BIO 111 - Laboratory # 11: Cortland Wastewater Treatment Plant

- Assigned pages: Mader, S., et al. 2008. <u>Inquiry of Life</u>. pp. C69-C76
 - ✓ You must wear closed shoes for the tour; closed shoes are required for entrance into the plant

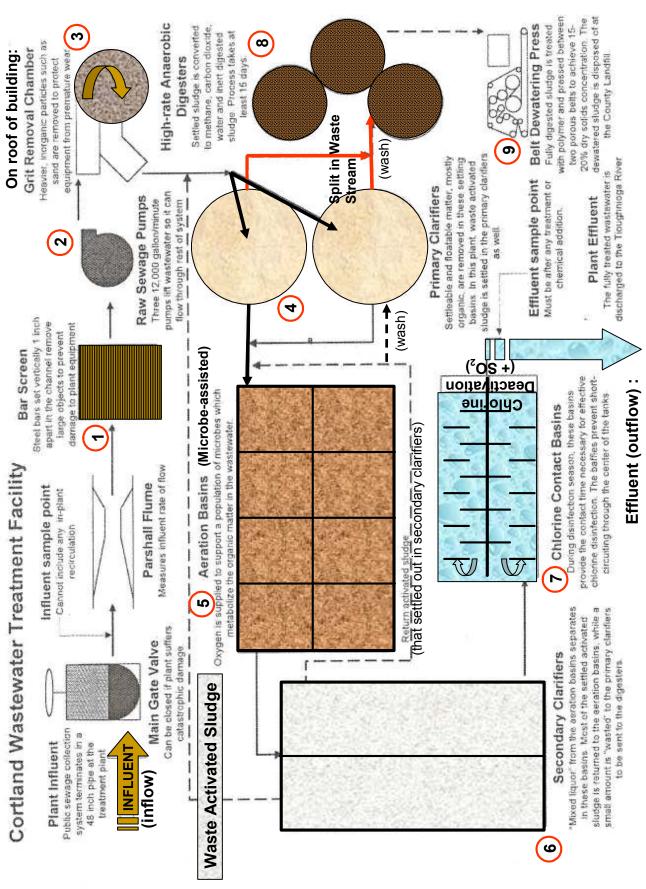
I. Wastewater Treatment - Introduction:

1. GOALS:

Objectives - at the end of laboratory #11 you should be able to:

- 1.) understand why it is important to treat wastewater
- 2.) know the path and understand the successive steps of the treatment process from influent to effluent
- 3.) understand the difference between physical and biological processes in the treatment process
- 4.) know what happens to solids during the treatment process, when and where solids are removed

Key terms - you should be able to define:


General Treatment Vocabulary:	Process Steps Vocabulary:
influent	raw sewage
effluent	bar screen
leachate	pumping
eutrophic/ eutrophication	grit removal
biological oxygen demand (BOD)	primary clarifier - physical process:
physical process	flotables
biological process	primary sludge
settleable	aeration basin - biological process:
suspension	aeration
dissolved	microorganisms
anaerobic digestion	secondary clarifier - physical process:
solids	activated sludge
nitrogen (N)	waste activated sludge
carbon dioxide (CO2)	chlorination
methane (CH4)	dechlorination
oxygen (O2)	aeration
disinfection	anaerobic digestion
million gallons per day (MGD)	dewatering
belt dewatering press	sludge removal
landfill	

2. Plant tour:

- 1.) **pp. C69-C76**: **Read** through the steps of the tour
- 2.) p. 75: Use the attached map while on the tour to keep track of the steps of the treatment process
- 3.) Tour stops ("P" = Physical treatment process; "B" = Biological treatment process):
 - (1.) Bar Screen: removes items larger than one inch
 - (2.) <u>Influent Wet Well/Raw Sewage Pumps</u>: Monitor flow rates; pumps send flow to grit removal chamber
 - (3.) P Grit Removal Chamber: Heavier particles removed from flow
 - (4.) P Primary Clarifier: "Settleable" organics removed from tank bottoms and "floatables" skimmed off
 - (5.) **B** Aeration Basins: Microbe-assisted digestion of organic material
 - (6.) P Secondary Clarifier: Live microbes removed from tank bottom and recycled to aeration basin
 - (7.) <u>Chlorine Contact Basins:</u> Chlorine kills any remaining microbes (15 May-15 Oct); dechlorinated by addition of SO₂ gas bubbled through effluent. ALL YEAR O₂ gas bubbled through effluent.
 - (8.) **B** <u>High-rate Anaerobic Digesters</u>: 104°F, NO oxygen => kills toxic microbes; converts organic material to complex organics then into inert (nonreactive) material; BYPRODUCT= methane (used to heat digestor)
 - (9.) P <u>Belt Dewatering Press</u>: Anaerobic digestor sludge dewatered by being pressed on belt roller => sludge "cake" which is buried in the landfill

3. Review:

1.) p. C74: Answer the study questions 1 - 6, using the information presented in the manual and from the tour

Effluent dissolved oxygen = 10 – 11 mg/mL (River diss. O_2 = 7.5-8.5 mg/mL)