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ABSTRACT. Validating a simulation study is a complex but necessary process. All study
results depend on the strength of the validation statement. In Monte Carlo simulations,
validation opportunities become particularly reduced. The multidimensionality issue only
increases the problem complexity. In this paper, a three-phase validation scheme based on
the multivariate generation methods adopted in the study, is presented and explained in
detail. Examples of the implementation of such a scheme, in three large Monte Carlo power
studies, are described in detail.

1.0 Introduction

Recent computing advances (e.g., evergrowing power of PC’s, parallel processing) have
spurred the use of Monte Carlo techniques in statistical work. From engineering applica-
tions (Romeu, 1985), to comparison of methods (Romeu, 1989), to teaching (Romeu, 1986)
or methodological research (Romeu, 1988), Monte Carlo and system simulation methods
have become an important working tool for the modern statistician. ,

No longer is the practitioner constrained by the dimension of the problems. Hence,
we are increasingly seeing the development of Monte Carlo techniques in the areas of

multivariate statistics. And comparisons of multivariate methods (Ozturk and Romeu,
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1992), small sample studies (Romeu, 1992a) or validation of statistical theories (Romeu,
1992b) are proliferating by day.

However, Monte Carlo results are only as good as the faith we can have in the valid-
ity of such studies. And building this faith becomes increasingly difficult when dealing
with multivariate Monte Carlo. For, in addition to the significant differences with sys-
tem simulation that inhibit the use of specific types of validation techniques, we add the
multidimensionality problem.

In this paper, we describe a three-phase validation scheme for multivariate Monte
Carlo studies. This methodology is derived from our experiences in planning and im-
plementing extensive studies of this type. For example, in Romeu (1990), we compared
ten multivariate normality (MVN) Goodness of Fit (GOF) tests (Table 1), under twelve
non-normal alternatives (Figure 1 and Table 2). In the comparison we used experimental
settings with two, four and eight p-variates, four sample sizes and two covariance structures
(Figure 2), for a total of 288 experimental treatments or simulation runs. We will use this
and other similar experiences to illustrate the application of this validation methodology.

The three proposed validation phases are: (¢) planning, during the design stage of the
study, (i2) concurrent, as we move along the study itself and (722) final stage, using the
study results. Carried out in such a way, validation becomes a researcher’s quality control
tool instead of just an activity performed to satisfy a client or a journal reviewer.

For, a good validation methodology prevents that, at the end of hundreds of runs, we
find out that our experiment somehow went wrong. And that we could have detected
and corrected the problem earlier, if a carefull monitoring (validation) scheme had been

implemented.

2.0 Planning Stage

Monte Carlo studies are driven by statistical problems with intractable or messy math-
ematical solutions. Otherwise, the use of the Monte Carlo approach would be ill-advised.
However, there is frequently an associated problem (the asymptotic version, a special case)
with a well known closed form solution. It is during the initial literature search, while re-
searching the theory behind the problem, that its associated solved version can be brought
out to light. We may also find, during this initial research, that previous work exists in

this general area with some reliable numerical results. And these activities will provide
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Table 1. Multivariate Normality Tests Compared:

Multivariate @,: Cholesky version.
Multivariate @),: Sigma Inverse version.
Mardia’s Skewness Test.
Mardia’s Kurtosis Test.

Cox and Small Test.

Koziol’s Angles Test.

Koziol’s Chi Square Test.
Malkovich and Afifi’s Test.
Royston’s Test.

Hawkins’ Test.

Table 2. Multivariate Statistical Alternatives:

Bivariate Morgenstern (with two parameters).
Bivariate Kinchine (with two parameters).
Bivariate Regression (with two parameters).
Pearson Type II (with m = 10,6,4).
Pearson Type VII (with m = 10,6, 2).
Mixtures of Normals (with two mixing parameters).
Student t (with 8 degrees of freedom).

Chi Square (with 10 degrees of freedom).
Generalized Lambda Distribution (three versions).
Uniform (0,1).
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our first validation parameters.

For example, in Romeu (1992a) we studied and compared the small sample properties
of ten MVN GOF tests, through our empirically derived small sample critical values.
However, asymptotic distributions existed for some of these tests. And we used them to
validate our work, by showing how the empirical critical values actually tended to the
asymptotic ones, as n — oo.

We also found, during our literature search, that Mardia (1970, 1979) and Koziol (1982,
1983 and 1986) had obtained limited subsets of empirical critical values for their tests. We
used these numerical results to check and validate our work in progress.

Power studies require the generation of well specified types of statistical alternatives.
This activity constitutues the main challenge in a multivariate Monte Carlo study. But it
also provides one of its most useful validation tools. For, by carefull investigaton of the
statistical alternatives used, their properties and their generation methods, we can find
additional validation parameters with which to check our work.

In Romeu (1990) we classified the twelve statistical alternatives used in the power study
into purely skewed, purely kurtic and combined, based on their first four moments. We also
discovered that most MVN GOF tests investigated were either skewed-prone or kurtic-
prone. And we classified them as such. For example, we verified how, in the bivariate
skewness vs. kurtosis plane, Pearson Type II distribution yielded zero skewness and kur-
tosis smaller than that of the bivariate Normal (Figure 2). We realized we could use a
combination of Mardia’s Skewness and Kurtosis tests, applied to the generated samples,
to construct another bidimensional plot (Figure 3). And that we could use these plots as
validation tools. For both types of plots graphed the alternative distributions in different
ways, but in compatible Skewness vs. Kurtosis planes. Generation methods were validated
by verifying that both bivariate distribution classifications (the first plane representing the
theoretical and the second the empirical conditions) would be consistent.

Up to now, we have been discussing our use of methods for generating multivariate
distributions in the validation procedure. However, multivariate generation is not a trivial
problem. And there exist several approaches to it. We surveyed them and organized
the material into two broad groups which we call (7) indirect approaches to generating

multivariate distributions and (iz) direct methods.

The indirect approaches are based on combining natural or empirical univariate dis-
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tributions, given a covariance structure. But they do not place other constrains on the
theoretical properties of the resulting (unknown) multivariate distribution. Such methods
are easy to implement and have been widely used.

For example, Gnanadesikan (1977), obtained bivariate correlated distributions by first
generating two independent random variates Z;, Z; ~ F. From them, two other variables
Y1,Y; are obtained by letting Y1 = Z; and Yy = pZ; + \/1———p—2Z2 with Corr{Y7,Y,} =
p- Or, as performed by Loh (1986), following Andrews et al. (1973), by applying a
transformation ¢ to each coordinate of a bivariate normal.

Some advantages of these combinations of distributions are their simplicity and realistic
flavor. Their major disadvantage consists in poor control of some parameters: skewness,
kurtosis and marginal variances. And also, that the resulting multivariate distribution are
unknown, except in the case that the original Z; ~ N(u,0) and g = I.

An alternative is to generate the random variates from an empirical family of distribu-
tions. Shapiro and Gross (1981) list criteria that empirical families should meet: (7) easy
to select and (u1) to generate, and to (¢¢) include as wide a variety of shapes as possible.
Shapiro and Gross also classify the distributions exclusively based on their third and fourth
moments, /f1 and 2. Empirical families allow us to control these moments with ease.

Three widely used univariate empirical families are (a) the Generalized Lambda Dis-
tribution (GLD), (b) Johnson’s Family and (c) Pearson’s Family. The GLD family was
originally developed for Monte Carlo studies. It is based on p, a percentile of the distribu-
tion F:

Bp=F"(p), 0<p<l

The GLD family is defined in terms of these percentile functions by:

A3__ 1__ A4
zp = R(p) = A + 2 &2 P <p<t
1 A
f(z) = . 0<p<1

R(p)  Xsp* 1+ Agpra—1’
Tables for the four lambda parameters of the GLD, for given values of \/f1, B2, are
available (Ramberg, Dudewicz, Tadikmalla and Mykytka (1979)). The GLD allows the

exploration of the effect of a change in skewness, given a fixed kurtosis or viceversa, with

relative ease.
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Johnson’s system is based on the following transformation: z = v + nr;(z;£,A), j =
1,2,3 (Shapiro and Gross (1981)), where z ~ N(0,1), where 7,7, £, X are parameters and
where rj(z;€,)), j = 1,2,3 are three functional forms, each defining one of the three
subfamilies in the system. Johnson’s system, partitions the §; vs S8, plane into two non
overlapping regions: Sy, Sp, separated by Sz, the family of the Lognormal distributions.

Pearson’s families of distribution (Kendall and Stuart (1966)) are defined by the equa-

tion:
daf _ (z—a)f
dr by + bix + byz?’

where f is the density of the random variable X. Pearson defines seven family types. For

b €ER,i=0,1,2

example, his Type II is the Beta and Type III, the Gamma distribution.

The main advantage in using empirical families of distributions consists in the larger
control we have on the distribution’s parameters. One serious disadvantage is their re-
stricted domain, resulting in somewhat artificial distributions.

Since the resulting multivariate distributions obtained from such combinations of uni-
variates are not known, we called this approach the indirect approach. However, we can
check for the known covariance structure and skewness/kurtosis. In Romeu (1990) we gen-
erated combinations of GLD to obtain experimentally required skewness. We used these
prespecified values as validation parameters with which to check our results.

We can, similarly, achieve a prespecified covariance structure with miztures of MVN
distributions. The resulting unknown multivariate distributions help assess the effect of

data contamination on power. Let X ~ F, where:
F = poMV Np(p1,81) + (1 = po) MV Ny(p2, 2)

Cov(X) = poZ1 + (1 — po)Z2 + po(1 — po) (i1 — p2) (i1 — p2)'

There are many possible combinations formed by varying the parameters given by vec-
tor u;, covariance matrix %;, for ¢ = 1,2, and the mixing parameter py. Based on the

graphical study by Johnson (1987), based on bivariate mixtures, and seeking a mildly

versus a severely contaminated alternative, Romeu (1990) selected uy = (0,... ,0) and
py = (1,...,1), pr = 0.5 and p, = 0.9 and covariance matrices as:
1 Li e Pi
Si=1{ .. .. i=1,2

Pi .. pi 1
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The second approach to generating multivariate distribution, which we call direct, is
more efficient but complex and often mathematically involved or intractable. Among the
methods included in this group are (¢) conditional distribution, (7¢) transformation of
marginals and (7¢7) factorization.

The conditional distribution approach to generating a random vector (r.v.) X requires,
first, the derivation of the p marginal distributions X;. Then, of the successive conditional
distributions of X;|X;_4,...,X;, for j =2,...,p. This is not always easy or feasible. For
the transformation approach, a function ¢(Y) = X must be found such that F(g(Y)) =
F(X). Then, we proceed by generating, first, the easier multivariate Y. Then transforming
it to X via g. The problem with this approach is that function ¢ is not always available.
For details, see Johnson, Wang and Ramberg (1984).

A frequent application of the above technique is in the generation of MV N » (1, E), form
MV Ny(0,I), via a Cholesky factorization A of the required covariance matrix AA' = 3.
Then, ¢(Y) = AY + pu.

The multivariate Johnson (transformation) system (Johnson, 1987) offers the possibility
of specifying many controlled multivariate distributions. But their derivation becomes
mathematically involved and often intractable as p increases.

As in Johnson’s univariate system, mentioned above, one of the four established trans-
formations is performed on each of the p marginals. Then, the resulting joint multivariate
distribution is obtained. Johnson has derived the densities of the transformed bivariate
distributions. He has obtained relational functions between the original and resulting pa-
rameters and distributional moments, and has graphed, the bivariate distributions obtained
with such transformations. They allow the study of specific types/levels of departures from
the null, in a controlled environment. But for p > 2 the derivations become mathematically
involved.

A comparison of the bivariate contours from Johnson’s multivariate system with those
obtained by mixtures of multivariate normals, appear on pages 64 to 82 and 56 to 51,
respectively, in Johnson (1987). One notices how, with a convenient combination of the
mixture parameters, similar statistical alternatives can be obtained. However, one ends up
with with less information, using this simpler method. We opted for this second approach,

in Romeu (1990), to generate some of our skewed distributions.

The third approach, which we have called factorization, obtains a multivariate r.v. by
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multiplication of two other ones via the Elliptically Contoured (EC) distributions (Johnson
(1987)). EC are defined in terms of the subclass of spherically symmetrical distributions.
A p dimensional X ~ F is spherically symmetrical if F(X) = F(PX), for all p x p
orthogonal matrices P. Geometrically speaking, spherically symmetrical distributions are
invariant under rotations and include the normal, ¢ and the symmetrical cases of the
Pearson, Johnson and GLD families.

We say (and denote) X ~ EC,(i,3;g) if its density:

F(z) = mpl= 72 (X — ) 871Xy — )

where k, is a normalizing constant and ¢(.) a continous variable.

Therefore, X can be generated by multiplying R by U(®):
X = RBU® 4 4

where R is a positive random variable, independent of U(P) having the distribution of
V(X; — p)S-1(X; — p). And B is a p X p matrix such that BB' = . Finally, U®) is
a random vector uniformly distributed on the unit hypersphere. Since U is always the

same, R? is the driver of the distribution of X.

The univariate R? has density:

(Z) F( /2) Kp 2 /2=t g(z)

where z = (X — p)T7HX — )

For the multivariate normal (p), R? is the x2 and k, = (27)"?/2 and g the identity.
For the Pearson Type II, R? is Beta(p/2,m + 1). And for Pearson Type VII, R? is the

univariate Pearson Type VI. This last type is generated via:
=Y/(1-Y), where Y ~ Beta(p/2,m —1/2)

In Romeu (1990) we selected two elliptically contoured distributions: Pearson’s type 11
and VII (Johnson (1987); Chmielewski (1981)), with parameters m = 10,6, 2. Both these

distributions are close to being multivariate and marginally normal, for large p.
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The density function of the p-dimensional Pearson II distribution is:

L(E+m+1)

T(m T D) 12727 {1 = (X — ) 27N (XK — )™

f(z) =

Its marginals are also Pearson type II distribution, with kurtosis:

3(m+5+1)
m+ L +2

-3 as m,p—

For p =4 and p = 8§, kurtosis is approximately 2.8, close to the Normal kurtosis of 3.0.
The density function for the p-dimensional Pearson type VII is:

I'(m)

Tm =3y =1L (% = ) ST (X — )}

f(z) =

Its marginal distribution is, again, Pearson VII. We used the property that marginals
of EC distributions are also EC (in our case Pearson distributed) as another validation
parameter in our Monte Carlo study.

A more recent approach to this problem is that of Rangaswamy, Weiner and Ozturk
(1992). They decompose the multivariate X ~ F using the factorization X = SZ. Here,
Z ~ MV Ny(0,%) and S is a univariate r.v. driving the multivariate distribution of X
such that:

Fx (X)) = (20) P2 | M|V 2 hy(q) ; where ¢=X'M"'X
where fpltr) = / S_Pexp(;—g)fg(s)ds and ¥ = ME(S?)
0 s

One can make M = ¥ by redefining s’ = z (33) . And one can obtain a general multivariate

r.v. Y, by letting:
Y =AX 4+b where AA' =3: b a vector

For example, for the case of multivariate Laplace, S is distributed as a Rayleigh.

In Romeu (1992b) a two-phase approach was used to validate such generator of a'lﬁul—
tivariate Laplace. First, with p = 1, let z ~ N(0,1) and w ~ exp(l). Making the
transformation y = /2w we obtain a Rayleigh distribution, with £(y?) = 2. Redefining
§ = -:%— = y/w we obtain a more convenient r.v. with expectation E(s) = 1. This yields

M =¥ and the density of S is now:

fs(s) = 2s e:cp(—.sQ)
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To obtain the distribution of the quadratic form ¢ = z'z = 2? Romeu finds, for p=1

and following Rangaswami et al., that:

tole) = [ s Pean( ) fs(s)ds = Vaewn(—/2a)

And the distribution of the quadratic form ¢ becomes:

fola) = \/—ew (—v/2¢)

Then, by making the transformation * = \/2¢ Romeu obtains that ¢ ~ exp(l). Hence,

for z = sz, with s,z and h,(.) as above with p = 1 we have:

fx (@) = V2r B[P hy(g) = 769029( V2|e|)

Again making the transformation v = v/2|z| Romeu obtains a Double Exponential,
which is a special case of the Laplace Distribution with parameter () = 1/2).

Samples of size n = 25,50,100, 200 from the univariate z factored as above (z = s2)
were generated. And the variables z,s,q were then tested for the goodness-of-fits for,
respectively, the double exponential, Rayleigh and exponential distributions. Then, in
phase II we generated bivariate Laplace and, using the marginal property of EC, tested
the two components of X and the quadratic form g. It is worth noticing that, as we increase
p the resulting density functions become mathematically involved, with embedded Bessel
Functions. In such cases, obtaining integrable closed forms, for the Distribution Function
(CDF), manageable in a simulation program, becomes difficult.

Finally, some remarks about random number generators (RNG). In our Monte Carlo
studies, we used the (IMSL) routine DRNUN, for generating the Uniform. IMSL has six
different variations of its multiplicative congruential uniform generator (with or without

shuffling). Fach new pseudorandom uniform variate ri, 1 =1,...,n,is generated by:
3 .
xi:cjxi~17nod(21—1), r=1,....n

ShufHling uses a table of 128 uniform random variates from which the subsequent stream
of uniform variates is randomly taken /replaced to prevent any possible autocorrelation in

the pseudorandom variate stream. Empirical results by Nance and Overstreet suggest that
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shuffling does lead to an improvement (Bratley et al. (1983)) of pseudorandom generators.
On the other hand, Dudewicz and Ralley (1981) show this is not always the case.

For a comprehensive discussion of pseudorandom uniform generators or pseudorandom
generators at large, refer to Bratley, Fox and Schrage (1983). For a comparison of their
statistical performances and for source codes, refer to Dudewicz and Ralley (1981).

As implemented in Romeu (1990, 1992), the generation of elliptically contoured distri-
butions requires, first, the generation of the random vector U®), uniformly distribut_e.d n
the unit hypersphere (where the uniform distribution induces equally likely directions).

There are several schemes for obtaining such distribution (Johnson (1987)) when p =
2,3,4, and some of these schemes can be extended to cases of p > 4. However, the most
general method, which we used extensively, is to generate p 7id univariate standard normal
variates and, then, to define:

X

U =
\/X12+...+X1%

) j:17"'7p

The above discussed multivariate statistical distributions fulfill two important functions.
First, they yield the main validation parameters we are seeking. Then, they cover the

essential needs of generating alternatives in a multivariate Monte Carlo study, i.e.:

(1) Shape (as provided by skewness, kurtosis, contamination, ete.).

(2) Covariance structure (as provided by the respective p in the covariance matrix
(low, medium on high).

(3) Sample size (small, medium and large).

(4) Number of p-variates (few, moderate and large).

(5) Significance level (of the test statistic nominal a) corresponding to the tail values

say of ten, five and one percent points.

With these generators we can assess the effects of a distribution that is skewed, instead
of symmetrical; peaked or flatter than the standard kurtosis; both, skewed and peaked or
flat, or suffer from data contamination.

In the initial stage of a Monte Carlo study, the requirements for the experimental
design, the alternative distributions to be used, and the particular generation methods
are selected. Hence, this is the proper stage to define the validation parameters and the

validation roadmap for the two subsequent stages.
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3.0 Concurrent Stage

The second validation phase starts with the computer implementation of the study and
is carried out, as a control tool, throughout the entire experiment. It consists in verifying,
along the different generation stages, that the validation parameters identified in Phase I
are met. If one validation parameter fails to be met, a halt and thorough investigation of
the causes should be undertaken. After verification and correction, the Monte Carlo study

can proceed.

The first activity of this second stage concerns the verification of any and all off-the-shelf
software to be used. Several unpleasant surprises have encouraged us to (¢) program many

of our routines (Press et al. (1986)) and to (i) never trust any canned software.

For example, to check the validity and accuracy of the IMSL uniform RNG optién 2
(URNO4 in Dudewicz and Ralley (1981)), Romeu (1990) first selected a better though
slower one, implementable in our machine: URN14. We ran two non-normal alternatives
that depended heavily on the generation of U (0,1) random variates. We verified that
the results, obtained with IMSL and URN14 RNG’s were very close (tables of differences
are given in Romeu (1990)). Differences between empirical powers obtained from each
generator, were overwhelmingly less than 0.01. Hypothesis tests on these differences were

not statistically significant.

By following the validation roadmap drafted during Phase I, we can compare incomming
results with those available from previous work in the literature. In Romeu (1990) we
verified how our results agreed with those obtained by Mardia and Koziol, for special cases

of the p-values.

Another validation procedure consisted in checking the results under the null. For,
under this hypothesis, the empirical powers should match the nominal significance level a.

In Romeu (1990), three standard deviations about the empirical powers, obtained using

a(l—a)

—, were used to test that they were distributed about the nominal a.

Next, all distribution properties identified in Phase I were graphically checked. Bivariate
measures of covariance, skewness and kurtosis were especially usefull. We plotted bivariate
densities and graphed bivariate contours from the data generated from our distribution
simulators (Figures 4 and 5). And we compared them with those appearing in the studies

by Johnson (1987) to verify we had achieved accuracy and the effect desired in them.
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We also used Mardia’s Skewness and Kurtosis MVN GOF tests plot described in the
previous section (Figure 3), to assess all generated distributions. And we verified whether
or not, the positions of the different distributions were consistent with those in Figure 2.
For, both graphs assessed, in different ways, the same Skewness/Kurtosis characteristics.
Notice, in Figure 3, how severely skewed (GLD-1) and severely kurtic (Uniform) distribu-
tions, lay far out on the graph axes. And how severely skewed-kurtic distributions like x50
and Bivariate Regression fall far out on the bisection of the first quadrant. And how quasi
normal distributions remain about (0.1, 0.1), the nominal significance level of these tests.

Sample covariance matrices and marginal distribution parameters were also checked
and compared with the theoretical ones, before launching the production runs. Sensitivity
analyses were performed by letting p-variate correlation coefficient p vary, and comparing
the results.

If there were two ways of generating the same random variable, we took advantage
of this for the validation process. We implemented a small comparison to check that
the results were close. For example, in Romeu (1990) we simulated the Pearson Type
VII distribution of a random variable X, via the transformation X —= (\/3'—/V>—1Z-+ L
with Z ~ MNV,(0,X) and S ~ x2. Then we generated this distribution again, via the
factorization (X = RBU® + ) approach discussed in Section 2. Results were verified
and the EC method was then selected for production runs.

In another type of study, dealing with the validation of a theoretical generation method,
Romeu (1992b) ran simulations for n = 25,50, 100, 200 as explained above. We checked
the fit of model variables z, s, ¢. We graphed the bivariate distribution, from the generated
data, as a wvisual validation approach (Figure 6). We also conducted sentitivity analysis
by generating closely related, but different distributions (Laplace with other values for A).
All results were positive.

Documentation of all these validation procedures and their results should be carefully

kept and included in the final report with the study findings.

4.0 Final Analysis

This last validation stage is undertaken after the Monte Carlo study is completed and
the final results are available. The type of validation performed in this stage is highly

dependent on the objectives of the study. However, all Monte Carlo studies have in common
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that the subject problem is not tractable in the study setting. But that there usually exists
another setting, where asymptotic results or particular cases do have a solution which is
avialable for comparison.

For example, Romeu (1990) obtained small sample empirical critical values (ecv) for
several MVN GOF tests, for samples n = 25(25)200, for p = 0.5,0.9 and p = 2(1)6(2)10.
Several of these tests also had asymptotic distributions. We used the asymptotic critical
values as a validation parameter, by regressing the empirical ones on sample size. And
then, comparing the regression independent term, £y, with the corresponding asymptotic
value.

In Table 3, we present some of these regression results. We regressed, by percentile

= 0.90,0.95,0.99, the ecv’s on sample size n:
€CVy = Bo + ﬁln-l

Results in Table 3 include, fq, its standard deviation og, the corresponding asymptotic
critical value C'V', and the regression index of fit R?. As expected, as n — oo, our empirical
values approached the asymptotic critical values.

Another way of validating a Monte Carlo study using the final results, in Romeu (1990),
consisted of assessing the precision of the empirical critical values for n = 200. Following

Dudewicz and van der Meulen (1984), we obtain two order statistics: Z(ry, Z(sy, such that;
$—140.5=£&6,/Np(l—-p)+ Np
r—0.5=—€,\/Np(l —p)+ Np

where £, is the normal standard percentile evaluated at a and s,r are the corresponding

positions in the ordered sample Zy, t=1,...,n, such that:
'P{Z(,n) < fp < Z(s)} > P

We calculated approximate 95% conficence intervals (C.1.) for the relevant critical values.
Examples of such calculations are presented in Table 4, for p=2,5,8, n = 200 and p =
0.5,0.9. There, we show, the point estimate of the 95" percentile (ecv), the corresponding
lower /upper bounds of its approximate 95% C.I. (Z(r), Z(s)), and the asymptotic critical

value. We can verify how these C.I. cover the asymptotic values in some MVN GOF tests
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Table 3: Regressions of ecv on Sample Sizes.

eta

.90
.95
.99
.90
.95
.99
.90
.95
.99
.90
.95
.99
.90
.95
.99
.90
.85
.99
.90
.95
.99

NNNNMNDNDNNDNNDNNNDNODMNNNDNDNDNONDNDND N bo]
QOO OO OO ODO OO0 OO0 ODOODOOO

* Empirical tests;

=

NNHOOOOWUd WY

oo
O U1 2 b N

ecv

.790
.670
.770
.580
.990
.100
. 989
.989
.989
.630
.080
.900
.550
.770
.180
.060

o Xo¥a}

.320
. 940
.630
.990
.110

}_.l
O U WO

N bt

-1.

-2.

4.61
5.
9.21

99

1]
-
E
i}

COORFRPNUOOOOOODONUTUOOOOOO

.027
.044
.065
.014
.032
.078
.500¢&
.800¢&
.500¢&
.012
.016
.036
011
.018
.032
.200¢&

AN~

.700¢&
.500&
.037
.060
.157

OOOOC)OOOOOOOOOO0.00000

IoF

.99
.98
.98
.98
.94
.94
.99
.99
.99
.99
.99
.92
.96
.95
.93
.14a@
.04@
.08¢
.30@
.11@
.04¢@

MVN GOF Test:

Mardia Skew.
111 "

" "
Cox and Small
L1} 114
n "
Malkovich-Afifi
" 111
111 "

Mardia Kurt. (LB)

n "

" " (UB )

Hawkins

n

Koziol Angles

n n

n n

no asymptotic distribution available.

@ Critical Value was independent of sample size.

& Exponential notation:

four decimal places (i.e 5.5%e-4).
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Table 4: 95% Nonparametric Confidence Intervals.

rho eta Ccv LB UB MVN GOF Test:
0.95 9.49 9.17 9.660 Mardia's Skew.
0.90 1.65 1.52 1.610 " Kurt.
0.95 5.99 6.11 6.533 Royston
0.95 5.99 5.94 6.290 Cox and Small
0.95 5.99 5.85 6.110 Koziol Angles
0.95 9.49 9.11 9.590 Mardia's Skew.
0.90 1.65 1.48 1.570 " Kurt.
0.95 4.61 4,78 5.070 Royston
0.95 5.99 5.85 6.230 Cox and Small
0.95 5.99 5.86 6.220 Koziol Angles
0.95 49.80 48.32 49,710 Mardia's Skew.
0.90 1.65 1.23 1.340 " Kurt.

0.95 11,07 10.83 11.410 Royston
0.95 11.07 20.05 26.990 Koziol Angles
0.95 49.80 48.43 49.760 Mardia's Skew.

0.90 1,65 1.27 1.410 n Kurt.
0.95 5.33 8.24 8.800 Royston

0.95 11.07 18.97 22.920 Koziol Angles
0.99 57.34 56.41 58.920 Mardia's Skew.
0.98 2,05 2.02 2.300 u Kurt.
0.95 145.98 143.32 145.610 " Skew.
0.90 1.65 1.08 1.190 " Kurt.

0.95 15.51 13:53 14.480 Royston
0.95 15.51 16.25 17.090 Koziol Angles
0.95 145.98 142.14 144.750 Mardia's Skew.
0.90 1.65 1.06 1.200 " Kurt.
0.95 5.55 9.12 9.660 Royston
0.95 15.51 18.25 19.530 Koziol Angles

[sjejojajolololololesleololololololofoleolafololololololoXe)

W OOYOUTOCTUTUIUTUIO WO WO W UTUTOUTWO WO WO \O O U1UTUT 0101

Rho is the p-variate correlation coefficient.

ecv's LB (confidence interval lower bounds) and UB (upper
bounds) were empirically obtained with 10,000 replications
for p=2 and with 5,000 replications for p>2.

CV is the asymptotic critical value, for the corresponding
percentile, (eta), of 90, 95, 98 or 99 percent for the test
in question.
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that converge faster (e.g. Mardia’s Skewness test) while they do not cover (for n = 200)
the asymptotic value in those tests that converge slower (e.g. Mardia’s Kurtosis, converges
for n > 200).

Any other similar asymptotic result or special case can be exploited for performing
validation at this final stage. In Romeu (1992b), the distribution of interest was the K-
Distribution, which requires the manipulation of Bessel functions. Laplace, a special case
of the K, with parameter « = 1, was used. Such special cases will surface during the

literature search perform in Phase L.

5.0 Conclusions

Validation of multivariate Monte Carlo studies constitutes an involved, time consuming
but necessary activity. It really consists of a three-phase, continous process that starts with
the initial planning of the study and concludes after the study final results are obtained.

As opposed to system simulation, Monte Carlo studies do not have real data to compare
with, from an operating system. As opposed to univariate statistics, multivariate intro-
duces yet another level of complexity to the problem. For now, the distributions obtained
by transformations are much more complex. They have too many parameters and factors
to control.

However, some of these same characteristics can be used as a validating tool. If we
have correctly performed transformations and generation of variates, the output must
exhibit certain prespecified caracteristics that we want to measure. Another problem
arises because, sometimes, these characteristics are difficult to measure.

In any case, the confidence in the results of any Monte Carlo study lies in the faith we
can place in it. Hence, all efforts allocated to the validation process are well justified.

There is a final conclusion, that surfaces inevitably in the mind of the educator, affer im-
plementing an experience such as this. We have seen how the validation process requires
extensive study and implementation of distributions, its moments, estimators, transfor-
mations, generation, hypothesis testing and experimental design, among other statistical
topics.

Therefore, a project such as the design, implementation and validation of a small multi-
variate Monte Carlo power study lends itself, beautifully, for an applied graduate statistics

course.



VALIDATION OF MULTIVARIATE MONTE CARLO STUDIES. 15

REFERENCES

Anderson, T. W., An Introduction to Multivariate Analysis, Wiley, 1984.

Andrews, D. F., Gnanadesikan R. and J. L. Warner, Methods for Assessing Multivariate Normality,
Multivariate Analysis, Academic Press, 1973.

Bratley, P; Fox, B. and L. Schrage, A Guide To Simulation, Springer-Verlag, 1983.

Cambanis, S.; Huang, S. and G. Simons, On the Theory of Elliptically Contoured Distributions, J.
Multivar. Annal. 11 (1981), 368-385.

Chmielewski, M. A., A Re-Appraisal of Tests for Normality, Comm. Stat. - Theor. Meth. al0(20)
(1981), 2005-2014.

Dudewicz, E. J. and T. G. Ralley, The Handbook of Random Number Generation and Testing With
TESTRAND Computer Code, American Sciences Press Inc., 1981.

Dudewicz, E. J. and E. C. van der Meulen, On Assessing the Precision of Simulation Estimates of
Percentile Points, Amer. Jour. Math. Manag. Sci. 4 (3-4) (1984), 335-343.

Gnanadesikan, R., Methods of Statistical Data Analysis of Multivariate Observations, Wiley, 1977.
Johnson, M. E., Multivariate Statistical Simulation, Wiley, 1987.

Johnson, N. L. and S. Kotz, Distributions in Statistics: Continous, Univariate Distributions. Wiley,
1970.

Johnson, M. E., Chiang, W. and J. S. Ramberg, Generation of Continuous Multivariate Distribulions
Jor Statistical Applications, Amer. Jour. Math. Manag. Sci. 4 (1984), 225-248.

Johnson, R. A. and D. E. Wichern, Applied Multivariate Analysis, Prentice Hall, 1982.

Johnson M. and J. Ramberg, The Johnson Translation System in Monte Carlo Studies, Comm. Stat.
- Simula. Comput. 11(5), 521-525. ‘
Kendall, M. G. and A. Stuart, The Advanced Theory of Statistics, (Vols. I, II and I1T), Charles Griffin
and Co., London, 1966.

Koziol, J. A., A Class of Invariant Procedures for Assessing Multivariate Normality, Biometrika 69
(1982), 423-427.

Koziol, J. A., On Assessing Multivariate Normality, JRRS-B 45 (1983), 358-361.

Koziol, J. A., Assessing Multivariate Normality: A Compendium, Comm. Stat. 15 (1986), 2763-2783.
Loh W., Testing Multivariate Normality by Simulation, Jour. Statist. Comput. Simul. 26 (1986),
243-252.

Mardia, K. V., Kent, J. T. and J. M. Bibby, Multivariate Analysis, Academic Press, 1979.

Mardia K. V., Measures of Multivariate Skewness and Kurtosis With Applications, Biometrika 57
(1970), 519-530.

Mardia, K. V., Assessment of Multinormality and the Robustness of Hotelling T' Test, Appl. Statist.
24 (1975), 163-171.

Ozturk, A. and J. L. Romeu, A New Graphical Test for Multivariate Normality, Comm. in Statist.
(Simula.) 21(1) (1992).

Press, W. H.; Flannery, B. P.; Teukolsky, S. A. and W. T. Vetterling, Numerical Recipes: the Art of
Scientific Computing, Cambridge University Press, 1986.

Ramberg, J. S.; Dudewicz, E. J.; Tadikamalla, P. R. and E. F. Mykytka, Probability Distributions and
its Uses in Filting Data, Technometrics 21, no. 2 (1979), 201-214.

Rangaswamy, M.; Weiner, D. and A. Ozturk, Computer Generation of Correlated Non Gaussian Clutter
for Radar Signal Detection, IEEE Trans. Aerosp. Electr. Sys. (1992 (to appear)).

Romeu, J. L., A Simulation Approach for the Analysis and Forecast of Software Productivity, Journal
of Computers and Industrial Engineering 9(2) (1985).

Romeu, J. L., Teaching Engineering Statistics With Simulation: A Classroom Lzperience, Journal of
the Institute of Statisticians 35(4) (1986).

Romeu, J. L., Another Look at the Comparison of the Non Owerlapping Batch Means and Area STS
Sumulation Output Analyses Procedures, Actas del ISORBAC-2, San Sebastian, 1988.



16

JORGE LUIS ROMEU

Romeu, J. L., A Small Sample Monte Carlo Study of Four System Reliability Bounds, Journal of
Computers and Industrial Engineering 16(1) (1989).

Romeu, J. L., Development and Evaluation of a General Procedure for Assessing Multivariate Nor-
mality, CASE Center Technical Report 9022. Syracuse University, NY. 13244, 1990.

Romeu, J. L., A New Multivariate Normality Goodness of Fit Test With Graphical Applications, Pro-
ceedings of the Computers and Industrial Engineering Conference (1991).

Romeu, J. L., Small Sample Empirical Critical Values as a Tool for the Comparison of Multivariate
Normality Goodness of Fit Tests, Proceedings of the Conference on the Interface Between Statistics
and Computer Science (1992a).

Romeu, J. L., Monte Carlo Validation of a Theoretical Model for Generating Non Gaussian Radar
Clutter, Final Report. U.S. Air Force Faculty Summer Research Program. (To Appear), 1992b.
Shapiro, S. and A. Gross, Statistical Modeling Techniques, Marcel Dekker, 1981.

Tong, Y. L., The Multivariate Normal Distribution, Springer-Verlag, 1990.



