MGS411 Group Homework:

Generating an Optimal Car Design:

An automobile manufacturer has conducted a customer study for designing a new vehicle. Three issues were found to be most influential in determining which vehicle is purchased: fuel types, transmission types, and model type. Listed below is the part-worth for each level for each characteristic, as perceived by 7 potential vehicle buyer groups. Part- worth should be 50 or more for each customer group, in order to obtain the group purchasing preferences.

	Fuel Type			Transmission		Model	
Category	Gasoline	Diesel	Hybrid	Hand	Auto	Sedan	SUV
Taxi Drivers	5	26	20	18	11	17	10
Soccer Moms	18	11	5	12	16	15	26
Office Employ	4	16	22	7	13	11	19
Workers	12	8	4	18	9	22	14
Retirees	19	9	3	4	14	30	19
Younger	6	15	21	8	17	20	11
Upper Income	9	6	3	13	5	16	28

Use BIP to help select a winning vehicle (i.e. one that maximizes sales of the vehicle).

Include in the Objective Function the number of members represented by each category (i.e. you can assume there are 150 Taxi Drivers, 200 Soccer Moms, etc.). These may be used as coefficients of the BIP variables. You can also use percentages. Notice that an individual can belong to more than one category (e.g. an upper income and a retiree).

If you want to change the labels of the categories, this is fine. You can also exchange values within one group of columns to make the category more realistic (e.g. for the category of Upper Income you can use6, 3, 9 in lieu of 9, 6, 3, etc.)

Set up the equations for this BIP, following the examples in the PPT and pages 337+ and solve it using the software of your choice. Prepare a short report with your recommendations. BTW, all these ratings are fictitious. The actual application is not.

Results:

Group 4 Results

Optimal Design

Fuel Type Transmission Model Gasoline Diesel Hybrid Hand Auto Sedan SUV <u># of</u> Category y11 y21 y31 y12 y22 y13 y23 <u>members</u> Тахі 100 5 Drivers Χ1 26 20 18 11 17 10 Soccer Moms X2 18 5 15 26 225 11 12 16 Office 4 16 Employ Х3 125 22 7 13 11 19 Workers Χ4 150 12 8 18 9 22 4 14 Retirees 3 Χ5 200 19 9 4 14 30 19 Younger X6 175 6 15 8 17 21 20 11 Upper Income Χ7 9 6 3 13 5 16 28 250 Tot 1225

Let yij= 1 if level I is chosen for attribute j, 0 otherwise Let Xk= 1 if customer group k favors the design, 0 otherwise

Objective Function: Value			mer Support X2 + 125X3		200X5 + 17	'5X6 + 250)	X7			
X1	X2	Х3	X4	X5	X6	X7	y11	y21	y31	y12
1	0	0	0	1	1	0	0	1	0	0
S.T. Constraints:	18y11 4y11 + 12y11 50X4 19y11 50X5	+ 11y21 + + 16y21 + 2 + 8y21 + 4 + 9y21 + 3	20y31 + 18y1 5y31 + 12y1 2y31 + 7y12 2y31 + 18y12 2y31 + 4y12	2 + 16y22 2 + 13y22 + 2 + 9y22 + 2 + 14y22 + 3	+ 15y13 + 11y13 + 1 22y13 + 14 30y13 + 19	26y23 - 50 9y23 - 50X y23 - y23 -	X2 3	>= >= >= >= >= >=	1 1 1 1 1	
	9y11 + 6y21 + 3y31 + 13y12 + 5y22 + 16y13 + 28y23 - 50X7 >= 1									
	y11 + y31 y12 + y13 +	y22						= = =	1 1 1	
	,10 .	,							-	

11/15/2012

X1, X2, X3, X4, X5, X6, X7	=	0,1
y11, y21, y31, y12, y22, y13, y23	=	0,1
/ >= 1		

4	>=	1
42	>=	1
40	>=	1
39	>=	1
3	>=	1
2	>=	1
27	>=	1
1	=	1
1	=	1
1	=	1

The optimal solution has X1= X5= X6= 1. This indicates that customer categories 1, 5, and 6 will support this design.

 Total Customers:
 475
 Percent:
 38.78

The optimal solution has y21= y22= y13= 1. This indicates that such vehicle design: diesel, automatic transmission and sedan, will maximize customer group purchases.