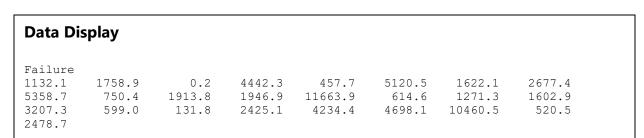
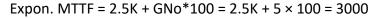
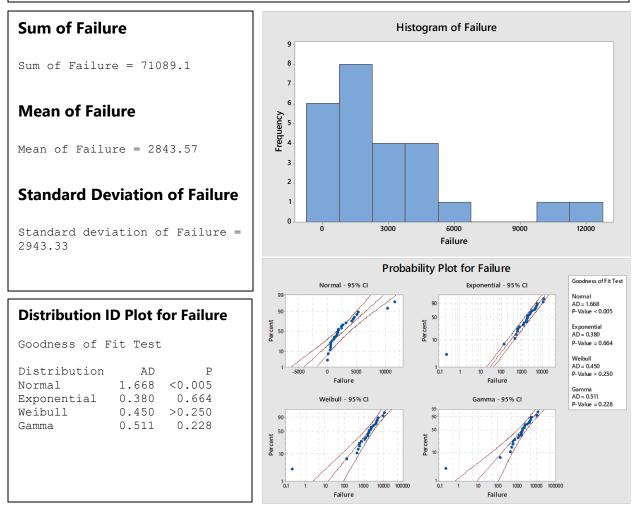
<u>MFE634</u>

Reliability Analysis

Group 5


Xiangyu Luo Ameya Palekar Krutin Parashuram Patil Chao Sa


Contents


1.	Generate Data and Verify	1
2.	Calculate and Analyze the Data	2
	2.1 Complete Sample	2
	2.1.1 95% Confidence Interval for the Mean Time to Failure (MTTF)	2
	2.1.2 95% Confidence Interval for the Failure Rate (FR)	2
	2.1.3 90% the Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)	2
	2.2. With Truncated at the 7th Failure.	3
	2.2.1 95% Confidence Interval for the Mean Time to Failure (MTTF)	3
	2.2.2 95% Confidence Interval for the Failure Rate (FR)	4
	2.2.3 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)	4
	2.3. With Truncated at time T= 0.25*MTTF.	5
	2.3.1 95% Confidence Interval for the Mean Time to Failure (MTTF)	5
	2.3.2 95% Confidence Interval for the Failure Rate (FR)	5
	2.3.3 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)	5
3.	Summary	6
4.	Implement	7
	4.1 A Fault Tree Analysis for Flood Barrier	7
	4.2 A Failure Mode and Effects Analysis for Flood Barrier	8
A	ppendix A:	9

1. Generate Data and Verify

Generate 25 exponentially distributed times to failure, with MTTF as defined by group number.

Through the highest P-value and lowest AD value, we pick the Exponential distribution as the best fit for our data.

2. Calculate and Analyze the Data

2.1 Complete Sample.

2.1.1 95% Confidence Interval for the Mean Time to Failure (MTTF)

In this case, we have 25 samples and the confidence interval is 95%, and by adding all the test times of failures, we get total time is 71089.

$$n = 25$$
$$\alpha = 0.05$$
$$T = \sum_{i=1}^{25} T_i = 71089$$

With these inputs, we can use the Chi-Squared distribution table to calculate the confidence interval in the experiment with the degree of freedom = 2n:

$$\chi^{2}_{2n,1-\frac{\alpha}{2}} = \chi^{2}_{50,0.975} = 71.420$$
$$\chi^{2}_{2n,\frac{\alpha}{2}} = \chi^{2}_{50,0.025} = 32.357$$

Hence, the corresponding for the mean life is:

$$\left(\frac{2T}{\chi^2_{2n,1-\frac{\alpha}{2}}},\frac{2T}{\chi^2_{2n,\frac{\alpha}{2}}}\right) = \left(\frac{142178}{71.420},\frac{142178}{32.357}\right) = (1990.729,4394.000)$$

2.1.2 95% Confidence Interval for the Failure Rate (FR)

$$Failure Rate = \frac{1}{Mean \, Life}$$
$$= \left(\frac{1}{4394.000}, \frac{1}{1990.729}\right) = (0.0002276, 0.0005023)$$

2.1.3 90% the Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)

Often, we just need a lower or upper bound on reliability. Assume we are interested in a 90% reliability lower bound for this case and we know mission time = 3000. We re-

estimate the failure rate bound, for the error $\alpha = 0.1$, for only one side. With Degree of Freedom = 2n, the new Chi-square value:

$$\chi^2_{2n,1-\alpha} = \chi^2_{50,0.9} = 63.167$$

Hence, the corresponding for the mean life and failure rate are:

$$Mean = \frac{2T}{\chi^2_{2n,1-\alpha}} = \frac{142178}{63.167} = 2250.827$$
$$FR = \frac{1}{Mean \, Life} = \frac{1}{2250.827} = 0.0004443$$

Which, in turn, allow us to calculate 90% Lower Bound for the reliability "R" of the device.

$$R - lower(T) = P\{x \ge T\} = EXP\{-\frac{T}{\theta}\} = EXP\{-pT\}$$
$$= EXP\{-3000 \times 0.0004443\} = 0.264$$

2.2. With Truncated at the 7th Failure.

Data Display Failure (Sort smallest to largest) The 7 th								
Failure	(Sort smal	lest to la	rgest)					
0.2	131.8	457.7	520.5	599.0	614.6	<mark>750.4</mark>	1132.1	
1271.3	1602.9	1622.1	1758.9	1913.8	1946.9	2425.1	2478.7	
2677.4	3207.3	4234.4	4442.3	4698.1	5120.5	5358.7	10460.5	
11663.9								

2.2.1 95% Confidence Interval for the Mean Time to Failure (MTTF)

In this case, the experiment is truncated at the 7th failure = 750.4. We have 7 failures with known failure time. The confidence interval is 95%. By adding all the known test times of failures and assumed failure time for the last 18 samples, we get total time is 16582.

k = 7

$$\alpha = 0.05$$

$$T = \sum_{i=1}^{7} T_i + (25 - 7) \times 750.4 = 16582$$

With these inputs, we can use the Chi-Squared distribution table to calculate the confidence interval in the experiment with the degree of freedom = 2k:

$$\chi^{2}_{2k,1-\frac{\alpha}{2}} = \chi^{2}_{14,0.975} = 26.119$$
$$\chi^{2}_{2k,\frac{\alpha}{2}} = \chi^{2}_{14,0.025} = 5.629$$

Hence, the corresponding for the mean life is:

$$\left(\frac{2T}{\chi^2_{2k,1-\frac{\alpha}{2}}},\frac{2T}{\chi^2_{2k,\frac{\alpha}{2}}}\right) = \left(\frac{33164}{26.119},\frac{33164}{5.629}\right) = (1269.741,5891.970)$$

2.2.2 95% Confidence Interval for the Failure Rate (FR)

$$Failure Rate = \frac{1}{Mean \, Life}$$

$$= \left(\frac{1}{5891.970}, \frac{1}{1269.741}\right) = (0.0001697, 0.0007876)$$

2.2.3 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)

In a 90% reliability lower bound with mission time = 3000. For the error α = 0.1, for only one side, with Degree of Freedom = 2k, the new Chi-square value:

$$\chi^2_{2k,1-\alpha} = \chi^2_{14,0.9} = 21.064$$

Hence, the corresponding for the mean life and failure rate are:

$$Mean = \frac{2T}{\chi^2_{2k,1-\alpha}} = \frac{33164}{21.064} = 1574.443$$
$$FR = \frac{1}{Mean \, Life} = \frac{1}{1574.443} = 0.0006351$$

Which, in turn, allow us to calculate 90% Lower Bound for the reliability "R" of the device.

$$R - lower(T) = P\{x \ge T\} = EXP\{-\frac{T}{\theta}\} = EXP\{-pT\}$$
$$= EXP\{-750.4 \times 0.0006351\} = 0.621$$

2.3. With Truncated at time T= 0.25*MTTF.

Data Display Time=750								
0.2 1271.3 2677.4 11663.9	131.8 1602.9 3207.3	457.7 1622.1 4234.4	520.5 1758.9 4442.3	599.0 1913.8 4698.1	614.6 1946.9 5120.5	750.4 2425.1 5358.7	1132.1 2478.7 10460.5	

2.3.1 95% Confidence Interval for the Mean Time to Failure (MTTF)

In this case, the experiment runs in a specific time = 0.25*3000 = 750, so we have 6 failures with known failure time. The confidence interval is 95%. We get total time is T = 18750.

$$k = 6$$

 $\alpha = 0.05$
 $= 750 \times 25 = 18750$

With these inputs, we can use the Chi-Squared distribution table to calculate the confidence interval in the experiment with the degree of freedom = 2n+2:

Т

$$\chi^{2}_{2k+2,1-\frac{\alpha}{2}} = \chi^{2}_{14,0.975} = 26.119$$
$$\chi^{2}_{2k+2,\frac{\alpha}{2}} = \chi^{2}_{14,0.025} = 5.629$$

Hence, the corresponding for the mean life is:

$$\left(\frac{2T}{\chi^2_{2n+2,1-\frac{\alpha}{2}}},\frac{2T}{\chi^2_{2n+2,\frac{\alpha}{2}}}\right) = \left(\frac{37500}{26.119},\frac{37500}{5.629}\right) = (1435.739,6662.253)$$

2.3.2 95% Confidence Interval for the Failure Rate (FR)

$$Failure Rate = \frac{1}{Mean \, Life}$$

$$= \left(\frac{1}{6662.253}, \frac{1}{1435.739}\right) = (0.0001501, 0.0006965)$$

2.3.3 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)

In a 90% reliability lower bound with mission time = 18750. For the error α = 0.1, for only one side, with Degree of Freedom = 2k+2, the new Chi-square value:

$$\chi^2_{2k+2,1-\alpha} = \chi^2_{14,0.9} = 21.064$$

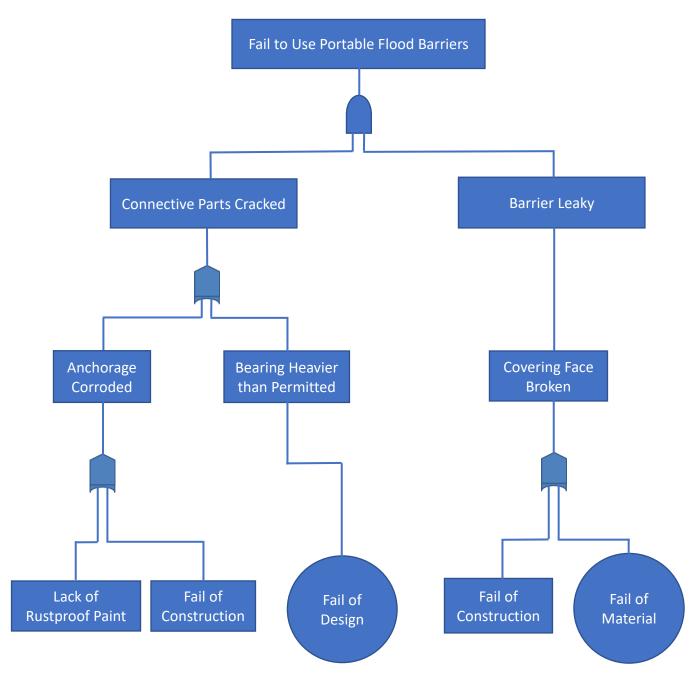
Hence, the corresponding for the mean life and failure rate are:

$$Mean = \frac{2T}{\chi^2_{2k+2,1-\alpha}} = \frac{37500}{21.064} = 1780.276$$
$$FR = \frac{1}{Mean \ Life} = \frac{1}{2021.634} = 0.0005617$$

Which, in turn, allow us to calculate 90% Lower Bound for the reliability "R" of the device.

$$R - lower(T) = P\{x \ge T\} = EXP\{-\frac{T}{\theta}\} = EXP\{-pT\}$$
$$= EXP\{-750 \times 0.0005617\} = 0.656$$

3. Summary


Collect the three sets of results in a table and compare.

	Complete	Truncated at 7 th	Truncated at 0.25 MTTF
95% CI for the MTTF	(1990.729, 4394)	(1269.741, 5891.97)	(1435.739,6662.253)
95% CI for the FR	(0.0002276 <i>,</i> 0.0005023)	(0.0001697 <i>,</i> 0.0007876)	(0.0001501,0.0006965)
90% Lower Confidence Bounds for the MTTF & FR	MTTF: 2250.827 FR: 0.0004443	MTTF: 1574.443 FR: 0.0006351	MTTF: 1780.276 FR: 0.0005617

As we can see, the complete data has the most accurate 95% confidence interval and failure rate. The failure and time censored (truncated) data, which are both incomplete, have larger confidence interval and larger failure rate.

4. Implement

4.1 A Fault Tree Analysis for Flood Barrier

4.2 A Failure Mode and Effects Analysis for Flood Barrier

Part / Design Parameter	Potential Failure Mode	Potential Failure Effects	SEV	Potential Causes	осс	Current Controls	DET	RPN	Actions Recommended
	Connective part crack	Barrier destroy	10	Part Corroded	2	Protective paint	1	20	Redesign the structure of connective part
Portable Flood Barrier	Barriers leaky	Barrier can't be used	8	Damaged during delivery	5	Strength the package	10	400	Add protections during delivery
FIOOD Barrier	Missing part	Barrier can't be used	6	Fail to check	6	Offer backup parts	5	180	Set up double-check mechanism
	Do not reach 1.5m height	Barrier can't prevent flood	5	Installed improperly	2	Offer detailed Instruction	3	30	Training the QA department
After-sale service	Service hotline is always busy	Customers disappointed	3	Hotlines are few	10	Set more hotlines	9	270	Invest more money on After-sale apartment

Se	verity (SEV)	Risk Prio	rity Numbe	r (RPN)
If SEV >=	8	If RPN >=		
Otherwise		Otherwise		
If SEV <=	3	If RPN <=	100	

Appendix A:

<u>MFE634</u>

Group Take Home Final Exam Q-2: S2018

Group No:_____ Date: _____

<u>Reliability Analysis Question</u>: use the following Group Exp. MTTF:

Group	Expon. MTTF	Group	Expon. MTTF	
One	2,500 hours	All others	2.5K+GNo*100	

Generate 25 exponentially distributed times to failure, with MTTF as defined above. Using as a Model the START sheets on Exponential Reliability and Censored Data Analyze such above defined **complete sample**, in the following manner:

a) Obtain a 95% Confidence Interval for the Mean Time to Failure (MTTF)

b) Obtain a 95% Confidence Interval for the Failure Rate (FR)

c) Obtain 90% the Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)

Now, assume your sample has been "**Truncated**" at the $\underline{7^{\text{th}} \text{ failure}}$. This means the test was <u>suspended</u> at that <u>Failure Time</u>. Thence, you will never know when the remaining units will fail. With such **Failure Censored Data**:

- a) Obtain a 95% Confidence Interval for the Mean Time to Failure (MTTF)
- b) Obtain a 95% Confidence Interval for the Failure Rate (FR)
- c) Obtain 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)

Finally, assume your sample has been "**Truncated**" <u>at time</u> $\underline{T=0.25*MTTF}$. This means the test was <u>suspended</u> after that <u>Truncation Time</u>. Thence, you will never know when units still working after such time T, will fail. With such **Time Censored Data**:

a) Obtain a 95% Confidence Interval for the Mean Time to Failure (MTTF)

b) Obtain a 95% Confidence Interval for the Failure Rate (FR)

c) Obtain 90% Confidence BOUNDS for MTTF and FR (Hint: Develop 80% CI)

Compare the three sets of results in a table. Take Conclusions.

Now, implement (1) a Fault Tree Analysis (FTA) and (2) a Failure Mode and Effects Analysis (FMEA) to an example of your Group Project Topic problem. Make it specific to your Topic problem issues. Use the Blueprints material in BB as a guide.

This Take Home Part of the Final Exam is worth 10 Points (Companion, also 10 points).

Each Group will deliver a printout/file of this Take Home at Entrance of the Final Exam.