Name _____

Thermodynamics and Isotopes in Geology, Problem 3

Dissolved Oxygen in Surface Water.

Let's use thermodynamics to calculate how much oxygen gas (O_2) can be dissolved in water at 25°C and 1 bar pressure. Let's try to get our final answer in parts per million (ppm) by weight (mass).

Step 1:

In the space below, write a reaction between oxygen in the atmosphere and oxygen in surface water:

Step 2:

 $\Delta G_{O2 (g)} = 0.0 \text{ KJ/mol}$ $\Delta G_{O2 (aq)} = 16.4 \text{ KJ/mol}$

Using the Gibbs Free Energies for oxygen gas and dissolved (aqueous) oxygen gas listed above, calculate the ΔG of the reaction in Step 1. Express your final answer in J/mole.

Step 3:

Calculate the logK_{eq} for your reaction using the equation discussed in class. Express your final answer with a value for K_{eq} (i.e. $K_{eq} = 10^x$).

Step 4:

Write an expression for the K_{eq} using activities of products and reactants.

Step 5:

Using K_{eq} from Step 3, and what you know is the $aO_{2(g)}$ in our atmosphere, calculate the $aO_{2(aq)}$ dissolved in surface water:

Step 6:

For "ideal" solutes, activity (a) is the same as molality (m; moles of solute per kilogram of solvent). Express your answer in Step 5 as molality.

Step 7:

The mass of O_2 is 32 grams per mole. Based on your answer in Step 6, how many grams of $O_{2 \text{ (aq)}}$ are found in surface water?

Step 8:

Lastly, convert the value obtained in Step 7 to ppm (by weight).

How many ppm O_2 can be dissolved in surface water?

What do you think happens to the equilibrium amount of $O_{2 (aq)}$ at T = 5°C (i.e. cold water)?

What impact may this have on respiring organisms like fish?