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Summary and Conclusions 
 

This paper presents alternative methods to forecast or 

predict failure trends when the data violates the assumptions 

associated with least squares linear regression.  Simulations 

based on actual case studies validated that least squares linear 

regression may provide a biased model in the presence of 

messy data.  Non-parametric regression methods provide 

robust forecasting models less sensitive to non-constant 

variability, outliers, and small data sets.   

 

1. Introduction 
 

In naval aviation, inventory management of systems, 

subsystems and components is an ever-challenging task.  Due 

to the increased operational requirements, we are asking for 

better performance from our aircraft and the related 

components.  In addition, aircraft and related systems must 

perform beyond their planned life cycles.  Ensuring a 

sufficient supply of systems and components requires 

inventory managers, engineers, and logisticians to maintain an 

awareness of the system and component reliability.   

Due to these demanding challenges the Naval Air 

Systems Command (NAVAIR) in partnership with the Naval 

Inventory Control Point (NAVICP) is continually seeking 

ways to improve the reliability of supported systems.  These 

improvements are designed to increase operational readiness 

and reduce Total Ownership Cost (TOC).  One such program 

is the Integrated In-Service Reliability Program (IISRP).  

Under this program the Naval Aviation Depots (NADEPs) 

analyze all relevant areas of engineering design, supply 

support, maintenance, repair and modification processes in an 

effort to identify potential reliability improvement 

opportunities. The NADEP engineers review the reliability 

metrics of selected Aviation Depot Level Repairable 

(AVDLR) components to identify poor performers.  Beyond 

Capability of Maintenance Rate (BCMs/1000FH),  is a 

measure that embodies the generally accepted premise that 

aircraft component failure rates are related to flight hours.   

A change that is designed to improve a component‘s reliability 

is initiated and the resulting BCM rate is noted.  This rate is 

then compared to the predicted BCM rate that did not consider 

the change.  The difference between these two values is 

multiplied by the actual number of flight hours flown in the 

quarter, the components unit price, AVDLR, yielding the cost 

avoidance and, therefore, the value of the change in eq (1).   

 
CA = (BCM/1000FHProj – BCM/1000FHAct)(FHAct)(AVDLRAct) (1) 

Where, 

CA = Cost Avoidance in dollars 

 

The least squares linear regression model became the 

forecasting method of choice for the IISRP.  However, 

evaluation of the forecast‘s validity revealed that this method 

could not apply to many of the data sets.  The underlying data 

violated the least square regression assumptions of normality 

and homoskedasticity of the residuals.   It was soon realized 

that the problem was in the difficulty of detecting failure 

trends in the face of very messy data.  Messy data is defined 

as, data that does not fulfill the basic assumptions of 

parametric linear regression.  

One proposed solution is the use of the non-parametric 

regression model.  Non-parametric methods are well 

documented in statistical and operation research literature.  It 

is a more robust method that has a lower sensitivity to data 

variance. In the following sections we discuss the effects of 

poorly behaved data sets on least squares linear regression 

followed by a comparison to non-parametric pair-wise 

regression.  A real-world example is used to compare the 

results and show the difficulty associated with least squares 

regression in the presence of messy data. 

 

 

2. Least Squares Approach In Predicting Future 

Failure Rates 
 

The IISRP utilized the least squares linear regression model to 

predict future BCM Rates (BCMs/1000FH).  Both the number 

of BCMs in a yearly quarter and associated operating hours 

are collected from various data sources.  From this data, a 

quarterly BCM rate is calculated and the twenty most recent 

quarters of data is used in developing a linear regression line 

used to predict BCM rates.  Although the initial analysis 

suggests using the least squares regression model, further 

investigations indicated that at least one of the required 

conditions of the random error variable  was not satisfied.  

The conditions for random error variable  are as follows: 

 

1. The probability distribution of  is normal with the mean 

of the distribution being zero; that is, 0)( E . 

2. The standard deviation of   is  , which is constant no 

matter what the value of x is.  In this study, time is the 

independent variable. 

3. The errors are independent. 
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Table 1. Simulation Results 

  

Least Squares 

Regression Non-Parametric Regression 

Simulation Set Slope R
2
 p-value Slope 

Confidence 

Level 

Slope 

Lower 

Limit 

Slope 

Upper 

Limit 

1 0.232 33.9% 0.007 0.234 99% 0.073 0.397 

2 0.203 17.5% 0.066 0.203 99% 0.014 0.397 

3 0.175 27.4% 0.018 0.124 95% 0.020 0.256 

4 0.116 8.4% 0.215 0.116 95% 0.034 0.232 

5 0.166 21.9% 0.037 0.167 95% 0.045 0.320 

6 0.231 38.2% 0.004 0.191 99% 0.069 0.395 

7 0.302 27.2% 0.018 0.229 99% 0.026 0.619 

8 0.101 16.3% 0.077 0.119 95% 0.007 0.251 

9 0.230 19.0% 0.055 0.161 95% 0.024 0.326 

10 0.318 20.4% 0.046 0.169 99% 0.037 0.397 

Note: n = 20 for all simulated data sets. 

Data was simulated to demonstrate the violations.  A set 

of data with increasingly larger exponential variance (related 

to the quarter) was created using the following formula. 

 

simt0.1  1  Response   (2) 

Where, 

Response = the simulated datum 

t= calendar quarters, 1, 2, …20 

sim = exponential increasing error, simulated 

 

Selection of eq (2) was based on similarity to data sets 

observed by analysts supporting navy aviation reliability 

projects. 

Refer to Table 1 for the results from the ten simulated 

data sets.  For example, simulation set 1 least squares 

regression analysis indicates a valid regression model based 

on a p-value < 0.05, p-value = 0.007.  However, upon 

examining the required assumptions it becomes apparent that 

the models are not adequate for forecasting.   

Figures 1 and 2 show the results from simulation set 1.  

From the graphical analysis and by simulation model design: 

1.  The residuals versus the fitted plot show a ‗funnel-like‘ 

form, this is a characteristic of variance that is related to the 

mean.  This violates assumption number three indicating bias 

in the model that will result in fatal forecasting errors. 

b. The normality plot of the residuals demonstrates a right 

skewed distribution that violates assumption number one.  

This violation has fatal impact as the resulting model is 

biased, and cannot be used for hypothesis testing. 
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Figure 1. Simulation Set 1 Residual Plot 
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Figure 2.  Simulation Set 1 Probability Plot 
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3. Non-Parametric Regression 
 

Because parametric regression is dependent on the 

behavior and volume of data, inexperienced analyst can be 

challenged to determine if a model is unbiased and valid.  

Non-parametric regression provides a means to model a 

simple linear equation without consideration for the issues 

surrounding residual variability and normality, and for issues 

concerning small sample sizes.  Specifically in this paper we 

refer to pair-wise slope regression that is simple to perform 

and confidence limits are easily determined using lookup 

tables.  More importantly the method is robust and does not 

require additional analysis to validate once the analyst 

determines the slope, intercept and confidence limits. 

Using the same simulated data sets from this paper‘s least 

squares regression section, we applied the pair-wise slope 

non-parametric regression.  Refer to Table 1 for results.  In 

this procedure for n data points we calculate slope between 

each (xi, yi) data pair and the (xi+m, yi+m) data pair, where m = 

(i+1) to n.  The median value of these slopes represents the 

slope value in the simple regression model.  In a manner 

similar to least squares regression where the model will pass 

through  the point  yx, , the non-parametric model will pass 

through the point  medianmedian yx , .  Thus, the intercept is 

determined by eq (3):  

 

medianmedian  x Slope - y Intercept   (3)   

 

Once we developed the model, we test the slope.  Confidence 

bounds derived from Kendall‘s Tau for n data samples and 

2
  confidence level.  The test is based on the hypothesis that 

the slope is equal to zero, 0  Slope :H and 0  Slope  :
10

H .  

If a zero value is between the slope upper confidence bound 

and the slope lower confidence bounds then we cannot reject 

the hypothesis.  However if the slope is between the upper and 

lower confidence bounds and zero is not between those 

confidence bounds the slope is considered valid. Table 2 

summarizes the test conditions. 

 

In practical use the non-parametric regression has greatest 

value in the confidence bounds for forecasting a range of 

future values.  Point estimates have lesser value since there is 

no confidence bound around the point  medianmedian yx , , all 

slopes (upper and lower confidence bound slopes, and the 

median slope) pass through this point.   

 

Applying non-parametric methods to the simulated data 

set we arrive at a different result than the least square 

regression methods.  The data set showed a higher degree of 

variability, residuals that varied with the independent variable, 

and some non-linearity.  It is appropriate to question the 

validity of the model under these conditions and residual 

analysis confirms the uncertainty. 

For simulation set 1, Figure 3 shows the resulting linear 

regression line with confidence bounds for the forecast region 

only.  We display the confidence bounds in this manner 

because they only have value under these circumstances for 

forecasting.  The IISRP team does not normally perform point 

estimating in the sample data range.  However, using the non-

parametric methods described above a point estimate is not 

appropriate for extrapolation beyond the data set.  A more 

appropriate method is to use the upper and lower confidence 

bounds to determine a range of possible values at a specific x-

value. 
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Figure 3.  Simulation Set 1 Comparison of Least Squares 

Regression to Non-Parametric Regression, 20 Simulated 

Datum with 5 Forecast Datum 

Note in Figure 3 that the confidence interval for the linear 

regression follows the usual hyperbolic curve indicating an 

increasing confidence interval as the forecast moves further 

from x .  Likewise the non-parametric regression confidence 

interval will increase as the forecast moves further from 

xmedian.   

The linear regression interval is much wider than the non-

parametric interval.  As previously stated the standard error of 

forecast is very dependent on the number of samples and the 

variability of the data.  In the non-parametric case, the interval 

is mostly influenced by the sample size.  The estimated slope 

is the median slope giving emphasis to the local effects and 

dampening the global effects of data variability.  Therefore the 

non-parametric slopes are not as effected by the outliers as the 

larger slopes appear at the end of the ranked local slopes.  

Depending on the confidence interval selected, these large 

slope deviations are unlikely to appear.  However if the 

Table 2. Non-Parametric Slope Tests 

Upper 

Bound Sign 

Lower Bound 

Sign 

Action 

Negative Negative Reject H0; Accept slope 

Positive Negative Fail to Reject H0; Reject 

Slope, when slope is + 

Negative Positive Fail to Reject H0; Reject 

Slope, when slope is - 

Positive Positive Reject H0; Accept Slope 
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number of samples is very small then the large slope values 

are more likely to appear. 

In Figure 4, simulation set 10 show a more dramatic 

difference between the non-parametric results and the least 

squares result.  Because the distribution of residuals is right 

skewed the least squares model slope is pulled towards the 

outliers.  The least squares model is biased despite a good p-

value at 95% confidence level.  The non-parametric slope is 

much closer to the expected value of  0.10 as defined by the 

simulation model. 
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Figure 4.  Simulation Set 10 Comparison of Least Squares 

Regression to Non-Parametric Regression, 20 Simulated 

Datum with 5 Forecast Datum 

 

4. Aircraft Data Example 
 

 This example uses disguised data for a servo device on a 

Navy aircraft.  Information concerning future demand for 

servo repairs or replacements was needed.  Lacking any 

reliability data, the analyst used failures per 1000 flight hours 

(F/1000FH) from in-service maintenance databases as a 

general measure of the servo failure trends.  Figure 4 shows 

the data and a least squares regression line.  In addition the 

chart shows the confidence interval for a five-quarter forecast 

using the least squares regression model. 

Figure 5 shows an increasing rate of failures.  However, 

when we examined the residuals from the regression model 

we found that there was non-constant variability.  Figure 6 

shows the residuals spreading as the x variable, Calendar 

Quarters, increases.  However the p-value << 0.05 indicates a 

good fit of the model to the data..   

Figure 7 shows the non-parametric regression with 99% 

confidence limits.  In Figure 7 the least squares regression is 

shown in grey for comparison.  Note that despite the apparent 

good fit of the least squares regression, any forecasts using 

this model would be biased and faulty, greatly 

underestimating the failure rate.  The non-parametric model 

indicates a much higher rate of failure and a narrower 

confidence interval.  Therefore, at the 25
th

 quarter the analyst 

would estimate between 4.5 and 9.2 F/1000FH at a 99% 

confidence interval 
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Figure 5.  Servo Failures with Least Squares Regression and 

95% Confidence Limits for Forecast. 
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Figure 6. Servo Residual Plot From Least Squares Linear 

Regression. 
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Figure 7.  Servo Failures with Non-Parametric Regression and 

99% Confidence Limits 
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A second example is also an aircraft component—a 

servo-cylinder that activates the aileron.  As in the previous 

example the analyst is forecasting F/1000FH from 20 

calendar-quarters of aircraft history.  Figure 8 is the normal 

probability plot for the independent variable, F/1000FH.  This 

plot shows that the data is not normally distributed being 

skewed to the right. 
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Figure 8. Servo-Cylinder Normal Probability Plot 

The least squares regression model gives a high R2, 

0.7249, and a low p-value, 0.000002, that indicates a very 

good fit to the resulting model.  However examination of the 

residuals, as shown in Figure 9, tells us that the underlying 

assumption of constant variance is violated.   
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Figure 9.  Servo-Cylinder Residual Plot from Least Squares 

Linear Regression Model 

Figure 10 shows the results of the non-parametric 

regression compared to the least squares linear regression for 

the servo-cylinder F/1000FH data.  The non-parametric slope 

is higher than the least squares regression however the 

intercept, which is based on the median of the F/100FH will 

shift the non-parametric model below the least squares model.  

The non-parametric model accounts for the skewed, non-

normal distribution of the y-data.   
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Figure 10. Servo-Cylinder Comparison of Least Squares 

Regression to Non-Parametric Regression, with Five Forecast 

Datum 

It is important to note that the interpretation of confidence 

limits for non-parametric regression is different than for least 

squares regression.  The non-parametric regression confidence 

limits mean that there is a 90% confidence, for example, that 

repeated measures of the data will result in a slope between 

the confidence limits.  As compared to the least squares 

interpretation that the true forecast value lies between the 

confidence limits.  The analyst is cautioned to be aware of the 

difference. 

 

5. Conclusion 
 

The non-parametric and the least squares regression 

methods provide analysts a method to predict trends based on 

historical data.  The least squares model is greatly affected by 

the variability of the data.  The least squares model minimizes 

the distance between the observed values and the predicted 

values, error.  This characteristic also constrains the model to 

underlying assumptions that, if violated, can result in model 

bias and error.  Data with outliers and high variability will 

have a large impact on the model. The non-parametric 

regression is less sensitive to variability in the data.  Outliers 

have less influence on the model.   It is the weighting of the 

pair-wise slopes that makes the non-parametric method less 

sensitive to slight non-linearity in the data, and therefore more 

robust. 

  Examination of over 100 data sets used by the Navy 

IISRP to forecast reliability trends, showed that the data 

suffers from a number of problematic issues:  1) high degrees 

of variability, 2) outlying data, and 3) small data sets.  The 

IISRP is also challenged by the need to present long-term 

forecasts (five to ten years), and the need to present trends in 

the simplest possible manner.  Time to conduct detailed 

analysis is at a premium and is reserved for a few high profile 

cases.  Given these circumstances and challenges, the non-

parametric methods offer a reasonable, defensible, and robust 

means to forecast aircraft component reliability trends.  
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5. Future Work 

 

The non-parametric methods provides analysts with a 

valid and robust method to model data trends without 

consideration for data variance and distribution.  However the 

least squares regression is also a valid and reliable method for 

modeling trends within constraining assumptions.  Future 

work on forecasting using the least squares methods is focused 

on modification of the slope when the regression p-value is 

greater than 0.05 but less than 0.10 for 95% confidence level.  

The standard error of the slope provides the basis for adjusting 

the model towards a zero slope when the model proves 

inefficient based on the p-value.  The hypothesis is that the 

estimate becomes more conservative.  Using simulations we 

will compare parametric and non-parametric methods, and we 

will report findings at the Reliability and Maintainability 

Symposium. 
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