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Abstract

Generation of multivariate Non Gaussiansrandony-»+-

variates is of importance in radar clutier studies. For,
when the analytical evaluation of a radar clutter distri-
bution is difficull or impossible, it is through computer
simulation that such evaluation is attacked and solved.

A new statistical method, based on SIRP’s (Spherzcally
Invariant Random Pracesses) allows both fit testing of
a multivariate Non Gaussian process and the computer
generation of these processes. This theoretical method
decomposes the Non Gaussian process into the product
of two subprocesses. One of these processes is univari-
ate and drives the distribution of the Non Gaussian
process.
stan. In theory, the new method is correci. However
in practice the method’s resulls may not always reﬂect

ils theoretical properties with the required accuracy due |

to implementation problems. This report describes a
Monte Carlo study designed to assess ihe ¢omputer
implementation of the theoretical method. Using difs
ferent sample sizes and number of variates, we gen-,
erate, via Monte Carlo, two specific SIRP i’rocessés
one univariate and one multivariate. Goodness-of-fit

tests are performed on several variables obtained from! |

the Processes as well as on the Processes ilself. The
case where the covariance matriz of the SIRP Process
is known and the case where it is estimated from the
data are considered. Resulls and statistical tests are
discussed and compared. o
1 Introduction and Motivation's: ' -

This research is motivated by the need to'assess
the (computer) implementation of a new théoretical
model for generating (simulating) and evaluatmg Notl
Gaussian radar clutter. As with many new thed!
retical methods, the question remains as to”whethet,
in practice (1e in a digital computer, using' con—
strained amounts of data and estimated par&meters)
the method will still provide useful results.” Tt+is t6
this empirical assessment of the theoretical 'method
that we refer to as validation. ot s

Such is the situation that we have mvestlgated v1a
Monte Carlo, for the theory of SIRP, Spheritally In!
variant Random Processes. This new model ‘was det
veloped and presented by Rangaswamy, Weiner and
Ozturk (1991 and 1992). It has also been exfensively

and carefully discussed in the Rome Lab document ré-
o

The other subprocess ts multivariate Gaus:

i

i

ferred in this paper as the Kaman Report (1992). Our
work is based on this latter document. The present re-
port is a revised and enhanced version of our Summer
Research (Romeu, 1992d) and CASE Center (Romeu
1992¢) reports.

Succinctly, a multivariate (N-variate) SIRP X is
defined, via the product (X = S * Z) of two inde-
pendent random processes S,Z. The first one, S,
i1s a univariate process and drives the SIRP process
X: ie. S completely determines X. The second pro-
cess is the Multivarate (N-variate) Gaussian process
with mean zero and covariance matrix M, denoted by
Z ~ MV NN(0,M). The process Z is independent of
S and remains the same no matter what is the SIRP

;X..

Such representation of a multivariate process, via
the product of a univariate process and a well de-
fined multivariate one (referred to in Rangaswami et
al.: (1992) as the Representation Theorem) has also

. been studied in theoretical statistics. See, for example,

the work on FElliptically Conioured Distributions by

* Cambanis, Huang and Simons (1981), Johnson, Chi-

ang and Ramberg (1984) and Johnson (1987) among

others.
It is convenient to standardize the univariate pro-

cess S so E(S?) = 1. This way, the covariance matrix

of the SIRP X is now ¥ = M. Letting p = X'2~!
the quadratic form of the process X, we obtain the
¢onditional density function (pdf) of the SIRP X,
given the variable S, denoted X |S as:
l
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From here, the unconditional pdf of the SIRP X
becomes L

'{ fx(kc‘) _
wvherfe' hN(p) = / s~ ezp( )fs(s)ds
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" The guadratic form p of the process X plays a deci-

sive role in the SIRP Theory: hy(p) provides the pdf
of the new random variable p via
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From the above relations it follows that any SIRP
X is completely specified once we obtain the two key
elements: (7) the function hy(p) of the quadratic form
p (through the pdf fs(.) of the univariate process S)
and (i7) the covariance matrix ¥ of the SIRP X.

However, such theoretical representation must be
empirically assessed (validated) before proceeding fur-

ther. For, theoretical methods often havetwo-serious -~

types of implementation problems that' must be care-
fully investigated. !

One of the problems is that some theoretical meth-
ods are asymptotic in nature (i.e. the derived dis-
tribution holds for large samples only). Therefore,
when the sample sizes are not large the small-sample
statistic distributions are only approximations of the
(asymptotic) theoretical ones. In such cases, a mini-
mal sample size n* for the asymptotic values to hold,

may be found. And empirical results-for=samples--:

n < n*, may be obtained. An example of this type
of problem investigation and its corresponding adap-
tive solution is presented in Romeu and Ozturk (1993).
Here, it is shown how the two multivariate normality
Goodness-of-Fit (GOF) tests of Mardia, both of them
asymptotic, require minimal samples of size 200. And
how, for smaller sample sizes, empirical critical values
are required (and tables provided).

A second serious (computer) implementation prob-
lem of theoretical methods occurs with the usé of nu-
merical approximations and convergence 'algdrithms.
In such cases, results may be heavily deperident oii
the hardware used. In theoretical derivations) results
are often given in closed forms, using certain integrals
and derivatives that can only be approximated‘ nu:
merically on a digital computer. An example of this
other situation is presented in Romeu (1990). There;
the angles multivariate normality GOF test of Koziol,
which requires the numerical inversion of the sam-
ple covariance matrix, is studied. It turns olt that
Koziol’s test yields widely different results wheh im-
plemented on a sequential machine (versus d parallel
computer). This occurs when the multivariate distri:
butions under study have more than four highly’ cor-
related components. In both of the mentioned cases,
it was only through a Monte Carlo study ‘of the theo-
retical method that the mentioned problems were un-
covered and adaptive solutions were provided! Thus
its practical importance. poooaE b

In the present case, the closed forms of the SIRP
distributions (obtained by transformations and prod-
ucts of random variables) are not asymptotic but
mathematically convoluted. They include the'calcul
lation of Modified Bessel and Gamma functions; with
very small (shape) parameters. Even more, some of
these functions are in the denominator. Therefore the
use of numerical methods and specific hardware '‘may
have important effects in the method’s implementa-
tion. And it is necessary to investigate, through a

Monte Carlo experiment, this situation. 5. *!“
I -
18t !

2 Objectives of the Study

There are several assertions involved in the‘thdoret-
ical representation of an SIRP X, when it is d‘eﬁned

as the product of the two subprocesses S and% Z.
{ - il
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First, we want to verify that (¢) the desired pro-
cess X is accurately obtained by the product of S and
Z; that (i¢) the resulting distribution of the quadratic
form p actually depends on the distribution of the uni-
variate process S; that the (lm) marginal distributions
Fx,, i =1...N, of the multivariate process X follow
the same (univariate) family of SIRP distributions as
the multivariate X-and that (iv) the resulting covari-
ance matrix L of the multivariate process X is accu-
rately obtained through the univariate process .S and
the covariance matrix M of the process Z.

To empirically assess that the above assertions are
met in the computer implementation of the theoretical
method, and to investigate its limitations, we conduct
a Monte Carlo experiment. We first investigate for
what sample sizes and number of covariates the SIRP
process X allows us to accurately identify (¢) the uni-

-yariate-process-Sy- (1) the marginal distributions of

X, (4ii) the quadratic form p and (iv) the covariance
matrix ¥ obtained from S and M.

In addition, the theoretical SIRP model assumes
that the covariance matrix 3, of X is always known.
This seldom occurs in practice, except when simu-
lating radar clutter in the computer. However, such
simulations constitute an important application of the
SIRP model. For, through them some types of radar
clutter with difficult or impossible analytical solutions
are studied. Such model application leads to an ad-
ditional objective of the present research: the verifi-
cation of several simulation routines written following
the SIRP theory ;, which will be used to study Non
Gaussian radar clutter.

! Yet another research objective is to perform a
lifmited degradation study of the model. We verify
whether the resulting SIRP random variate X, the
univariate process' S and the quadratic form p, can
be accurately identified when generated under differ-
ent experimental settings. These settings include de-
creasing sample sizes, increasing multivariate inter-
correlations p'and increasing number of variates N
in the multivariate SIRP process X under study.
A final objective of the present validation effort is to
conduct performance studies of the estimation of sev-
eral parameters of interest. The SIRP theory requires
knowledge of several key elements, seldom known in
practice.’ This is the case with the covariance matrix
3 of the SIRP process X = S+ Z. In practice, X is
estimated from the data and its estimate X* is used.
It is necessary to study the effects, if any, of such a
substitution. And it is necessary to study the sam-
ple size requirements and the number of variates for
which the estimation of the covariance matrix becomes
$o imprecise as to be useless.

3 The Distribution of Interest

‘" 'For the above reasons, a Monte Carlo Validation
Study that generates the SIRP model X = S % Z as
indicated in the previous section is required. However,
there are serious problems when undertaking such a
study. First, validating this SIRP model requires test-
ing both the SIRP process X and the quadratic form

p.
' There are two reasons for checking both X and



p. We cannot assume that the multivariate X, gen-
erated by the product of variates S and Z is correct,
especially when we are checking the simulators as part
of our task. This is due to the algorithmic problems
discussed above, which may have an effect in the com-
puter implementation of the theoretical model.
Second, the SIRP model will be used for two pur-
poses: signal identification and generation-of the clut-
ter data. Therefore we need (i) to assess whether we
can identify the (correct) distribution of the quadratic
form p synthesized from the multivariate SIRP X
(signal identification). And (ii) to assess and verify
that the multivariate SIRP process X is the one pre-
specified, given that we are simulating the SIRP model
via the product of S and Z (clutter data generation).
Here is where the Multivariate K-Distribution
comes into play. This distribution has been theoret-

ically identified as the main SIRP distributien-ofin-— -

terest in our radar study. The K-Distribution is com-
monly used for modelling radar clutter pdf’s that have
extended tails. It is defined, following the Kaman re-
port, through the pdf:

x(2) = 55 (5" Kami(b2) u(z)

where « and b are the shape and scale parameters,
respectively, of the multivariate K-Distribution; Ky is
the N'* order Modified Bessel Function of the secon‘d
kind and u(z) is the unit step function. PR
The Multivariate K-Distribution arises when the
product of a Rayleigh and a Chi Square random vari-
ables are considered. Still according to the SIRP the-
ory (Kaman, 1992), each K-distributed SIRP ‘process
X = S#*Z is associated with a characteristic p‘df of the
corresponding univariate process S, which is deﬁned

by "\r‘ It
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and also with a function hy(p) for the quadl;atlc form
p which is: Ceaen

ioey
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Notice how, in the above functions, the shape pa-
rameter « is present in several expressions in the de-
nominator as well as in the (numerically ‘obtained)
Modified Bessel Function K Ko For long tailed K-

Distributed variables, this shape parameter a 18 very
small. And this may also be a potential source''of com—
puter implementation problems for the SIRP model. |

Another problem is that there are no multivariate
GOF tests for the Multivariate K, our distribution 'of
interest. Therefore, we cannot test directly ‘the sim-
ulated SIRP X = S % Z. If there were such test,
then a key reason for developing the SIRP theory (the
need for the indirect testing of the multivatiate pro-
cess X via its univariate quadratic function'p) would

hn(p) =

brats it

no longer exist. However, we still need to assess the
simulated SIRP X.

To circumvent the problem of lack of a multivari-
ate test for a K-distributed SIRP X, we approach the
validation process through a two-phase scheme. In
the first phase (taking advantage of some SIRP prop-
erties) we implement a special case of an SIRP: the
miultivariate Gaussian Process X = 1+ Z. This special
SIRP is obtained when S is a constant unit. There are
several well investigated, multivariate normality GOF
tests, that can be applied on process X. This is a
well known case where we can simultaneously test for
the (Gaussian) distribution of the multivariate SIRP
X and the univariate (Ch1 Square) distribution of the
quadratic form p = X'2-1X.

In the second phase we analyze a univariate SIRP.
We develop cases of the univariate K-Distribution, an-
alytically simplé enough to obtain a closed form for
its Cumulative Distribution Function (CDF). We need
such closed form CDF for the simulations and for the
GOF tests. We first generate univariate SIRP’s fol-
lowing the X = § x Z factorization model. Then, us-
ing the closed form CDF’s obtained, we test both the
univariate X and the univariate p and verify that the
distributions agree with the SIRP theory (e.g. passing
a GOF tests) for the sample sizes given.

4 'Phase I
i SIRP

' By letting S be a unit valued constant we obtain

that X = 1% Z is an SIRP. By sampling the real

multivariate Gaussian Z ~ MV NN(0,In) with co-

varlance 1dentity, we obtain the quadratic function

Z, 1X2 When the covariance ¥ is known,
p ~ XN’ i.e. the quadratic form is distributed as a
Chi Square (N) random variable. When X is unknown

and estimated from the data, p = X'T* 71X follows a
Beta distribution.

' The multivariate normal SIRP X is a well known
case in the statistical literature. However, we had four
reasons to briefly redevelop it here. First, for com-
pleteness. Since (i) there are multivariate 'GOF test
for this special case SIRP X and (i) there is a known
and tractable distribution for the quadratic function
p (both of which are unavailable in the general case of
the multivariate K).

Second, to verify the implementation of the genera-
tor in the simulation. Third, to demostrate two newly
developed multivariate normality GOF tests, in this
new setting; vis-a-vis two well established GOF tests.
These new: GOF tests will be heavily used in further
stages of this study, for performance evaluation of esti-
mation procedures (Romeu, 1992c) Finally, to assess
the (potential) degradation of (i) the quadratic form
p and (ii) the estimated covariance matrix X*, as a
function of the sample sizes and number of covariates.
‘' We apply a battery of four multivariate normal-
ity GOF" tests to the multivariate SIRP X = Z and
two Kolmogorov-Smirnov GOF tests to the two cases
of the quadratic form p. One test is used for the
case when X is known (denoted P KN/KS in the ta-

Multivariate Gaussian



bles) and another when we estimate ¥ from the in-
put (radar) data (denoted as P ES/KS in the ta-

bles). Finally, we apply an additional Chi Square GOF

test to p, for rechecking (denoted P K/CHI in the
tables). Notice that the Kolmogorov-Smirnov (KS)
GOF test is originally devised for fitting distributions
with known parameters. And that we are implement-
ing an adaptive KS procedure for the unknown case
(P ES/KS). ;

Two of the four multivariate normality tests im-
plemented (Ozturk and Romeu, 1990) were recently
developed at the CASE Center of Syracuse Univer-
sity and have good power properties when sample
sizes are small (CHOLESKI and SIGMA in the ta-
bles). The other two multivariate normality GOF tests
gM—SKEW and M-KURT in the tables), are Mardia’s

kewness and Kurtosis tests (Mardia (1970)). They

were studied for the small samples casesin-Romeu -

(1992a). Romeu (1990) provided empirical critical val-
ues when n < 200, which improve their efficiency in
the present situation. All four of these tests are scale-
location invariant.

A series of FORTRAN routines were written and
integrated into a REXX system program that drives
the simulation system. Three factors, 97) the corre-
lated (H;) and uncorrelated (Hg) multivariate Gaus-
sian SIRP, (i7) the sample sizes of 50,100,200 and
(#ii) the number of variates 2,4, 8 were simulated for
1000 replications. We denote the uncorrelatéd: case
as Hy (null hypothesis), for we are simulating from
a multivariate Gaussian with covariance matrix iden-
tity. The correlated case is denoted as H; (alternative
hypothesis), for we are simulating from ¥ # Ty whilé
erroneously assuming ¥ = Iy to study the Power of
the tests as a function of sample size. G e

In each simulation run we tested the distribution
fit for the (i) multivariate (white Gaussian) 'SIRP X
and the quadratic form p obtained (i7) with a known
covariance ¥ and (#7i) with covariance L* estimated
from the data. Coe

In Table 1 we show the results for'the uncorre-
lated bivariate Gaussian (Hy) and samples of 200 data
points. Results from the seven GOF tests applied to
the data (four for multivariate normality of X and
three for the univariate quadratic form p) are consis:
tent with their expected values (i.e. percent réjections
(a*) are close to their GOF test nominal significance
levels o« = 0.1,0.05,0.01). oo e

Consistency between expected («) and empirical
(a*) significance levels was assessed by deriving ap!
proximate confidence intervals for the true ‘i E“vi'a ‘the

usual Binomial distribution approach: o
AR

ol=a) [,
m RURIIo
HEE S I il

for « = 0.1,0.05,0.01 and m = 1000 the number o
replications in the simulation. For example, for o =

0.1 we have: I
,‘,:),‘v

oa(m) =

|
o

1+0.
70.1(1000) = ,/%:0.0095 SETIA

Then, an approximate 95 percent confidence inter-
val (c.i.) for a is obtained using, as half width, three
standard deviations, i.e. 3 % o4{m) and center in a*.

For example, for large sample sizes (i.e. 200 data
points) and a = 0.1, the performance of the quadratic
form p* obtained with the estimated or sample covari-
ance X*, is acceptable. The distance between the cor-
responding theoretical and empirical significance lev-
els, | — a*|, for P ES/KS, is |0.1 — 0.106] = 0.006,
well within a half width of 3 * 0.0095 = 0.028.

There is one caveat regarding our adaptive proce-
dure for the KS GOF test for the quadratic form p*.
It is known that KS is a conservative test when the pa-
rameters are unknown and estimated from the data.
We followed the approach in Goel (1982), suggested
by Allen (1978). We adjusted the significance level by
using four times the nominal level «, to test for that
level-(e-g: -we test-at a = 0.4 and report at o = 0.1).
Observe how, for the larger samples (n = 200) this
approach works well and allows us a criterium to as-
sess the degradation of the estimations as sample sizes
shrink.

In Table 2 we report similar simulation results, now
for samples of size 100. Most GOF tests are still close
to their nominal significance levels. There is one ex-
ception: the GOF test for p* using X*, the covari-
ance matrix estimated from the data (P ES/KS in the
tables).” For example, its empirical significance level
a*, for a = 0.1, has now gone up to 0.162. We can
attribute it to a loss of efficiency in the estimation
of ¥ as the sample size decreases. Assessing the ef-
ficiency of 'these ‘estimations (p*, £*, for decreasing
samiple sizes, is of practical concern. In field applica-
tions the!covariance matrix of the SIRP is unknown
and must be estimated from the available data.

" Results for Table 3 are obtained for samples of size
50.'As the sample size decreases, the GOF test for p*,
when the covariance matrix ¥ is estimated from the
data,’ continues deteriorating. The empirical signifi-
cance level o*, for this test has now gone up to 0.192,
foraa =0.1.

" ‘In Table 4 we present similar results for four vari-
ates and sample sizes of 200 data points. Observe, for
this large sample, that the distance |a — o*| is still
within the half width criteria. The GOF test for p*,
when X is estimated, deteriorates faster in the case
of four variates (N = 4) as sample size shrinks, than
the previous N = 2 case, measured by the half width
criteria.

In Table 5 we observe the same type of results, now
for 100 data points. Notice the rapid deterioration of
the GOF test for the quadratic form p*, when ¥ is
estimated from the data. In Table 6 we show similar
results, now for samples of 50 data points. The test
for p*, when ¥ is estimated from the data, deteriorates
further more. ' *©

' In Table 7 we show results for eight variates and
sample sizes of 200 data points. Observe here that
all GOF tests are close to their nominal significance
level, except the one for p*, when X is estimated from
the data. As expected, when the number of variates
N in the ‘multivariate SIRP X increases, the same
performance of the GOF test for the quadratic form p*



requires a larger sample. Hence, where samples of 200
data points were sufficient for the fit of the bivariate
Gaussian, it is no longer so, for the Gaussian with
N = 8 variates. And becomes worse in the case where
the covariance matrix ¥ is unknown ‘and estimated
from the data.

In Table 8, for a sample size of 100 data points and
in Table 9, for N = 8 variates and 50 data points, the
performance of p*, when the covariance matrix X is
estimated, is ¢* = 0.199. The other GOF tests are
within a half width of their respective mominal levels
a. ;

The above GOF tests are not joint tests. Therefore,
if some of them, isolated, depart from their expected
value, this is not necessarily indicative of statistical
problems. In the long run we will expect some of these
tests to reject Hp, by chance, when it is true (k*a

times, where k is the number of tests perfermed-and -

a is the corresponding significance level).

We also explored the problem of correct identifi-
cation of the SIRP process X, under the alternative
hypothesis H; (i.e. when the true distribution of the
SIRP X is not MV NN(0,In)). We simulated the
SIRV X ~ MVNy(0,5), 2 # Iy. In particular,
we simulated a multivariate normal with covariance
matrix equal to its correlation matrix, with all non
diagonal entries p;; = 0.5,7 # j (i.e., with medium
correlation). In this case, we assessed (z) the‘effect of
incorrectly specifying the covariance matrix, (zf) the
effect of estimating ¥ directly from the data’ Bnd ()
the power of the SIRP model to identify alternatlve
distributions when they are true. ‘ ’

In Table 10 we show the results when simulating the
SIRP X from a bivariate correlated Gaussian, with
samples of size 200. We obtained poor agPeements
between empirical and nominal s1gmﬁcance lévels for
the GOF tests for the quadratic form p, whenthe test
procedure (erroneously) assumes the SIRP has' covari:
ance ¥ = IN The same occurs in Table 11 a d 12, for
samples of size 100, 50, respectively. Finally, in Table
13 we show the same problem for Gauss1ans V\hth elgh
variables and sample sizes 200. ‘

The distance | — a*|, between norninal ‘and ‘em-
pirical significance levels can be interpreted' in tw
ways. First, it is an indication that the gliadratié
form p can actually be used to discriminate between
Hy, H; (i.e. between distributions of SIRP’) with
high Power. Then, the distance |a — a*| wartis about
the dangers of ill-specifying a covariance matrix'X.
The first interpretation, discrimination, can®be use-
ful in simulation studies, to assess, say, the‘minimal
sample sizes required for 'identification problefns The
second interpretation, effect of estimation of X' from
data, can be useful to assess minimal sample §izés re
quired when performing estimations in the field. ' !

Phase I of our validation study shows how, for the
special case of the Gaussian SIRP, (¢) the computer
implementation of the theoretical model holds; (1)
we can accurately test for the fit of the quadratlc
form p, for samples down to size n = 50 and nurnJ
ber of variates up to N = 8 when the covariance
matrix is correctly specified; (m) the quadratic form

p*, obtained with the covariance matrix X* e%tlmated
(IR ~

from the data, approximates reasonably well that of
p = X'E71X, for large samples (say of size n = 200
and above) but not accurately enough for medium
(n = 100) or small (n = 50) ones. Finally, (iv) the
new model of the SIRP X can be used to effectively
discriminate, through its quadratic function p, an in-
correctly speciﬁed alternative) SIRP model.

It is well known that the exact distribution of the
quadratic form p*, obtained when the SIRP process
is Gaussian and the covariance matrix ¥ is estimated
from the data, is not Chi Square but Beta. However,
we have mtentlonally used the theoretical x%, distri-
bution assumed by the SIRP model with a spec1ﬁc
objective in mind.

In other SIRP processes of interest, especially in
the Multivariate K SIRP, we do not know the exact
distribution of the quadratlc form p*, arising when the
covariance matrix 3 is estimated from the data. Such
distribution has only been obtained for the present
(Gaussian) case. In the general case, only the theoret-
ical distribution of the SIRP X, which in turn yields
the theoretical distribution for the quadratic form p,
is available. And we have to make-do with that.

Therefore, here we are investigating the efficiency
loss resulting when we use the approximate distribu-
tion of p*, that results from the substitution of X*
for ¥. In the Gaussian case developed above, the
resulting quadratic form p* becomes now only ap-
proximately distributed Chi Square (instead of exactly
Beta) However for samples of size 200 such approx-
imation works well.. We assume that when the mul-
tivariate. SIRP X is K-Distributed, the sample sizes
would not be smaller than n = 200 either.

!
5 Phase II: Unlvarrate SIRP’s

In this ‘phase we empirically demonstrate, in one
dlmensmn how the SIRP model properties hold even
for very small sample sizes. We implement a (uni—
variate) K-Distributed SIRP model via Monte Catlo.
We perform several statistical transformations that fi-
nally provide easily invertible random variables. With
these transformations we (7) generate and (ii) evaluate
de CDF of these random variables in a quick and easy
way suitable for a Monte Carlo procedure. The numer-
ical evaluation of Bessel Functions (for the inversion
and CDF evaluation of the SIRP X and the resulting
quadratic function p) do pose significant and techncal
round-off problems in simulation programs. We have
avoided such problems in the current one dimension,
via'the convenient set of statistical transformations
presented below.

A uniyariate SIRP X is just a special case of the
general SIRP for N = 1. Hence, all properties of the
theoretical model should also hold as with N > 1.
We still define X = S % Z. Only now Z ~ N(0,1), is
a standard normal random variable and X is also uni-
variate. We investigate the case of the K Distribution,
following the Kaman roadmap given in the Introduc-
tion section above, through a special case: the uni-
variate Laplace. "This (univariate) K-Distribution is
easily invertible and hence suitable for a Monte Carlo



study. A random variable X is Laplace distributed if:

exp( |z _ ul),

fx(z) = A>0.

To obtain a Laplace univariate SIRP X, let the
random variable w ~ ezp(1), i.e.
mean unit. Making the transformation y = v2w we
obtain a Rayleigh distributed random variable y, with
E(y?) = 2 and density function:

Yy
fr(y) =yeap(=7) y>0

However, the resulting covariance matrix Tx of the
SIRP X = y* Z is, by definition :

e S G it i

Yx = BE(y* Z)(y* 2) = E(y*)2z # Xz

Hence, such a Rayleigh distributed y is not conve-
nient for our simulation study since £x # ¥$z. We
seek an SIRP X with the same covariance matrix Xz
as SIRP Z. Therefore, we transform our original ran-
dom variable y to one with a unit expectation by re-

defining:
s:’y_:\/a e i

7

The resulting random variable s, has now expecta-
tion E(s) = 1, as assumed in the SIRP theory. This
yields an SIRP process X = S+, with covariance ma-
trix M = Xz = Xx. The density of the transformed
variable s is now: 18] il

fs(s) =2sexp(—s®) = n r‘h

To obtain the distribution of the quadratic form
p = z'z = z?, following the SIRP model in the Kaman
report, we substitute fg(.) in hy(.) for N = 1:

in(e) = [ N eap(55)s(5)ds = v/reapl~/25)

From the SIRP theory, the dlstrlbutlon of the
quadratic form p is then:

1

fr(p) = h1 —=eT

(®) oY (») = \/T p(= \‘/_); ;

e

This is still not a simple enough dlstrlbui‘,lon for
testing goodness of fit in a Monte Carlo study. It
is more convenient to find an equivalent, well known
variable with an easily invertible distribution. We per-
form the transformation ¢ = 1/2p and obtain the ran-
dom variable ¢ ~ ezp(1l), exponentially dlstnbuted
with mean unit, easily invertible for CDF evalhatlon

We can then test that the quadratic form p is dis-
tributed according to the SIRP model abovd derived
(Ho), by testing that the distribution of the trans-
formed variable ¢ = /2p is exponential with unit
mean.

exponentlal with

Hence, process = = s * z, with s,z and hn(p) de-
fined above is just a (umvarlate) SIRP. Following the
theory developed in the Kaman Report, we obtain the
distribution of the resulting SIRP X as:

\/_IEI“”ZhN(p) -\/——ewp( ~V2lz|)

and we recognize it as a Laplace Distribution with

A= -\71-
2

However, the distribution of this resulting SIRP

process X can still be simplified to perform efficiently

and quickly in a Monte Carlo study. Making the trans-

formation u = v/2|z|, we find an equivalent random
variable with a better suited distribution. We can eas-
ily invert this variable u in our simulation, for it fol-
lows a tinivariate éXponential distribution with mean
unit.

We sampled for n = 25, 50,100,200 from the uni-
variate SIRP z = s * z discussed above. The vari-
ables z, s, p were tested, as in Phase I, for their GOF.
The empirical significance levels a* were obtained for
a = 0.1,0.05,0.01 (Tables 14 through 17). As in the
previous sectlon we assess the model by the distandce
between the theoretical @ and its corresponding em-
pirical significance level a*, again using the half width
criteria of the previous section.

In Table 14 we show the simulation results for 5000
rephcatxlons of batches of large sample sizes (e g. 200).
Observe the close agreement between o and o* for sig-
nificance levels 0.1,0.05,0.01, obtained using as half
width the same 3*0'0,(m) ‘criterium used before. Agree-
ment is obtained in all three GOF tests: for the SIRP
process ¥ = s * z, for the quadratic form p = z? and
for ithe Rayleigh distributed variable S, which drives
the SIRP.

Table 15 shows similar results, now for 10,000 repli-

cations and samples of size 100. We can still observe
a close agreement between o and o, for significance
levels 0.1,0.05,0.01.
3 Tables 16 and 17'show the same type of results for
10,000 and 20,000 replications and samples of sizes
50, 25, respectlvely We observe (as measured by
|a — a*|) some deterioration in the empirical efficiency
of the GOF tests, as sample sizes decrease, and for
statlstlcs z,p. '

, We also considered alternative distributions H; to
the null hypothesis Hy and assessed the efficiency of an
SIRP to reject such false hypothesis (Power). Instead
of the previously used SIRP X = s * 2z, distributed

Laplace with parameter A = 2 (H()) we generated

the alternative SIRP X, using X = y*2 instead (Hy).
This way; we obtained a related K-Distributed SIRP,
but with different parameter. In what follows, we in-
vestigate the sample size requirements to differentiate
one SIRP from the other. In Tables 17 through 20 we
show our simulation results, for 5000 replications and
for n =100, 50, 25, 10, respectively.

. In Table 18 we show, for samples of size (n = 100),
how this second SIRP X is correctly identified (is 1t
no longer distributed Laplace with parameter A =

e g

fX,(z)



715) For example, the GOF test applied-te the-orig-

inal SIRP X, achieves an empirical significance level
(Power) a* = 0.46, several times larger than its nomi-
nal & = 0.1 (i.e. rejects the false hypothesis Hy 46 per-
cent of the time). However, the GOF test applied to
the quadradic form p, is two times larger than that of
X, yielding a (Power) empirical significance o* = 0.84
(i-e. the test on p is much more Power ful).

In Table 19 we show similar results, for sample sizes
of n = 50. It is still plain that the (erroneously) hy-
pothesized distribution of the SIRP X (Ho) is cor-
rectly rejected even with such small sample size. The
empirical level &* = 0.59 for the fit of p is still twice
as large as that (a* = 0.26) of the GOF test for X, at
a = (.1. In Table 20 we show similar results for sam-
ples of size n = 25. These simulation results show that
(%) it is possible to differenciate two closely related but

different SIRP, even with such reduced sample size.

And that (ii) the empirical performance (power) of
the quadratic form statistic p (@* = 0.34) is better
than that of the original SIRP X (o = 0.18) for such
differenciation purposes.

It is not until the sample size decreases to 10, in
Table 21, that it is possible to confound these two
closely related (but different) SIRP processes. Table
21 shows, for 5,000 replications, how the nominal a =
0.1 is now close to the emprical o* = 0.13, when we
are testing for the GOF, using the original SIRP X
directly. However, the GOF test performed: through
the quadratic function p yields an empirical a* = 0.19

(i.e. it is still capable of differenciating between the
3 Lo

¢

two distributions). o .
Such better empirical small sample power é)f'
the quadratic form p is a strong and positiv
result in favor of the SIRP model. It shows that
a GOF test on an SIRP is more powerful if performed
through the quadratic function p (univariate) than‘if
performed directly on the original (possibly multivari-
ate) SIRP X, even when such a multivariate GOF test
is available. ; ‘j e
From Phase II, we conclude that (3) it is possible
to test for the GOF fit of a (univariate) SIRP, directly
on X or through its quadratic form p, derived [folldv}[—
ing the SIRP theoretical model. Also (if) that it is
possible to perform this equivalent test with'dxcellent.
results, for samples as small as 50 data points. Finally,
that (i17) when the postulated (Ho) model is tot true;
even when it is closely related as in the ab"o'v]e"cése,‘i‘é
is possible to detect and reject such a false hypothesis.
Even more, that such discrimination can be pgrfon‘néd
through the quadratic form p even more efﬁcie‘ﬁtl’y‘(i".‘",‘
with a larger Power) than through the GOF test per-
formed directly on the original SIRP process' X.' '
6 Conclusions R
This Monte Carlo study has shown, for .the gen-
eral case of a (univariate) K-Distributed: process .X;
that the computer implementation of a the theoret-
ical SIRP model X works as intended. Also, that
we can use the quadratic form p as a powerful statis-
tic to test whether the distribution of the SIRP X, is
the one theoretically specified (e.g. that an incoming

2 :
/ o

-~ radar signal is-of-a-pre-specified type) for samples as

small as 50 data points.

Moreover, we have shown how it is also possible to
discriminate an erroneously postulated SIRP model
(e.g. that an incoming signal is not of a pre-specified
type) on the basis of the GOF test for the univari-
ate quadratic form p. And we have shown how such a
GOF test based on the quadratic form p is more pow-
erful than the GOF test directly based on the original
(multivariate) SIRP process X, were such multivariate
test available.

These results may be of particular importance in
radar modelling studies. For, if the (Non Gaussian)
distribution of certain types of radar clutter can be
prespecified, a GOF test using the statistic p may
be implemented to identify these patterns more effec-
tively.

e Qur-results-verify two important issues involv-

ing the implementation of the new theoretical SIRP
model.  First, the accuracy of the small sample
generation of Non Gaussian radar clutter via the
product X = S % Z. Then, the assessment of the
small sample Power of the quadratic form p as a GOF
test statistic for the correct identification of the
distribution of the SIRP X.

Future research on process identification and on
degradation of estimations of p*, £*, for higher di-
mensional K-Distributed SIRP processes, is currently
under preparation.

In addition; we showed for N > 1 dimensions and
the special case of a multivariate Gaussian SIRP X,
that the ‘quadratic form p can be effectively used to
discriminate between different SIRP when the covari-
ance. X is known. And that the distribution of statis-
tic p*, obtained when the covariance matrix X is un-
known and the sample sizes are large (say n > 200),
can be -approximated by the (theoretical) distribu-
tion of the statistic p. Similar investigations, pursu-
ing'identification and degradation studies for general
(K-Distributed) multidimensional SIRP processes, are
currently also‘in preparation.
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Abstract

In a previous Interface (Romeu, 1993) the first part of
this validation study was presented. There, the genera-
tion and evaluation of a Spherically Invariant Random
Process (SIRP) X, was studied for the unidimensional
case. Here, we complete such investigation. First we
study the distribution identification of a particular Bi-
Dimensional SIRP X, for which we can obtain the closed
form of the distribution. Then, we study the general
multivariate case via Monte Carlo. We assess the dis-
tribution identification performance via this method, for
specific sample sizes, number of variates and intercor-
relation. Finally, we study the effects of these factors
and of covariance estimations on the SIRP identification
procedure.

1 Introduction

For this author, a radar is a black box that receives as
input a sample of n iid vectors X;,i = 1,...,n, of di-
mension N (i.e. the SIRP X representing clutter). The
radar then extracts, from this sample, an estimation of
the covariance matrix £ (say £*) of the SIRP X. Finally,
with the aid of £*, the radar identifies the distribution
of X (i.e. the radar assesses whether the incoming signal
actually represents clutter or not).

It is theoretically known (Rangaswamy, 1992; Ran-
gaswamy et al., 1991, 1992; Kaman, 1992) that an SIRP
X can be decomposed into X = S x Z (where S is the
univariate process driver, Z is multivariate normal with
covariance £). We can then obtain the quadratic form
p=X'S~1X, whose density fp(x) is:

1 a1
frlp) = mQ—)PN/“ hn(p)

where hy(p) = / S_Nea:p(%)fg(s)ds
0

Therefore, it is possible for our radar to estimate, from
the multivariate input (X1, ..., X5), both the process co-
variance ¥* and a sequence of univariate, iid, quadratic
forms pf = X;E*‘lXi,i = 1,..,n, and through these
identify the distribution of the incoming SIRP X.

However, for N > 1, the expression for hy(p) typ-
ically does not have a mathematically simple form.
Hence, the corresponding fp(p) is analytically difficult to
obtain, even after performing approximations, changes
in variables, and other mathematical manipulations.

On the other hand, we can adapt the Ozturk approach
to distribution identification (see Section 6.4 of Kaman,
1992). Ozturk’s approach implements the graphical Q,
goodness of fit (GOF) test of Ozturk and Dudewicz
(1990) on the quadratic form p, to assess the true distri-
bution of X via distribution charts.

Our proposed approach is a modification of the above.
First, it simulates a different reference distribution than
normal. Then, it assumes that the (radar input) SIRP
X is known (for it represents clutter) and hence also the
quadratic form p that is obtained from it. Finally, the
procedure tests (via the univariate quadratic function
p) whether or not the distribution identification of the
SIRP X is correct.

In addition, one can use this modified approach in
two other areas. First, as a tool to evaluate several fac-
tors that affect the assessment of an SIRP: (i) the sample
size n, (ii) the number of variates N (vector size), (iii) its
inter-correlation p and (iv) the interaction among them,
Then, to compare the performance of different covari-
ance matrix estimators £*. We do this by evaluating
the performance of statistic Q.

We use the above described approach to complete the
model validation in Romeu (1993). First, we study the
special case of a Bi-Dimensional K-Distributed SIRP X.
Then, we study the general case, using the @, statistic
to test the GOF of the quadratic form p, obtained from
SIRP X for prespecified settings (n, N, p).



In the rest of this paper we discuss the three sequential
phases of our research:

(i) Estimation of the Empirical Distribution of @,

(1) Validation of the Empirical Parameters Obtained

(#4%) Evaluation of Factors and Covariance Estimators

2 Estimation of the Empirical
Distribution of @,

Romeu (1993), for the special K-Distributed case N = 1,
showed how the quadratic form p provides a powerful
statistic for correctly identifying an SIRP, when ¥ is
known and even when X is estimated from sufficient
data. Hence, we will also use p for the N > 1 case.

We obtain, via Monte Carlo, all necessary parame-
ters to implement the @), test on the quadratic form
p. To assess these Monte Carlo estimations we use the
conveniently tractable, special case of the Bivariate K-
Distributed (N = 2) SIRP X. We use shape parameter
a = N/2 — 0.5 and scale parameter b = 1. Its quadratic
form p has now the following pdf:

\/—N/Q —0.5—N/2
() = 772 —ogyarre—os=t X Kna-njos(VP)
\/? ezp(=+/p)
P(s1)2%
Kzzy._a(P) = Kos(p) = @ X \/gezp(——
fr(p) = 211}(1) x p'"tha(p) = %p“/zexp(—\/ﬁ)

Such pdf is still too complex for us to work with,
directly. And certain transformations are required to
simplify our generation and testmg work.

Under the transformation “.’— /P, the resulting w
is distributed Rayleigh and is easy to test for GOF. It
also allows (7) to validate our Monte Carlo experiment
and (i?) to compare the Power of the empirical @, test
with an exact GOF test for p. For, if p ~ Fp then w ~
Rayleigh. We implement the latter as our exact test, for
its ease and computational speed.

Accordingly, the driver random variable S, for this
special case of K-Distributed SIRP X = S« Z is:

—g2 2 R
f5(5) = Frage ™ ean( S5 = @ezm-v/m

which, under the transformation y = s2/2 becomes:

—-1

1 - p
fry) = 7‘—? exp(—y) =T exp(—y)

l.e., a Gamma distribution with parameters A = 1,r =
1/2. This allows an easier and faster way to generate X:
generate a Gamma y, obtain s = /2y and multiply by
bivariate normal Z.

We also investigated other potentially interesting
cases of SIRP, for « = N/2~ 0.5 and b = 1:

ForN=3:fp(p)=4\/7—l: e~ VP

NPT
8L (2)

p \/"'
3127T(3.5) 5)

none of which yielded interesting pdf cases.

As shown above, we lack in general the closed form of
the CDF, Fp and/or the pdf, fp. However, Fp is com-
pletely determined by S, hn,Z. And we can obtain any
required empirical result by Monte Carlo. For purposes
of testing with @, we will circumvent the lack of Fp
through Monte Carlo simulation.

Let the @, = (Up,V,) GOF test, be defined:

1 n
= - Zcosﬁi | Z:]
e

ForN=4: fp(p) =

ForN=8: fp(p) =

1 n
= - Z sin&,- IZZI
n i

Mi.n
with; = = / fo(t)dt = 7 Fp(min)

where m;., is the :** order statistic from the ordered
sample py < p» < ... < pp. Let these n samples be
obtained from the simulated SIRP X = S % Z. And
let Fp, fp be, respectively, the distribution and density
functions of quadratic form p. In addition Z; = Bi=Pere,
are the standardized p;, fori =1,...,n. ’

To obtain the angles 8;,7 = 1,...n, which yield the
endpoints (U,,V,) we require the distribution function
Fp. Since, in general, we cannot obtain Fp analytically,
we approximate F5(x), via Monte Carlo.

First, we generate NTOT samples of size n each,
from the same SIRP X, defined above. Then, for
J = 1,...NTOT, we then obtain the ordered sample
p1,j < ... < pnj of quadratic forms. Finally, we calcu-
late:

1 NTOT
Myp = NTOT zj: pij, fori=1,...n



From the empirical m},, values, we get the empirical
CDF’s Fj(m?,), also by Monte Carlo:

s pp <My, .
Fp(mim) = WO—TE,’L = 1,...77,

where pp < m},, is the number of simulated quadratic
forms p, out of the total NTOT generated in the Monte
Carlo experiment, that are smaller than the correspond-
ing order statistics mj,,,.

We thus evaluate Fp(*) at each of the empirical or-
der statistic m},, of the quadratic form p, of a given
sample size n. From these values, the empirical angles
8 = nFp(m?,) are easily obtained. Since we also have,
for the Bivariate K-Distributed SIRP X, the exact dis-
tribution Fp(*) of the quadratic form p, we can compare
them to assess our Monte Carlo procedure.

Using these values we obtain, through a second Monte
Carlo experiment, the empirical estimators of the param-
eters E(U,), E(Vn),02,02, pyv, required for implement-
ing the @, GOF procedure.

The set of empirical values Fp(x),m},,07,i=1...n
are calculated only once for each parameter setting
(n, N, p), via Monte Carlo.

3 Validation of the
Distribution

A total of NTOT = 10,000 samples of size n =
25,50, 100, 200 of an N-variate SIRP X were generated
on Syracuse University’s IBM 3090, using the IMSL sta-
tistical library. We used vector size values of N = 2,4,8
with covariance matrix ¥ having unit in the diagonal and
p elsewhere. We used p = 0.0,0.5,0.9. The experiments
for N = 4, 8 were implemented at the Cornell Supercom-
puter (vector facility) given their extensive run times.

For each simulated sample (i.e. each prespecified set-
ting (n, N, p)) we calculated the quadratic forms p of
the SIRP X and obtained the empirical estimations of
(1) the corresponding order statistics m.,, (¢¢) distribu-
tions Fp(ms.n), and (ii7) angles 8;, for i = 1,...n. These
three sets of estimations (m},,, Fp, (m},,),dF) were used
in the calculation of NTOT Monte Carlo Q7 = (U, V)
statistics. Finally, these NTOT @7, values provided the
empirical mean, variance and correlation of the bivariate
distribution of statistic Qp.

We assessed the empirical estima-
tions of Fp(*),min,8;, 1 = 1,...,n, and of the mean,
variance and correlation of the bivariate distribution of
Qn. The GOF statistic (J,, was obtained with reference
to Fp, the known distribution of the quadratic form p.
We also assess the validity of our proposed statistic @n

Empirical

by comparing the Monte Carlo derived @}, GOF test re-
sults with those from the special case of the Bivariate
K-Distributed SIRP X.

Finally, by generating from the same SIRP X used
before, we obtain the statistic 2(Qr) = A(Un, Vo ):

(Un - E(Un))(Vn - E(Vn)) + (Vn — E(Vn))2

TuOy o2

—2puy }
distributed approximately as a x3.

We implement the empirical GOF tests for p
via h(Qrn), using Monte Carlo estimations to get
the expected values and variances of (U,,V,), (ie.
EU,), E(V,),02,02 and intercorrelation py.,).

To compare the performance of both GOF test for
SIRP X (the @, GOF empirical test on p with the Ex-
act GOF test on the transformation w) we used the cor-
responding percent rejections (P,). We thus validated
our proposed @, testing approach for N = 2.

We investigated intensively these two GOF tests (Ex-
act and empirical). A graphical analysis, based on the
settings (n, N, p), confirms the existence of a small Bias
for @n, even for alarge n. A regression analysis confirms
that (i) sample size is a significant factor, but that (i7)
intercorrelation p is not. And that (¢4¢) the effect of sam-
ple size (n) decreases with n. The Bias detected for a
large sample size (n) was estimated at about 15 percent
of the nominal level a. We conclude that the proposed
Qn GOF test of p is adequate for assessing the fit of a
multivariate SIRP X.

4 Evaluation of Factors and Esti-
mators

The @, GOF test can also be used as a research tool to
assess different characteristics of an SIRP.

We can implement the @, GOF test to (¢) assess
the performance of the estumator p* and to (i1) ana-
lyze the effects of specific characteristics (e.g. n,N,p)
of the SIRP X. We perform another Monte Carlo ex-
periment. from the same SIRP X used before. This
time we compare the two quadratic forms: p = X'271X
and p* = X'T*7!'X (obtained using covariance (Z) or
its maximum likelihood estimator) to assess the perfor-
mance of £~.

In Table 1 we show the percent rejections (P,) for an
experiment implemented on various settings (n, N, p).
We first compare the performance of the @, test (us-
ing the known covariance £) against that of the Exact



GOF (for the Bivariate K-Distributed SIRP). To inves-
tigate the effects of estimating the covariance matrix
(£*) in the empirical @, test, we used statistics p, p*
(denoted Known and Estim in Table 1). We imple-
mented multiple regression and ANOVA on the model:
P. = f(n, N, p). These analyses results reconfirmed that
(1) sample size is a significant factor and that (ii) in-
tercorrelation p is not significant in the performance of
the @n GOF test. Also, that (ili) as the sample size
increases, the performance of @), (obtained with the es-
timated covariance matrix) gets closer to the one ob-
tained using the known covariance matrix. Finally, we
obtained estimates of the adequate sample sizes required
(n = f(N)) to safely implement the adapted @, GOF
approach using I*. These were found to be: (i) for
N =2 we need n > 25, (ii) for N = 4 we need n > 100,
(iii) for N = 8 we need n > 400.

5 Summary and Conclusions

We have shown that (i) the theoretical SIRP radar clut-
ter modeling procedure given in Kaman (1992) is valid,
computer implementable and fulfills its intended purpose
of generating SIRP’s and identifying an incoming sig-
nal (Romeu, 1992). Also, (ii) that the quadratic form
p is a good statistic for testing the GOF for the gen-
eral (N > 2) K-Distributed SIRP (that characterizes
clutter). In addition, we have shown that (iii) the @,
GOF test, a Monte Carlo based testing methodology, is
an adequate (though conservative) general procedure for
identifying a multivariate SIRP X.

In addition, we have investigated the maximun likeli-
hood estimator of the covariance matrix £ of an SIRP.
If the sample size {n) is adequate for the size (N) of
vector X, the estimation is good and @}, provides good
results. We have (iv) investigated the effects of three fac-
tors: (n, N, p). We have shown how the intercorrelation
(p) is not significant. The other two factors, can affect
the @, test when the (sample and vector) sizes are not
adequate for its correct implementation.

Finally, the Monte Carlo testing approach developed
here has wider applications than just in radar model-
ing. Any monitoring device with multivariate input, re-
quiring the identification of specific patterns, is a candi-
date for such an approach. We forsee areas in medicine
(life supporting devices) and in industrial quality control
where this approach may be successfully used.
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Table 1. Experimental Results

Test n N p a=0.1 a = 0.05 | a=0.01
Exact 25 2 0.0 0.0826 0.0402 0.0064
Qn 25 2 0.0 0.0930 0.0430 0.0094
Exact 25 2 0.5 0.0774 0.0352 0.0050
Qn 25 2 0.5 0.0936 0.0448 0.0090
Exact 25 2 0.9 0.0870 0.0414 0.0062
Qn 25 2 0.9 0.0936 0.0429 0.0102
Exact 50 2 0.5 0.0949 0.0465 0.0094
Qn 50 2 0.5 0.0880 0.0450 0.0092
Exact 100 2 0.0 0.0978 0.0466 0.0098
Qn 100 2 0.0 0.0850 0.0440 0.0116
Exact 100 2 0.5 0.0983 0.0489 0.0096
Qn 100 2 0.5 0.0824 0.0409 0.0109
Exact 100 2 0.9 0.0968 0.0494 0.0095
Qn 100 2 0.9 0.0828 0.0416 0.0115
Exact 200 2 0.0 0.0984 0.0460 0.0090
Qn 200 2 0.0 0.0839 0.0442 0.0123
Exact 200 2 0.5 0.0970 0.0482 0.0096
Qn 200 2 0.5 0.0808 0.0412 0.0109
Exact 200 2 0.9 0.1006 0.0508 0.0103
Qn 200 2 0.9 0.0813 0.0423 0.0125
Qn 25 4 0.0 0.0918 0.0426 0.0075
Qn 25 4 0.9 0.0894 0.0429 0.0079
Qn 100 4 0.0 0.0917 0.0465 0.0129
Qn 100 4 0.9 0.0879 0.0453 0.0109
Qn 25 8 0.0 0.0893 0.0430 0.0078
Qn 25 8 0.9 0.0898 0.0438 0.0085
Qn 100 8 0.0 0.0808 0.0408 0.0106
Qn 100 8 0.9 0.0854 0.0434 0.0113
) n N o a=0.1 a=10.05 a=10.01
Known 10 2 0.5 0.08480 0.03980 0.00980
Estim 10 2 0.5 0.14420 0.07840 0.02060
Known 25 2 0.5 0.09300 0.04100 0.00920
Estim 25 2 0.5 0.10020 0.05780 0.01500
Known 50 2 0.5 0.09120 0.04260 0.00900
Estim 50 2 0.5 0.08300 0.04120 0.01180
Known 100 2 0.5 0.08740 0.04440 0.01240
Estim 100 2 0.5 0.07660 0.03620 0.00820
Known 200 2 0.5 0.10000 0.06100 0.01700
Estim 200 2 0.5 0.09000 0.04100 0.01200
Known 25 4 0.5 0.10020 0.04530 0.00810
Estim 25 4 0.5 0.22920 0.14430 0.05130
Known 100 4 0.5 0.08720 0.04540 0.01136
Estim 100 4 0.5 0.10380 0.05876 0.01724
Known 25 8 0.5 0.08980 0.04200 0.00720
Estim 25 8 0.5 0.94400 0.86200 0.55580
Known 50 8 0.5 0.08648 0.04400 0.00972
Estim 50 8 0.5 0.52872 0.38176 0.17040
Known 100 8 0.5 0.08476 0.04504 0.01160
Estim 100 8 0.5 0.28084 0.18348 0.06648
Known 200 8 0.5 0.08220 0.04160 0.01190
Estim 200 8 0.5 0.16090 0.09290 0.02830




