CI V	560	Thermody	momica	and Igate	ones in	Goology
UL I	30U	Inermoay	vnamics a	ana Isou	opes in	Geology

Name			

Thermodynamics and Isotopes in Geology, Problem 1

Stability of Goethite versus Hematite.

Goethite is a Fe-hydroxide (FeO'OH) and hematite is an Fe-oxide (Fe₂O₃), yet the Fe in both is entirely oxidized (Fe³⁺). Both form in oxidizing environments, yet most "red-beds" of sedimentary rock are red because of the presence of earthy hematite, rather than goethite. Which mineral is more stable in water at 25°C and 1 bar, hematite or goethite?

Step 1:

In the space below, write a balanced reaction between hematite and goethite (at 25°C, 1 bar):

Step 2:

 $\Delta G \text{ Fe}_{2}O_{3 \text{ (s)}} = -742.2 \text{ KJ/mol}$ $\Delta G \text{ H}_{2}O_{\text{ (l)}} = -237.129 \text{ KJ/mol}$ $\Delta G \text{ FeO'OH}_{\text{ (s)}} = -487.02 \text{ KJ/mol}$

Calculate the ΔG of reaction (in KJ/mol):

Using the Gibbs Free Energies for hematite, goethite, and liquid water listed above, calculate the ΔG of the products, and reactants:

ΔG products:	
ΔG reactants:	
Which is the "stable" side of the reaction at the Why?	

Describe the relationship between the sign of ΔG_{rxn} and which way the reaction will proceed under the conditions (i.e. is the *product* stable or is the *reactant* stable?).
