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I. INTRODUCTION AND BACKGROUND:

* Validation (monitoring): a necessary evil

- Factors Fostering M.C. studies: computer development

- Uses: Proving/Developing New Statistical Methods

* Validation (as opposed to Verification)

* Monte Carlo (as opposed to System Simulation

- Less Opportunities for Validation Activity
- No Real System to Compare With
- No Output Analysis Stream
- The Statistical Model 1s It

* Multivariate (as opposed to Univariate)

- Many More Parameters to Control
- More Difficult Transformations to Perform
- Unknown Resulting Distributions

- Dimensionally, Difficult to Imagine

* This Paper: Three-Phase Validation Scheme

- Planning, Concurrent and Final Stages

* Objective: Convert Validation from Nuisance to QC Tool



* Example of Large Scale M.C. Study:

- Objective: Power/Comparison Study
- New Methods: Two; Established Methods: Eight
- Sample sizes: Four; Number of p-variates: Seven
- Correlation Structures: Two
- Statistical Distributions: Twelve; Settings: Two

- Total Ezperimental Runs: Three Hundred.

II. PLANNING STAGE ACTIVITIES:

* At Onset of the Study

- Jointly With General Design Stage
- Include in Literature Search

- Seek: previous studies and asymptotic/special cases

* Examples in Previous Studies:

- Partial results: Mardia, Koziol, some e.c.v.
- Asymptotic Theory: Mardia Koziol test distribution
- Special Cases: Laplace for the K-Distribution

- Use as Initial Validation Parameters

* Generation of Multivariate Distributed Alternatives

- General Problems: performance/robustness
- General Factors: sample, variates, correlation, shape

- Distributions: Study Problems of Shape



* Distribution Classification by Shape

- Cross Validation Schemes in Classification by Shape

* A Classification of Multivariate Generation Approaches

* 1. "Indirect”: Generation

* Combining Natural Univariate Distributions

- Use Correlation Structure Desired
- Resulting Distribution Unknown
- Little Control on Resulting Skew/Kurt
- Easy to Implement

- Ezamples of Natural Univariate Distributions

* Combining Empirical Univariate Families

- GDL, Johnson and Pearson Famailies
- Easy to Generate, Variety of Shapes, Larger Control
- Restricted Domain (Artificial)
- Mizture of Multivariate Normals
- Covariance Structure Obtained
- Little Distribution Information
- Bottom/up Approach
- Skewness Problems

- Use Graphical Bivariate Information



* 2, "Direct” Generation

* Conditional Distribution Approach
- Derivation of Marginal/Conditional Distr.
- Not Always Feasible/Convenient

- Top/Down Approach

* Transformation Approach

- Not Always Feasible/Convenient to Find
- Also Top/Down
- Most Used in Multivariate Normal Generation
- Johnson’s Multivariate Transformation System
- Johnson’s Bivariate Theoretical/Graphical Study
- Study/Compare Nomograms for Johnson/Miztures
- Use Graphs/Nomograms as Validation Tools
- Select Alternatives as per Study Requirements

- Bottom/Up Approach

* 3. YFactorization” Approach

* Elliptically Controured/Spherically Sym. Distributions

- Obtaining the Multivariate Vector
- The Univariate ”Driver”
- Ezamples: Multivariate Pearson II and VII
- Another "Factorization” Scheme

- Obtaining the Multivariate Vector



- The Univariate Driver
- Comparison of Both Approaches

- Ezample: Validation of the K-Distribution (Laplace)

* Random Number Generators

- Carefull About Packaged Software

- Generation of the Uniform Vector in the Hypersphere

* Summarization of Initial Stage:

- Where Validation Parameters Are Defined
- Where Validation Roadmap 13 Drafied

III. CONCURRENT STAGE

* All Along the M.C. Study
* Use as a QC. Tool
* Verify Every Validation Parameter Defined
* Check Any Package Software Used
* Check Incomming Results With Previous Studies
* Check Results Under the Null (Testing for a)
* Use Graphical Validation (Bivariate Case)

* Obtain/Check Large Sample Estimators of Your Parameters
* Cross Validate Using Different Schemes (Mardia’s Plot)
* Perform Sensitivity Analyses (use p)

* Compare/Test Similar Methods of Generating r.v.

* Document Results Carefully



We say (and denote) X ~ EC,(p, Z; g) if its density:
f(2) = 1o TIT2g(Xi = p)'S7H(Xi = )

where « is a normalizing constant and ¢(.) a continous variable.

Therefore, X can be generated by multiplying R by U(®:
X =RPUW 4+

where R is a positive random variable, independent of U, having the distribution of

V(X —p)T-1(X; — ©). And B is a p x p matrix such that BB' = T.

The univariate R? has density:

where =z =(X - )T~ IX = i)

For the multivariate normal (p), R? is the Xf; and k, = (27)7P/% and g the identity.

For the Pearson Type II, R? is Beta(p/2.m + 1). And for Pearson Type VII, R? is the
univariate Pearson Type VI. This last type is generated via:

R*=Y/(1-Y), where Y ~ Beta(p/2,m — 1/2)

The density function of the p-dimensional Pearson II distribution is:

LA mA Y e et
f(I) - F(m-{-l)ﬂ'% IZ| {1 (Xl ,u)“ (Xl ﬂ)}

Its marginals are also Pearson type II distribution, with kurtosis:

3(m+E24+1)
35— —3 as m.p—x
m+ £ 42 :

The density function for the p-dimensional Pearson

| I'(m) -1 e —m
fm:mlzl L+ (X =)' ST~ )

type VII is:

A more recent approach to this problem is that of Rangaswamy, Weiner and Ozturk

n X = SZ. Here.

driving the multivariate distribution of X

(1992). They decompose the multivariate X ~ F using the factorizatio
Z ~ MVN,(0,%)

such that:

and S is a univariate T.V.

Fx(X) = (2m) 72 M7 2 g where g =X'M"1X

where h,,(q}:/ s‘”exp(%)fs(s)ds and T = ME(S?)
i 5 |
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Table 3: Regressions

of ecv on Sample Sizes.
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MVN GOF Test:

Mardia Skew.
1 "

1" "
Cox and Small
" T
" "
Malkovich-Afifi
il "
1" "

Mardia Kurt. (LB)

" "

Hawkins
"
1

Xoziol Angles
" "

no asymptotic distribution available.

@ Critical Value was independent of sample size.

& Exponential notation;

four decimal places (i.e 5.5%e-4).



Table 4: 95% Nonparametric Confidence Intervals.

ROW P rho eta Ccv LB UB MVN GOF Test:
1 2 0.5 0.95 9.49 9.17 9.660 Mardia's Skew.
2 2 0.5 0.90 1.65 1.52 1.610 " Kurt.
3 2 0.5 0.95 5.99 6.11 6.533 Royston
4 2 0.5 0.95 5.99 5.94 6.290 Cox and Small
5 2 0.5 0.95 5.99 5.85 6.110 Koziol Angles
6 2 0.9 0.95 9.49 9.11 9.590 Mardia's Skew.
7 2 0.9 0.90 1.65 1.48 1.570 " Kurt.
8 2 0.9 0.95 4.61 4.78 5.070 Royston
9 2 0.9 0.95 5.99 5.85 6.230 Cox and Small

10 2 0.9 0.95 5.99 5.86 6.220 Koziol Angles
11 5 0.5 0.95 49.80 48.32 49.710 Mardia's Skew.
12 5 0.5 0.90 1.65 1.23 1.340 " Kurt.
13 5 0.5 0.95 11.07 10.83 11.410 Royston

14 5 0.5 0.95 11.07 20.05 26.990 Koziol Angles
15 5 0.9 0.95 49.80 8.43 45.760 Mardia's Skew.
16 5 0.9 0.90 1.65 1.27 1.410 " Kurt.
17 5 0.9 0.95 5.33 8.24 8.800 Royston

18 5 0.9 0.95 11.07 18.97 22.920 Koziol Angles
19 5 0.5 0.99 57.34 56.41 58.920 Mardia's Skew.
20 5 0.5 0.98 2.05 2.02 2.300 " Kurt.
21 8 0.5 0.95 145.98 143.32 145.610 " Skew.
22 8 0.5 0.90 1.65 1.08 1.190 " Kurt.
23 8 0.5 0.95 15.51 13.53 14.480 Royston

24 8 0.5 0.95 15.51 16.25 17.090 Koziol Angles
25 8 0.9 0.95 145.98 142.14 144.750 Mardia's Skew.
26 8 0.9 0.90 1.65 1.06 1.200 " Kurt.
27 8 0.9 0.95 5.55 9.12 9.660 Royston

28 8 0.9 0.95 15.51 18.25 19.530 Koziol Angles

* Rho is the p-variate correlation coefficient.

* ecv's LB (confidence interval lower bounds) and UB (upper
bounds) were empirically obtained with 10,000 replications
for p=2 and with 5,000 replications for p>2.

* CV is the asymptotic critical value, for the corresponding
percentile, (eta), of 90, 95, 98 or 99 percent for the test
in question.



IV. FINAL STAGE

* After the Final Results Are IN.
* Dependent on the M.C. Objectives
* Use the Asymptotic and/or Special Cases Found
* Example w/Asymptotic Values: Regression on size
* Example w/Asymptotic Values: Conficence Intervals

* Example w/Special Case: Laplace Distribution

V. CONCLUSIONS

* Validation: Time Consuming and Complex
* All Results Depend on this Activity
* Implement as a QC. Research Tool
* Use Generation Procedures
* Use Data From Previous Studies

* Use Asymptotic/Special Cases

* APPLIED STATISTICS GRADUATE COURSE
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