSTEM DESIGN                                                                      | 8   | PM MEETING<br>NOT<br>CONDUCTED,<br>NON-<br>CROSSFUNCTIO<br>NAL TEAMS                                               | 9   | TWO<br>DIFFERENT REQ.<br>ANALYSIS<br>TEAMS,<br>SEVERAL<br>MEETINGS<br>WITH CLIENT | 5   | 36  |
| SYSTEM ANALYSIS                     | FAILS                                   | NEED TO REDO<br>EVERYTHING                                                                        | 7   | SOME<br>POTENTIAL<br>ERROR<br>OCCURED IN<br>REQ. ANALYSIS<br>OR FEASIBILITY<br>STUDY                               | 6   | RE-CHECK,<br>DISCUSSIONS,<br>MULTIPLE RUNS<br>BEFORE<br>MOVING TO<br>NEXT STEP    | 4   | 16  |
| INTEGRATION                         | INCOMPATIBLE<br>SEGMENTS                | NEED TO DO<br>SYSTEM<br>ANALYSIS<br>AGAIN                                                         | 7   | FAULTS IN THE<br>FEASIBILITY<br>STUDY AND<br>INCOMPATIBLE<br>SYSTEM PARTS                                          | 6   | RE-CHECK,<br>DISCUSSIONS,<br>MULTIPLE RUNS<br>BEFORE<br>MOVING TO<br>NEXT STEP    | 4   | 16  |
| TESTING                             | FAILS                                   | NEED TO DO<br>SYSTEM<br>ANALYSIS<br>AGAIN                                                         | 8   | THRE COULD BE<br>AN ERROR IN<br>ANY OF THE<br>ABOVE FOR<br>TESTING TO<br>FAIL                                      | 8   | RE-CHECK,<br>DISCUSSIONS,<br>MULTIPLE RUNS<br>BEFORE<br>MOVING TO<br>NEXT STEP    | 3   | 19  |

## CONTROL PHASE


| Data                                                               |                                             |           |  |
|--------------------------------------------------------------------|---------------------------------------------|-----------|--|
| Measurement Variable Des                                           | cription:                                   |           |  |
| NUMBER OF TIMEWS THE P                                             | RODUCT FAILS TESTING                        |           |  |
| Total Sample Size:                                                 | Subgroup Size (Optional                     | :         |  |
| 40                                                                 |                                             |           |  |
| Data Collection Details:                                           |                                             |           |  |
| NUBER OF TIMES TESTING F                                           | AILS                                        |           |  |
| Justification that Samples I<br>Checklist<br>The measurement syste | Represent the Target Population:            |           |  |
| Checklist                                                          |                                             | LCL:      |  |
| Checklist The measurement syste Analysis                           | n has been validated                        | LCL:<br>1 |  |
| Checklist The measurement syste Analysis UCL:                      | m has been validated Center Line: 5 Chart): |           |  |



### Thank you



### Question?

