VALIDATION OF MULTIVARIATE MONTE CARLO STUDIES.

Jorge Luis Romeu
Department of Mathematics
SUNY-Cortland, NY

jromeu@suvm.bitnet

Presented at the
International Meeting of Statistics in the Basque Country

IMSIBAC-4

San Sebastian, Spain
OUTLINE:

* Introduction and Background
 - Factors and Requirements.

* Planning Stage Activities
 - Generation of Multivariate Alternatives

* Concurrent Stage Activities
 Following the Validation Roadmap

* Final Stage Activities
 - Using the Final Results

* Conclusions
I. INTRODUCTION AND BACKGROUND:

* Validation (monitoring): a necessary evil

- Factors Fostering M.C. studies: computer development
 - Uses: Proving/Developing New Statistical Methods

* Validation (as opposed to Verification)

* Monte Carlo (as opposed to System Simulation)

 - Less Opportunities for Validation Activity
 - No Real System to Compare With
 - No Output Analysis Stream
 - The Statistical Model is It

* Multivariate (as opposed to Univariate)

 - Many More Parameters to Control
 - More Difficult Transformations to Perform
 - Unknown Resulting Distributions
 - Dimensionally, Difficult to Imagine

* This Paper: Three-Phase Validation Scheme

 - Planning, Concurrent and Final Stages

* Objective: Convert Validation from Nuisance to QC Tool
* Example of Large Scale M.C. Study:

 - Objective: Power/Comparison Study
 - New Methods: Two; Established Methods: Eight
 - Sample sizes: Four; Number of p-variates: Seven
 - Correlation Structures: Two
 - Statistical Distributions: Twelve; Settings: Two
 - Total Experimental Runs: Three Hundred.

II. PLANNING STAGE ACTIVITIES:

* At Onset of the Study

 - Jointly With General Design Stage
 - Include in Literature Search
 - Seek: previous studies and asymptotic/special cases

* Examples in Previous Studies:

 - Partial results: Mardia, Koziol, some e.c.v.
 - Asymptotic Theory: Mardia Koziol test distribution
 - Special Cases: Laplace for the K-Distribution
 - Use as Initial Validation Parameters

* Generation of Multivariate Distributed Alternatives

 - General Problems: performance/robustness
 - General Factors: sample, variates, correlation, shape
 - Distributions: Study Problems of Shape
* Distribution Classification by Shape

- Cross Validation Schemes in Classification by Shape

* A Classification of Multivariate Generation Approaches

* 1. "Indirect": Generation

* Combining Natural Univariate Distributions

 - Use Correlation Structure Desired
 - Resulting Distribution Unknown
 - Little Control on Resulting Skew/Kurt
 - Easy to Implement
 - Examples of Natural Univariate Distributions

* Combining Empirical Univariate Families

 - GDL, Johnson and Pearson Families
 - Easy to Generate, Variety of Shapes, Larger Control
 - Restricted Domain (Artificial)
 - Mixture of Multivariate Normals
 - Covariance Structure Obtained
 - Little Distribution Information
 - Bottom/up Approach
 - Skewness Problems
 - Use Graphical Bivariate Information
2. "Direct" Generation

* Conditional Distribution Approach
 - Derivation of Marginal/Conditional Distr.
 - Not Always Feasible/Convenient
 - Top/Down Approach

* Transformation Approach
 - Not Always Feasible/Convenient to Find
 - Also Top/Down
 - Most Used in Multivariate Normal Generation
 - Johnson’s Multivariate Transformation System
 - Johnson’s Bivariate Theoretical/Graphical Study
 - Study/Compare Nomograms for Johnson/Mixtures
 - Use Graphs/Nomograms as Validation Tools
 - Select Alternatives as per Study Requirements
 - Bottom/Up Approach

3. "Factorization" Approach

* Elliptically Contoured/Spherically Sym. Distributions
 - Obtaining the Multivariate Vector
 - The Univariate "Driver"
 - Examples: Multivariate Pearson II and VII
 - Another "Factorization" Scheme
 - Obtaining the Multivariate Vector
- The Univariate Driver
- Comparison of Both Approaches
- Example: Validation of the K-Distribution (Laplace)

* Random Number Generators

- Careful About Packaged Software
- Generation of the Uniform Vector in the Hypersphere

* Summarization of Initial Stage:

- Where Validation Parameters Are Defined
- Where Validation Roadmap is Drafted

III. CONCURRENT STAGE

* All Along the M.C. Study
 * Use as a QC. Tool
 * Verify Every Validation Parameter Defined
 * Check Any Package Software Used
 * Check Incomming Results With Previous Studies
 * Check Results Under the Null (Testing for \(\alpha \))
 * Use Graphical Validation (Bivariate Case)
* Obtain/Check Large Sample Estimators of Your Parameters
* Cross Validate Using Different Schemes (Mardia's Plot)
 * Perform Sensitivity Analyses (use \(\rho \))
* Compare/Test Similar Methods of Generating r.v.
 * Document Results Carefully
We say (and denote) \(X \sim EC_p(\mu, \Sigma; g) \) if its density:

\[
f(x) = \kappa_p |\Sigma|^{-1/2} g((X_i - \mu)' \Sigma^{-1}(X_i - \mu))
\]

where \(\kappa_p \) is a normalizing constant and \(g(.) \) a continuous variable.

Therefore, \(X \) can be generated by multiplying \(R \) by \(U^{(p)} \):

\[
X = R \Sigma^{1/2} U^{(p)} + \mu
\]

where \(R \) is a positive random variable, independent of \(U^{(p)} \), having the distribution of \(\sqrt{(X_i - \mu)' \Sigma^{-1}(X_i - \mu)} \). And \(B \) is a \(p \times p \) matrix such that \(BB' = \Sigma \).

The univariate \(R^2 \) has density:

\[
h(z) = \frac{\pi^{p/2}}{\Gamma(p/2)} \kappa_p z^{p/2-1} g(z)
\]

where \(z = (X - \mu)' \Sigma^{-1}(X - \mu) \).

For the multivariate normal (p), \(R^2 \) is the \(\chi^2_p \) and \(\kappa_p = (2\pi)^{-p/2} \) and \(g \) the identity. For the Pearson Type II, \(R^2 \) is \(Beta(p/2, m + 1) \). And for Pearson Type VII, \(R^2 \) is the univariate Pearson Type VI. This last type is generated via:

\[
R^2 = Y/(1 - Y), \quad \text{where} \quad Y \sim Beta(p/2, m - 1/2)
\]

The density function of the p-dimensional Pearson II distribution is:

\[
f(x) = \frac{\Gamma(\frac{m}{2} + m + 1)}{\Gamma(m + 1)\pi^{p/2}} |\Sigma|^{-\frac{1}{2}} \left\{1 - (X_i - \mu)' \Sigma^{-1}(X_i - \mu)\right\}^m
\]

Its marginals are also Pearson type II distribution, with kurtosis:

\[
\frac{3(m + \frac{p}{2} + 1)}{m + \frac{p}{2} + 2} \rightarrow 3 \quad \text{as} \quad m, p \rightarrow \infty
\]

The density function for the p-dimensional Pearson type \(\text{VII} \) is:

\[
f(x) = \frac{\Gamma(m)}{\Gamma(m - \frac{p}{2})} |\Sigma|^{-\frac{1}{2}} \left\{1 + (X_i - \mu)' \Sigma^{-1}(X_i - \mu)\right\}^{-m}
\]

A more recent approach to this problem is that of Rangaswamy, Weiner and Ozturk (1992). They decompose the multivariate \(X \sim \mathcal{F} \) using the factorization \(X = SZ \). Here, \(Z \sim \mathcal{MN}_p(0, \Sigma) \) and \(S \) is a univariate r.v. driving the multivariate distribution of \(X \) such that:

\[
f_X(X) = (2\pi)^{-p/2} |M|^{-1/2} h_p(q); \quad \text{where} \quad q = X'M^{-1}X
\]

where \(h_p(q) = \int_0^\infty s^{-p} \exp\left(-\frac{q}{2s^2}\right) f_S(s) \, ds \) and \(\Sigma = ME(S^2) \).
Table 3: Regressions of ecv on Sample Sizes.

<table>
<thead>
<tr>
<th>ROW</th>
<th>p</th>
<th>eta</th>
<th>ecv</th>
<th>C.V.</th>
<th>sigma</th>
<th>IoF</th>
<th>MVN GOF Test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.90</td>
<td>7.790</td>
<td>7.78</td>
<td>0.027</td>
<td>0.99</td>
<td>Mardia Skew.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.95</td>
<td>9.670</td>
<td>9.49</td>
<td>0.044</td>
<td>0.98</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.99</td>
<td>13.770</td>
<td>13.28</td>
<td>0.065</td>
<td>0.98</td>
<td>"</td>
</tr>
</tbody>
</table>
| 4 | 2 | 0.90| 4.580| 4.61 | 0.014 | 0.98| Cox and Small
| 5 | 2 | 0.95| 5.990| 5.99 | 0.032 | 0.94| " |
| 6 | 2 | 0.99| 9.100| 9.21 | 0.078 | 0.94| " |
| 7 | 2 | 0.90| 0.989| * | 5.500& | 0.99| Malkovich-Afifi|
| 8 | 2 | 0.95| 0.989| * | 5.800& | 0.99| " |
| 9 | 2 | 0.99| 0.989| * | 7.500& | 0.99| " |
| 10 | 2 | 0.90| 1.630| 1.65 | 0.012 | 0.99| Mardia Kurt.(LB)|
| 11 | 2 | 0.95| 2.080| 1.95 | 0.016 | 0.99| " |
| 12 | 2 | 0.99| 2.900| 2.58 | 0.036 | 0.92| " |
| 13 | 2 | 0.90| -1.550| -1.65| 0.011 | 0.96| " |
| 14 | 2 | 0.95| -1.770| -1.95| 0.018 | 0.95| " |
| 15 | 2 | 0.99| -2.180| -2.58| 0.032 | 0.93| " |
| 16 | 2 | 0.90| 1.060| * | 5.200& | 0.14@| Hawkins |
| 17 | 2 | 0.95| 1.320| * | 7.700& | 0.04@| " |
| 18 | 2 | 0.99| 1.940| * | 1.500& | 0.08@| " |
| 19 | 2 | 0.90| 4.630| 4.61 | 0.037 | 0.30@| Koziol Angles |
| 20 | 2 | 0.95| 5.990| 5.99 | 0.060 | 0.11@| " |
| 21 | 2 | 0.99| 9.110| 9.21 | 0.157 | 0.04@| " |

* Empirical tests; no asymptotic distribution available.

@ Critical Value was independent of sample size.

& Exponential notation; four decimal places (i.e 5.5*10^-4).
Table 4: 95% Nonparametric Confidence Intervals.

<table>
<thead>
<tr>
<th>ROW</th>
<th>p</th>
<th>rho</th>
<th>eta</th>
<th>CV</th>
<th>LB</th>
<th>UB</th>
<th>MVN GOF Test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
<td>0.95</td>
<td>9.49</td>
<td>9.17</td>
<td>9.660</td>
<td>Mardia's Skew.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.90</td>
<td>1.65</td>
<td>1.52</td>
<td>1.610</td>
<td>Royston</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.5</td>
<td>0.95</td>
<td>5.99</td>
<td>6.11</td>
<td>6.533</td>
<td>Cox and Small</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>0.95</td>
<td>5.99</td>
<td>5.94</td>
<td>6.290</td>
<td>Koziol Angles</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.5</td>
<td>0.95</td>
<td>5.99</td>
<td>5.85</td>
<td>6.110</td>
<td>Mardia's Skew.</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.9</td>
<td>0.95</td>
<td>9.49</td>
<td>9.11</td>
<td>9.590</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0.9</td>
<td>0.90</td>
<td>1.65</td>
<td>1.48</td>
<td>1.570</td>
<td>Kurt.</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.9</td>
<td>0.95</td>
<td>4.61</td>
<td>4.78</td>
<td>5.070</td>
<td>Royston</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0.9</td>
<td>0.95</td>
<td>5.99</td>
<td>5.85</td>
<td>6.230</td>
<td>Cox and Small</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0.9</td>
<td>0.95</td>
<td>5.99</td>
<td>5.86</td>
<td>6.220</td>
<td>Koziol Angles</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>0.5</td>
<td>0.95</td>
<td>49.80</td>
<td>48.32</td>
<td>49.710</td>
<td>Mardia's Skew.</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>0.5</td>
<td>0.90</td>
<td>1.65</td>
<td>1.23</td>
<td>1.340</td>
<td>"</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>0.5</td>
<td>0.95</td>
<td>11.07</td>
<td>10.83</td>
<td>11.410</td>
<td>Royston</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>0.5</td>
<td>0.95</td>
<td>11.07</td>
<td>20.05</td>
<td>26.990</td>
<td>Koziol Angles</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>0.9</td>
<td>0.95</td>
<td>49.80</td>
<td>48.43</td>
<td>49.760</td>
<td>Mardia's Skew.</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0.9</td>
<td>0.90</td>
<td>1.65</td>
<td>1.27</td>
<td>1.410</td>
<td>"</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>0.9</td>
<td>0.95</td>
<td>5.33</td>
<td>8.24</td>
<td>8.800</td>
<td>Royston</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>0.9</td>
<td>0.95</td>
<td>11.07</td>
<td>18.97</td>
<td>22.920</td>
<td>Koziol Angles</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>0.5</td>
<td>0.99</td>
<td>57.34</td>
<td>56.41</td>
<td>58.920</td>
<td>Mardia's Skew.</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>0.5</td>
<td>0.98</td>
<td>2.05</td>
<td>2.02</td>
<td>2.300</td>
<td>"</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>0.5</td>
<td>0.95</td>
<td>145.98</td>
<td>143.32</td>
<td>145.610</td>
<td>" Skew.</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>0.5</td>
<td>0.90</td>
<td>1.65</td>
<td>1.08</td>
<td>1.190</td>
<td>" Kurt.</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>0.5</td>
<td>0.95</td>
<td>15.51</td>
<td>13.53</td>
<td>14.480</td>
<td>Royston</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>0.5</td>
<td>0.95</td>
<td>15.51</td>
<td>16.25</td>
<td>17.090</td>
<td>Koziol Angles</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>0.9</td>
<td>0.95</td>
<td>145.98</td>
<td>142.14</td>
<td>144.750</td>
<td>Mardia's Skew.</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>0.9</td>
<td>0.90</td>
<td>1.65</td>
<td>1.06</td>
<td>1.200</td>
<td>" Kurt.</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>0.9</td>
<td>0.95</td>
<td>5.55</td>
<td>9.12</td>
<td>9.660</td>
<td>Royston</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>0.9</td>
<td>0.95</td>
<td>15.51</td>
<td>18.25</td>
<td>19.530</td>
<td>Koziol Angles</td>
</tr>
</tbody>
</table>

* Rho is the p-variate correlation coefficient.

* ecv's LB (confidence interval lower bounds) and UB (upper bounds) were empirically obtained with 10,000 replications for p=2 and with 5,000 replications for p>2.

* CV is the asymptotic critical value, for the corresponding percentile, (eta), of 90, 95, 98 or 99 percent for the test in question.
IV. FINAL STAGE

* After the Final Results Are IN.
* Dependent on the M.C. Objectives
* Use the Asymptotic and/or Special Cases Found
* Example w/Asymptotic Values: Regression on size
* Example w/Asymptotic Values: Confidence Intervals
 * Example w/Special Case: Laplace Distribution

V. CONCLUSIONS

* Validation: Time Consuming and Complex
 * All Results Depend on this Activity
 * Implement as a QC. Research Tool
 * Use Generation Procedures
 * Use Data From Previous Studies
 * Use Asymptotic/Special Cases

* APPLIED STATISTICS GRADUATE COURSE

Refs

