GLY 560 -- Thermodynamics and Isotopes in Geology
Name \qquad

Thermodynamics and Isotopes in Geology, Problem 3

Dissolved Oxygen in Surface Water.

Let's use thermodynamics to calculate how much oxygen gas $\left(\mathrm{O}_{2}\right)$ can be dissolved in water at $25^{\circ} \mathrm{C}$ and 1 bar pressure. Let's try to get our final answer in parts per million (ppm) by weight (mass).

Step 1:

In the space below, write a reaction between oxygen in the atmosphere and oxygen in surface water:

Step 2:

$\Delta \mathrm{G}_{\mathrm{O} 2(\mathrm{~g})}=0.0 \mathrm{KJ} / \mathrm{mol}$
$\Delta \mathrm{G}_{\mathrm{O} 2(\mathrm{aq})}=16.4 \mathrm{KJ} / \mathrm{mol}$
Using the Gibbs Free Energies for oxygen gas and dissolved (aqueous) oxygen gas listed above, calculate the ΔG of the reaction in Step 1. Express your final answer in $\mathrm{J} / \mathrm{mole}$.

Step 3:

Calculate the $\log \mathrm{K}_{\mathrm{eq}}$ for your reaction using the equation discussed in class. Express your final answer with a value for $\mathrm{K}_{\mathrm{eq}}\left(\right.$ i.e. $\mathrm{K}_{\mathrm{eq}}=10^{\mathrm{x}}$).

Step 4:

Write an expression for the K_{eq} using activities of products and reactants.

Step 5:

Using $\mathrm{K}_{\text {eq }}$ from Step 3, and what you know is the $a \mathrm{O}_{2(\mathrm{~g})}$ in our atmosphere, calculate the $a \mathrm{O}_{2 \text { (aq) }}$ dissolved in surface water:

Step 6:

For "ideal" solutes, activity (a) is the same as molality (m; moles of solute per kilogram of solvent). Express your answer in Step 5 as molality.

Step 7:

The mass of O_{2} is 32 grams per mole. Based on your answer in Step 6, how many grams of $\mathrm{O}_{2 \text { (aq) }}$ are found in surface water?

Step 8:

Lastly, convert the value obtained in Step 7 to ppm (by weight).

How many ppm O_{2} can be dissolved in surface water? \qquad
What do you think happens to the equilibrium amount of $\mathrm{O}_{2(\mathrm{aq})}$ at $\mathrm{T}=5^{\circ} \mathrm{C}$ (i.e. cold water)?

What impact may this have on respiring organisms like fish?

