
Chapter Five
Similarity

While studying matrix equivalence, we have shown that for any homomorphism
there are bases B and D such that the representation matrix has a block partial-
identity form.

RepB,D(h) =
(

Identity Zero
Zero Zero

)

This representation describes the map as sending c1
~β1 + · · · + cn

~βn to c1
~δ1 +

· · · + ck
~δk + ~0 + · · · + ~0, where n is the dimension of the domain and k is the

dimension of the range. So, under this representation the action of the map is
easy to understand because most of the matrix entries are zero.

This chapter considers the special case where the domain and the codomain
are equal, that is, where the homomorphism is a transformation. In this case
we naturally ask to find a single basis B so that RepB,B(t) is as simple as
possible (we will take ‘simple’ to mean that it has many zeroes). A matrix
having the above block partial-identity form is not always possible here. But we
will develop a form that comes close, a representation that is nearly diagonal.

I Complex Vector Spaces

This chapter requires that we factor polynomials. Of course, many polynomials
do not factor over the real numbers; for instance, x2 + 1 does not factor into
the product of two linear polynomials with real coefficients. For that reason, we
shall from now on take our scalars from the complex numbers.

That is, we are shifting from studying vector spaces over the real numbers
to vector spaces over the complex numbers — in this chapter vector and matrix
entries are complex.

Any real number is a complex number and a glance through this chapter
shows that most of the examples use only real numbers. Nonetheless, the critical
theorems require that the scalars be complex numbers, so the first section below
is a quick review of complex numbers.
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346 Chapter Five. Similarity

In this book we are moving to the more general context of taking scalars to
be complex only for the pragmatic reason that we must do so in order to develop
the representation. We will not go into using other sets of scalars in more detail
because it could distract from our goal. However, the idea of taking scalars
from a structure other than the real numbers is an interesting one. Delightful
presentations taking this approach are in [Halmos] and [Hoffman & Kunze].

I.1 Factoring and Complex Numbers; A Review

This subsection is a review only and we take the main results as known. For
proofs, see [Birkhoff & MacLane] or [Ebbinghaus].

Just as integers have a division operation —e.g., ‘4 goes 5 times into 21 with
remainder 1’ — so do polynomials.

1.1 Theorem (Division Theorem for Polynomials) Let c(x) be a polyno-
mial. If m(x) is a non-zero polynomial then there are quotient and remainder
polynomials q(x) and r(x) such that

c(x) = m(x) · q(x) + r(x)

where the degree of r(x) is strictly less than the degree of m(x).

In this book constant polynomials, including the zero polynomial, are said to
have degree 0. (This is not the standard definition, but it is convienent here.)

The point of the integer division statement ‘4 goes 5 times into 21 with
remainder 1’ is that the remainder is less than 4 — while 4 goes 5 times, it does
not go 6 times. In the same way, the point of the polynomial division statement
is its final clause.

1.2 Example If c(x) = 2x3 − 3x2 + 4x and m(x) = x2 + 1 then q(x) = 2x− 3
and r(x) = 2x + 3. Note that r(x) has a lower degree than m(x).

1.3 Corollary The remainder when c(x) is divided by x − λ is the constant
polynomial r(x) = c(λ).

Proof. The remainder must be a constant polynomial because it is of degree less
than the divisor x− λ, To determine the constant, take m(x) from the theorem
to be x− λ and substitute λ for x to get c(λ) = (λ− λ) · q(λ) + r(x). QED

If a divisor m(x) goes into a dividend c(x) evenly, meaning that r(x) is the
zero polynomial, then m(x) is a factor of c(x). Any root of the factor (any
λ ∈ R such that m(λ) = 0) is a root of c(x) since c(λ) = m(λ) · q(λ) = 0. The
prior corollary immediately yields the following converse.

1.4 Corollary If λ is a root of the polynomial c(x) then x − λ divides c(x)
evenly, that is, x− λ is a factor of c(x).
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Finding the roots and factors of a high-degree polynomial can be hard. But
for second-degree polynomials we have the quadratic formula: the roots of ax2+
bx + c are

λ1 =
−b +

√
b2 − 4ac

2a
λ2 =

−b−√b2 − 4ac

2a

(if the discriminant b2−4ac is negative then the polynomial has no real number
roots). A polynomial that cannot be factored into two lower-degree polynomials
with real number coefficients is irreducible over the reals.

1.5 Theorem Any constant or linear polynomial is irreducible over the reals.
A quadratic polynomial is irreducible over the reals if and only if its discrimi-
nant is negative. No cubic or higher-degree polynomial is irreducible over the
reals.

1.6 Corollary Any polynomial with real coefficients can be factored into linear
and irreducible quadratic polynomials. That factorization is unique; any two
factorizations have the same powers of the same factors.

Note the analogy with the prime factorization of integers. In both cases, the
uniqueness clause is very useful.

1.7 Example Because of uniqueness we know, without multiplying them out,
that (x + 3)2(x2 + 1)3 does not equal (x + 3)4(x2 + x + 1)2.

1.8 Example By uniqueness, if c(x) = m(x) · q(x) then where c(x) = (x −
3)2(x + 2)3 and m(x) = (x− 3)(x + 2)2, we know that q(x) = (x− 3)(x + 2).

While x2 + 1 has no real roots and so doesn’t factor over the real numbers,
if we imagine a root —traditionally denoted i so that i2 + 1 = 0 — then x2 + 1
factors into a product of linears (x− i)(x + i).

So we adjoin this root i to the reals and close the new system with respect
to addition, multiplication, etc. (i.e., we also add 3 + i, and 2i, and 3 + 2i, etc.,
putting in all linear combinations of 1 and i). We then get a new structure, the
complex numbers, denoted C.

In C we can factor (obviously, at least some) quadratics that would be irre-
ducible if we were to stick to the real numbers. Surprisingly, in C we can not
only factor x2 + 1 and its close relatives, we can factor any quadratic.

ax2 + bx + c = a · (x− −b +
√

b2 − 4ac

2a

) · (x− −b−√b2 − 4ac

2a

)

1.9 Example The second degree polynomial x2+x+1 factors over the complex
numbers into the product of two first degree polynomials.

(
x− −1 +

√−3
2

)(
x− −1−√−3

2
)

=
(
x− (−1

2
+
√

3
2

i)
)(

x− (−1
2
−
√

3
2

i)
)

1.10 Corollary (Fundamental Theorem of Algebra) Polynomials with
complex coefficients factor into linear polynomials with complex coefficients.
The factorization is unique.
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I.2 Complex Representations

Recall the definitions of the complex number addition

(a + bi) + (c + di) = (a + c) + (b + d)i

and multiplication.

(a + bi)(c + di) = ac + adi + bci + bd(−1)
= (ac− bd) + (ad + bc)i

2.1 Example For instance, (1−2i) + (5+4i) = 6+2i and (2−3i)(4−0.5i) =
6.5− 13i.

Handling scalar operations with those rules, all of the operations that we’ve
covered for real vector spaces carry over unchanged.

2.2 Example Matrix multiplication is the same, although the scalar arithmetic
involves more bookkeeping.

(
1 + 1i 2− 0i

i −2 + 3i

)(
1 + 0i 1− 0i

3i −i

)

=
(

(1 + 1i) · (1 + 0i) + (2− 0i) · (3i) (1 + 1i) · (1− 0i) + (2− 0i) · (−i)
(i) · (1 + 0i) + (−2 + 3i) · (3i) (i) · (1− 0i) + (−2 + 3i) · (−i)

)

=
(

1 + 7i 1− 1i
−9− 5i 3 + 3i

)

Everything else from prior chapters that we can, we shall also carry over
unchanged. For instance, we shall call this

〈




1 + 0i
0 + 0i

...
0 + 0i


 , . . . ,




0 + 0i
0 + 0i

...
1 + 0i


〉

the standard basis for Cn as a vector space over C and again denote it En.
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II Similarity

II.1 Definition and Examples

We’ve defined H and Ĥ to be matrix-equivalent if there are nonsingular ma-
trices P and Q such that Ĥ = PHQ. That definition is motivated by this
diagram

Vw.r.t. B
h−−−−→
H

Ww.r.t. D

id
y id

y
Vw.r.t. B̂

h−−−−→
Ĥ

Ww.r.t. D̂

showing that H and Ĥ both represent h but with respect to different pairs of
bases. We now specialize that setup to the case where the codomain equals the
domain, and where the codomain’s basis equals the domain’s basis.

Vw.r.t. B
t−−−−→ Vw.r.t. B

id
y id

y
Vw.r.t. D

t−−−−→ Vw.r.t. D

To move from the lower left to the lower right we can either go straight over, or
up, over, and then down. In matrix terms,

RepD,D(t) = RepB,D(id) RepB,B(t)
(
RepB,D(id)

)−1

(recall that a representation of composition like this one reads right to left).

1.1 Definition The matrices T and S are similar if there is a nonsingular P
such that T = PSP−1.

Since nonsingular matrices are square, the similar matrices T and S must be
square and of the same size.

1.2 Example With these two,

P =
(

2 1
1 1

)
S =

(
2 −3
1 −1

)

calculation gives that S is similar to this matrix.

T =
(

0 −1
1 1

)
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1.3 Example The only matrix similar to the zero matrix is itself: PZP−1 =
PZ = Z. The only matrix similar to the identity matrix is itself: PIP−1 =
PP−1 = I.

Since matrix similarity is a special case of matrix equivalence, if two ma-
trices are similar then they are equivalent. What about the converse: must
matrix equivalent square matrices be similar? The answer is no. The prior
example shows that the similarity classes are different from the matrix equiv-
alence classes, because the matrix equivalence class of the identity consists of
all nonsingular matrices of that size. Thus, for instance, these two are matrix
equivalent but not similar.

T =
(

1 0
0 1

)
S =

(
1 2
0 3

)

So some matrix equivalence classes split into two or more similarity classes—
similarity gives a finer partition than does equivalence. This picture shows some
matrix equivalence classes subdivided into similarity classes.

. . .
A

B

To understand the similarity relation we shall study the similarity classes.
We approach this question in the same way that we’ve studied both the row
equivalence and matrix equivalence relations, by finding a canonical form for
representatives∗ of the similarity classes, called Jordan form. With this canon-
ical form, we can decide if two matrices are similar by checking whether they
reduce to the same representative. We’ve also seen with both row equivalence
and matrix equivalence that a canonical form gives us insight into the ways in
which members of the same class are alike (e.g., two identically-sized matrices
are matrix equivalent if and only if they have the same rank).

Exercises
1.4 For

S =

(
1 3
−2 −6

)
T =

(
0 0

−11/2 −5

)
P =

(
4 2
−3 2

)

check that T = PSP−1.

X 1.5 Example 1.3 shows that the only matrix similar to a zero matrix is itself and
that the only matrix similar to the identity is itself.
(a) Show that the 1×1 matrix (2), also, is similar only to itself.
(b) Is a matrix of the form cI for some scalar c similar only to itself?
(c) Is a diagonal matrix similar only to itself?

1.6 Show that these matrices are not similar.(
1 0 4
1 1 3
2 1 7

) (
1 0 1
0 1 1
3 1 2

)

∗ More information on representatives is in the appendix.
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1.7 Consider the transformation t : P2 → P2 described by x2 7→ x + 1, x 7→ x2 − 1,
and 1 7→ 3.
(a) Find T = RepB,B(t) where B = 〈x2, x, 1〉.
(b) Find S = RepD,D(t) where D = 〈1, 1 + x, 1 + x + x2〉.
(c) Find the matrix P such that T = PSP−1.

X 1.8 Exhibit an nontrivial similarity relationship in this way: let t : C2 → C2 act by(
1
2

)
7→

(
3
0

) (
−1
1

)
7→

(
−1
2

)

and pick two bases, and represent t with respect to then T = RepB,B(t) and

S = RepD,D(t). Then compute the P and P−1 to change bases from B to D and
back again.

1.9 Explain Example 1.3 in terms of maps.

X 1.10 Are there two matrices A and B that are similar while A2 and B2 are not
similar? [Halmos]

X 1.11 Prove that if two matrices are similar and one is invertible then so is the other.

X 1.12 Show that similarity is an equivalence relation.

1.13 Consider a matrix representing, with respect to some B, B, reflection across
the x-axis in R2. Consider also a matrix representing, with respect to some D, D,
reflection across the y-axis. Must they be similar?

1.14 Prove that similarity preserves determinants and rank. Does the converse
hold?

1.15 Is there a matrix equivalence class with only one matrix similarity class inside?
One with infinitely many similarity classes?

1.16 Can two different diagonal matrices be in the same similarity class?

X 1.17 Prove that if two matrices are similar then their k-th powers are similar when
k > 0. What if k ≤ 0?

X 1.18 Let p(x) be the polynomial cnxn + · · ·+ c1x + c0. Show that if T is similar to
S then p(T ) = cnT n + · · ·+ c1T + c0I is similar to p(S) = cnSn + · · ·+ c1S + c0I.

1.19 List all of the matrix equivalence classes of 1×1 matrices. Also list the sim-
ilarity classes, and describe which similarity classes are contained inside of each
matrix equivalence class.

1.20 Does similarity preserve sums?

1.21 Show that if T − λI and N are similar matrices then T and N + λI are also
similar.

II.2 Diagonalizability

The prior subsection defines the relation of similarity and shows that, although
similar matrices are necessarily matrix equivalent, the converse does not hold.
Some matrix-equivalence classes break into two or more similarity classes (the
nonsingular n×n matrices, for instance). This means that the canonical form
for matrix equivalence, a block partial-identity, cannot be used as a canonical
form for matrix similarity because the partial-identities cannot be in more than
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one similarity class, so there are similarity classes without one. This picture
illustrates. As earlier in this book, class representatives are shown with stars.

. . .

?

?
?
?

?
? ? ?

?

We are developing a canonical form for representatives of the similarity classes.
We naturally try to build on our previous work, meaning first that the partial
identity matrices should represent the similarity classes into which they fall,
and beyond that, that the representatives should be as simple as possible. The
simplest extension of the partial-identity form is a diagonal form.

2.1 Definition A transformation is diagonalizable if it has a diagonal repre-
sentation with respect to the same basis for the codomain as for the domain.
A diagonalizable matrix is one that is similar to a diagonal matrix: T is diag-
onalizable if there is a nonsingular P such that PTP−1 is diagonal.

2.2 Example The matrix (
4 −2
1 1

)

is diagonalizable.

(
2 0
0 3

)
=

(−1 2
1 −1

)(
4 −2
1 1

)(−1 2
1 −1

)−1

2.3 Example Not every matrix is diagonalizable. The square of

N =
(

0 0
1 0

)

is the zero matrix. Thus, for any map n that N represents (with respect to the
same basis for the domain as for the codomain), the composition n ◦ n is the
zero map. This implies that no such map n can be diagonally represented (with
respect to any B, B) because no power of a nonzero diagonal matrix is zero.
That is, there is no diagonal matrix in N ’s similarity class.

That example shows that a diagonal form will not do for a canonical form —
we cannot find a diagonal matrix in each matrix similarity class. However, the
canonical form that we are developing has the property that if a matrix can
be diagonalized then the diagonal matrix is the canonical representative of the
similarity class. The next result characterizes which maps can be diagonalized.

2.4 Corollary A transformation t is diagonalizable if and only if there is a
basis B = 〈~β1, . . . , ~βn〉 and scalars λ1, . . . , λn such that t(~βi) = λi

~βi for each i.



Section II. Similarity 353

Proof. This follows from the definition by considering a diagonal representation
matrix.

RepB,B(t) =




...
...

RepB(t(~β1)) · · · RepB(t(~βn))
...

...


 =




λ1 0
...

. . .
...

0 λn




This representation is equivalent to the existence of a basis satisfying the stated
conditions simply by the definition of matrix representation. QED

2.5 Example To diagonalize

T =
(

3 2
0 1

)

we take it as the representation of a transformation with respect to the standard
basis T = RepE2,E2(t) and we look for a basis B = 〈~β1, ~β2〉 such that

RepB,B(t) =
(

λ1 0
0 λ2

)

that is, such that t(~β1) = λ1
~β1 and t(~β2) = λ2

~β2.
(

3 2
0 1

)
~β1 = λ1 · ~β1

(
3 2
0 1

)
~β2 = λ2 · ~β2

We are looking for scalars x such that this equation
(

3 2
0 1

)(
b1

b2

)
= x ·

(
b1

b2

)

has solutions b1 and b2, which are not both zero. Rewrite that as a linear system.

(3− x) · b1 + 2 · b2 = 0
(1− x) · b2 = 0 (∗)

In the bottom equation the two numbers multiply to give zero only if at least
one of them is zero so there are two possibilities, b2 = 0 and x = 1. In the b2 = 0
possibility, the first equation gives that either b1 = 0 or x = 3. Since the case
of both b1 = 0 and b2 = 0 is disallowed, we are left looking at the possibility of
x = 3. With it, the first equation in (∗) is 0 · b1 + 2 · b2 = 0 and so associated
with 3 are vectors with a second component of zero and a first component that
is free. (

3 2
0 1

)(
b1

0

)
= 3 ·

(
b1

0

)

That is, one solution to (∗) is λ1 = 3, and we have a first basis vector.

~β1 =
(

1
0

)
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In the x = 1 possibility, the first equation in (∗) is 2 · b1 + 2 · b2 = 0, and so
associated with 1 are vectors whose second component is the negative of their
first component. (

3 2
0 1

)(
b1

−b1

)
= 1 ·

(
b1

−b1

)

Thus, another solution is λ2 = 1 and a second basis vector is this.

~β2 =
(

1
−1

)

To finish, drawing the similarity diagram

R2
w.r.t. E2

t−−−−→
T

R2
w.r.t. E2

id
y id

y
R2

w.r.t. B
t−−−−→
D

R2
w.r.t. B

and noting that the matrix RepB,E2(id) is easy leads to this diagonalization.
(

3 0
0 1

)
=

(
1 1
0 −1

)−1 (
3 2
0 1

)(
1 1
0 −1

)

In the next subsection, we will expand on that example by considering more
closely the property of Corollary 2.4. This includes seeing another way, the way
that we will routinely use, to find the λ’s.

Exercises
X 2.6 Repeat Example 2.5 for the matrix from Example 2.2.

2.7 Diagonalize these upper triangular matrices.

(a)

(
−2 1
0 2

)
(b)

(
5 4
0 1

)

X 2.8 What form do the powers of a diagonal matrix have?

2.9 Give two same-sized diagonal matrices that are not similar. Must any two
different diagonal matrices come from different similarity classes?

2.10 Give a nonsingular diagonal matrix. Can a diagonal matrix ever be singular?

X 2.11 Show that the inverse of a diagonal matrix is the diagonal of the the inverses,
if no element on that diagonal is zero. What happens when a diagonal entry is
zero?

2.12 The equation ending Example 2.5(
1 1
0 −1

)−1 (
3 2
0 1

)(
1 1
0 −1

)
=

(
3 0
0 1

)

is a bit jarring because for P we must take the first matrix, which is shown as an
inverse, and for P−1 we take the inverse of the first matrix, so that the two −1
powers cancel and this matrix is shown without a superscript −1.
(a) Check that this nicer-appearing equation holds.(

3 0
0 1

)
=

(
1 1
0 −1

)(
3 2
0 1

)(
1 1
0 −1

)−1
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(b) Is the previous item a coincidence? Or can we always switch the P and the
P−1?

2.13 Show that the P used to diagonalize in Example 2.5 is not unique.

2.14 Find a formula for the powers of this matrix Hint : see Exercise 8.(
−3 1
−4 2

)

X 2.15 Diagonalize these.

(a)

(
1 1
0 0

)
(b)

(
0 1
1 0

)

2.16 We can ask how diagonalization interacts with the matrix operations. Assume
that t, s : V → V are each diagonalizable. Is ct diagonalizable for all scalars c?
What about t + s? t ◦ s?

X 2.17 Show that matrices of this form are not diagonalizable.(
1 c
0 1

)
c 6= 0

2.18 Show that each of these is diagonalizable.

(a)

(
1 2
2 1

)
(b)

(
x y
y z

)
x, y, z scalars

II.3 Eigenvalues and Eigenvectors

In this subsection we will focus on the property of Corollary 2.4.

3.1 Definition A transformation t : V → V has a scalar eigenvalue λ if there
is a nonzero eigenvector ~ζ ∈ V such that t(~ζ) = λ · ~ζ.

(“Eigen” is German for “characteristic of” or “peculiar to”; some authors call
these characteristic values and vectors. No authors call them “peculiar”.)

3.2 Example The projection map



x
y
z


 π7−→




x
y
0


 x, y, z ∈ C

has an eigenvalue of 1 associated with any eigenvector of the form



x
y
0




where x and y are non-0 scalars. On the other hand, 2 is not an eigenvalue of
π since no non-~0 vector is doubled.

That example shows why the ‘non-~0’ appears in the definition. Disallowing
~0 as an eigenvector eliminates trivial eigenvalues.
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3.3 Example The only transformation on the trivial space {~0 } is ~0 7→ ~0. This
map has no eigenvalues because there are no non-~0 vectors ~v mapped to a scalar
multiple λ · ~v of themselves.

3.4 Example Consider the homomorphism t : P1 → P1 given by c0 + c1x 7→
(c0 + c1)+ (c0 + c1)x. The range of t is one-dimensional. Thus an application of
t to a vector in the range will simply rescale that vector: c + cx 7→ (2c) + (2c)x.
That is, t has an eigenvalue of 2 associated with eigenvectors of the form c + cx
where c 6= 0.

This map also has an eigenvalue of 0 associated with eigenvectors of the form
c− cx where c 6= 0.

3.5 Definition A square matrix T has a scalar eigenvalue λ associated with
the non-~0 eigenvector ~ζ if T~ζ = λ · ~ζ.

3.6 Remark Although this extension from maps to matrices is obvious, there
is a point that must be made. Eigenvalues of a map are also the eigenvalues of
matrices representing that map, and so similar matrices have the same eigen-
values. But the eigenvectors are different— similar matrices need not have the
same eigenvectors.

For instance, consider again the transformation t : P1 → P1 given by c0 +
c1x 7→ (c0+c1)+(c0+c1)x. It has an eigenvalue of 2 associated with eigenvectors
of the form c + cx where c 6= 0. If we represent t with respect to B = 〈1 +
1x, 1− 1x〉

T = RepB,B(t) =
(

2 0
0 0

)

then 2 is an eigenvalue of T , associated with these eigenvectors.

{
(

c0

c1

) ∣∣
(

2 0
0 0

) (
c0

c1

)
=

(
2c0

2c1

)
} = {

(
c0

0

) ∣∣ c0 ∈ C, c0 6= 0}

On the other hand, representing t with respect to D = 〈2 + 1x, 1 + 0x〉 gives

S = RepD,D(t) =
(

3 1
−3 −1

)

and the eigenvectors of S associated with the eigenvalue 2 are these.

{
(

c0

c1

) ∣∣
(

3 1
−3 −1

)(
c0

c1

)
=

(
2c0

2c1

)
} = {

(
0
c1

) ∣∣ c1 ∈ C, c1 6= 0}

Thus similar matrices can have different eigenvectors.
Here is an informal description of what’s happening. The underlying trans-

formation doubles the eigenvectors ~v 7→ 2 ·~v. But when the matrix representing
the transformation is T = RepB,B(t) then it “assumes” that column vectors are
representations with respect to B. In contrast, S = RepD,D(t) “assumes” that
column vectors are representations with respect to D. So the vectors that get
doubled by each matrix look different.
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The next example illustrates the basic tool for finding eigenvectors and eigen-
values.

3.7 Example What are the eigenvalues and eigenvectors of this matrix?

T =




1 2 1
2 0 −2
−1 2 3




To find the scalars x such that T~ζ = x~ζ for non-~0 eigenvectors ~ζ, bring every-
thing to the left-hand side




1 2 1
2 0 −2
−1 2 3







z1

z2

z3


− x




z1

z2

z3


 = ~0

and factor (T−xI)~ζ = ~0. (Note that it says T−xI; the expression T−x doesn’t
make sense because T is a matrix while x is a scalar.) This homogeneous linear
system 


1− x 2 1

2 0− x −2
−1 2 3− x







z1

z2

z3


 =




0
0
0




has a non-~0 solution if and only if the matrix is singular. We can determine
when that happens.

0 = |T − xI|

=

∣∣∣∣∣∣

1− x 2 1
2 0− x −2
−1 2 3− x

∣∣∣∣∣∣
= x3 − 4x2 + 4x

= x(x− 2)2

The eigenvalues are λ1 = 0 and λ2 = 2. To find the associated eigenvectors,
plug in each eigenvalue. Plugging in λ1 = 0 gives




1− 0 2 1
2 0− 0 −2
−1 2 3− 0







z1

z2

z3


 =




0
0
0


 =⇒




z1

z2

z3


 =




a
−a
a




for a scalar parameter a 6= 0 (a is non-0 because eigenvectors must be non-~0).
In the same way, plugging in λ2 = 2 gives




1− 2 2 1
2 0− 2 −2
−1 2 3− 2







z1

z2

z3


 =




0
0
0


 =⇒




z1

z2

z3


 =




b
0
b




with b 6= 0.
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3.8 Example If

S =
(

π 1
0 3

)

(here π is not a projection map, it is the number 3.14 . . .) then
∣∣∣∣
(

π − x 1
0 3− x

)∣∣∣∣ = (x− π)(x− 3)

so S has eigenvalues of λ1 = π and λ2 = 3. To find associated eigenvectors, first
plug in λ1 for x:

(
π − π 1

0 3− π

)(
z1

z2

)
=

(
0
0

)
=⇒

(
z1

z2

)
=

(
a
0

)

for a scalar a 6= 0, and then plug in λ2:(
π − 3 1

0 3− 3

)(
z1

z2

)
=

(
0
0

)
=⇒

(
z1

z2

)
=

(−b/π − 3
b

)

where b 6= 0.

3.9 Definition The characteristic polynomial of a square matrix T is the
determinant of the matrix T − xI, where x is a variable. The characteristic
equation is |T − xI| = 0. The characteristic polynomial of a transformation t
is the polynomial of any RepB,B(t).

Exercise 30 checks that the characteristic polynomial of a transformation is
well-defined, that is, any choice of basis yields the same polynomial.

3.10 Lemma A linear transformation on a nontrivial vector space has at least
one eigenvalue.

Proof. Any root of the characteristic polynomial is an eigenvalue. Over the
complex numbers, any polynomial of degree one or greater has a root. (This is
the reason that in this chapter we’ve gone to scalars that are complex.) QED

Notice the familiar form of the sets of eigenvectors in the above examples.

3.11 Definition The eigenspace of a transformation t associated with the
eigenvalue λ is Vλ = {~ζ

∣∣ t(~ζ ) = λ~ζ } ∪ {~0 }. The eigenspace of a matrix is
defined analogously.

3.12 Lemma An eigenspace is a subspace.

Proof. An eigenspace must be nonempty— for one thing it contains the zero
vector—and so we need only check closure. Take vectors ~ζ1, . . . , ~ζn from Vλ, to
show that any linear combination is in Vλ

t(c1
~ζ1 + c2

~ζ2 + · · ·+ cn
~ζn) = c1t(~ζ1) + · · ·+ cnt(~ζn)

= c1λ~ζ1 + · · ·+ cnλ~ζn

= λ(c1
~ζ1 + · · ·+ cn

~ζn)

(the second equality holds even if any ~ζi is ~0 since t(~0) = λ ·~0 = ~0). QED
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3.13 Example In Example 3.8 the eigenspace associated with the eigenvalue
π and the eigenspace associated with the eigenvalue 3 are these.

Vπ = {
(

a
0

) ∣∣ a ∈ R} V3 = {
(−b/π − 3

b

) ∣∣ b ∈ R}

3.14 Example In Example 3.7, these are the eigenspaces associated with the
eigenvalues 0 and 2.

V0 = {



a
−a
a


 ∣∣ a ∈ R}, V2 = {




b
0
b


 ∣∣ b ∈ R}.

3.15 Remark The characteristic equation is 0 = x(x−2)2 so in some sense 2 is
an eigenvalue “twice”. However there are not “twice” as many eigenvectors, in
that the dimension of the eigenspace is one, not two. The next example shows
a case where a number, 1, is a double root of the characteristic equation and
the dimension of the associated eigenspace is two.

3.16 Example With respect to the standard bases, this matrix



1 0 0
0 1 0
0 0 0




represents projection.



x
y
z


 π7−→




x
y
0


 x, y, z ∈ C

Its eigenspace associated with the eigenvalue 0 and its eigenspace associated
with the eigenvalue 1 are easy to find.

V0 = {



0
0
c3


 ∣∣ c3 ∈ C} V1 = {




c1

c2

0


 ∣∣ c1, c2 ∈ C}

By the lemma, if two eigenvectors ~v1 and ~v2 are associated with the same
eigenvalue then any linear combination of those two is also an eigenvector as-
sociated with that same eigenvalue. But, if two eigenvectors ~v1 and ~v2 are
associated with different eigenvalues then the sum ~v1 + ~v2 need not be related
to the eigenvalue of either one. In fact, just the opposite. If the eigenvalues are
different then the eigenvectors are not linearly related.

3.17 Theorem For any set of distinct eigenvalues of a map or matrix, a set
of associated eigenvectors, one per eigenvalue, is linearly independent.
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Proof. We will use induction on the number of eigenvalues. If there is no eigen-
value or only one eigenvalue then the set of associated eigenvectors is empty or is
a singleton set with a non-~0 member, and in either case is linearly independent.

For induction, assume that the theorem is true for any set of k distinct eigen-
values, suppose that λ1, . . . , λk+1 are distinct eigenvalues, and let ~v1, . . . , ~vk+1

be associated eigenvectors. If c1~v1 + · · ·+ ck~vk + ck+1~vk+1 = ~0 then after multi-
plying both sides of the displayed equation by λk+1, applying the map or matrix
to both sides of the displayed equation, and subtracting the first result from the
second, we have this.

c1(λk+1 − λ1)~v1 + · · ·+ ck(λk+1 − λk)~vk + ck+1(λk+1 − λk+1)~vk+1 = ~0

The induction hypothesis now applies: c1(λk+1−λ1) = 0, . . . , ck(λk+1−λk) = 0.
Thus, as all the eigenvalues are distinct, c1, . . . , ck are all 0. Finally, now ck+1

must be 0 because we are left with the equation ~vk+1 6= ~0. QED

3.18 Example The eigenvalues of



2 −2 2
0 1 1
−4 8 3




are distinct: λ1 = 1, λ2 = 2, and λ3 = 3. A set of associated eigenvectors like

{



2
1
0


 ,




9
4
4


 ,




2
1
2


}

is linearly independent.

3.19 Corollary An n×n matrix with n distinct eigenvalues is diagonalizable.

Proof. Form a basis of eigenvectors. Apply Corollary 2.4. QED

Exercises
3.20 For each, find the characteristic polynomial and the eigenvalues.

(a)

(
10 −9
4 −2

)
(b)

(
1 2
4 3

)
(c)

(
0 3
7 0

)
(d)

(
0 0
0 0

)

(e)

(
1 0
0 1

)

X 3.21 For each matrix, find the characteristic equation, and the eigenvalues and
associated eigenvectors.

(a)

(
3 0
8 −1

)
(b)

(
3 2
−1 0

)

3.22 Find the characteristic equation, and the eigenvalues and associated eigenvec-
tors for this matrix. Hint. The eigenvalues are complex.(

−2 −1
5 2

)
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3.23 Find the characteristic polynomial, the eigenvalues, and the associated eigen-
vectors of this matrix. (

1 1 1
0 0 1
0 0 1

)

X 3.24 For each matrix, find the characteristic equation, and the eigenvalues and
associated eigenvectors.

(a)

(
3 −2 0
−2 3 0
0 0 5

)
(b)

(
0 1 0
0 0 1
4 −17 8

)

X 3.25 Let t : P2 → P2 be

a0 + a1x + a2x
2 7→ (5a0 + 6a1 + 2a2)− (a1 + 8a2)x + (a0 − 2a2)x

2.

Find its eigenvalues and the associated eigenvectors.

3.26 Find the eigenvalues and eigenvectors of this map t : M2 →M2.(
a b
c d

)
7→

(
2c a + c

b− 2c d

)

X 3.27 Find the eigenvalues and associated eigenvectors of the differentiation operator
d/dx : P3 → P3.

3.28 Prove that the eigenvalues of a triangular matrix (upper or lower triangular)
are the entries on the diagonal.

X 3.29 Find the formula for the characteristic polynomial of a 2×2 matrix.

3.30 Prove that the characteristic polynomial of a transformation is well-defined.

X 3.31 (a) Can any non-~0 vector in any nontrivial vector space be a eigenvector?
That is, given a ~v 6= ~0 from a nontrivial V , is there a transformation t : V → V
and a scalar λ ∈ R such that t(~v) = λ~v?

(b) Given a scalar λ, can any non-~0 vector in any nontrivial vector space be an
eigenvector associated with the eigenvalue λ?

X 3.32 Suppose that t : V → V and T = RepB,B(t). Prove that the eigenvectors of T

associated with λ are the non-~0 vectors in the kernel of the map represented (with
respect to the same bases) by T − λI.

3.33 Prove that if a, . . . , d are all integers and a + b = c + d then(
a b
c d

)

has integral eigenvalues, namely a + b and a− c.

X 3.34 Prove that if T is nonsingular and has eigenvalues λ1, . . . , λn then T−1 has
eigenvalues 1/λ1, . . . , 1/λn. Is the converse true?

X 3.35 Suppose that T is n×n and c, d are scalars.
(a) Prove that if T has the eigenvalue λ with an associated eigenvector ~v then ~v
is an eigenvector of cT + dI associated with eigenvalue cλ + d.

(b) Prove that if T is diagonalizable then so is cT + dI.

X 3.36 Show that λ is an eigenvalue of T if and only if the map represented by T −λI
is not an isomorphism.

3.37 [Strang 80]
(a) Show that if λ is an eigenvalue of A then λk is an eigenvalue of Ak.
(b) What is wrong with this proof generalizing that? “If λ is an eigenvalue of A
and µ is an eigenvalue for B, then λµ is an eigenvalue for AB, for, if A~x = λ~x
and B~x = µ~x then AB~x = Aµ~x = µA~xµλ~x”?
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3.38 Do matrix-equivalent matrices have the same eigenvalues?

3.39 Show that a square matrix with real entries and an odd number of rows has
at least one real eigenvalue.

3.40 Diagonalize. (−1 2 2
2 2 2
−3 −6 −6

)

3.41 Suppose that P is a nonsingular n×n matrix. Show that the similarity trans-
formation map tP : Mn×n →Mn×n sending T 7→ PTP−1 is an isomorphism.

? 3.42 Show that if A is an n square matrix and each row (column) sums to c then
c is a characteristic root of A. [Math. Mag., Nov. 1967]
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III Nilpotence

The goal of this chapter is to show that every square matrix is similar to one
that is a sum of two kinds of simple matrices. The prior section focused on the
first kind, diagonal matrices. We now consider the other kind.

III.1 Self-Composition

This subsection is optional, although it is necessary for later material in this
section and in the next one.

A linear transformations t : V → V , because it has the same domain and
codomain, can be iterated.∗ That is, compositions of t with itself such as t2 = t◦t
and t3 = t ◦ t ◦ t are defined.

~v

t(~v )

t2(~v )

Note that this power notation for the linear transformation functions dovetails
with the notation that we’ve used earlier for their square matrix representations
because if RepB,B(t) = T then RepB,B(tj) = T j .

1.1 Example For the derivative map d/dx : P3 → P3 given by

a + bx + cx2 + dx3 d/dx7−→ b + 2cx + 3dx2

the second power is the second derivative

a + bx + cx2 + dx3 d2/dx2

7−→ 2c + 6dx

the third power is the third derivative

a + bx + cx2 + dx3 d3/dx3

7−→ 6d

and any higher power is the zero map.

1.2 Example This transformation of the space of 2×2 matrices
(

a b
c d

)
t7−→

(
b a
d 0

)

∗ More information on function interation is in the appendix.
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has this second power (
a b
c d

)
t27−→

(
a b
0 0

)

and this third power. (
a b
c d

)
t37−→

(
b a
0 0

)

After that, t4 = t2 and t5 = t3, etc.

These examples suggest that on iteration more and more zeros appear until
there is a settling down. The next result makes this precise.

1.3 Lemma For any transformation t : V → V , the rangespaces of the powers
form a descending chain

V ⊇ R(t) ⊇ R(t2) ⊇ · · ·

and the nullspaces form an ascending chain.

{~0 } ⊆ N (t) ⊆ N (t2) ⊆ · · ·

Further, there is a k such that for powers less than k the subsets are proper (if
j < k then R(tj) ⊃ R(tj+1) and N (tj) ⊂ N (tj+1)), while for powers greater
than k the sets are equal (if j ≥ k then R(tj) = R(tj+1) and N (tj) = N (tj+1)).

Proof. We will do the rangespace half and leave the rest for Exercise 13. Recall,
however, that for any map the dimension of its rangespace plus the dimension
of its nullspace equals the dimension of its domain. So if the rangespaces shrink
then the nullspaces must grow.

That the rangespaces form chains is clear because if ~w ∈ R(tj+1), so that
~w = tj+1(~v), then ~w = tj( t(~v) ) and so ~w ∈ R(tj). To verify the “further”
property, first observe that if any pair of rangespaces in the chain are equal
R(tk) = R(tk+1) then all subsequent ones are also equal R(tk+1) = R(tk+2),
etc. This is because if t : R(tk+1) → R(tk+2) is the same map, with the same
domain, as t : R(tk) → R(tk+1) and it therefore has the same range: R(tk+1) =
R(tk+2) (and induction shows that it holds for all higher powers). So if the
chain of rangespaces ever stops being strictly decreasing then it is stable from
that point onward.

But the chain must stop decreasing. Each rangespace is a subspace of the one
before it. For it to be a proper subspace it must be of strictly lower dimension
(see Exercise 11). These spaces are finite-dimensional and so the chain can fall
for only finitely-many steps, that is, the power k is at most the dimension of
V . QED

1.4 Example The derivative map a + bx + cx2 + dx3 d/dx7−→ b + 2cx + 3dx2 of
Example 1.1 has this chain of rangespaces

P3 ⊃ P2 ⊃ P1 ⊃ P0 ⊃ {~0 } = {~0 } = · · ·
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and this chain of nullspaces.

{~0 } ⊂ P0 ⊂ P1 ⊂ P2 ⊂ P3 = P3 = · · ·

1.5 Example The transformation π : C3 → C3 projecting onto the first two
coordinates 


c1

c2

c3


 π7−→




c1

c2

0




has C3 ⊃ R(π) = R(π2) = · · · and {~0 } ⊂ N (π) = N (π2) = · · · .
1.6 Example Let t : P2 → P2 be the map c0 + c1x + c2x

2 7→ 2c0 + c2x. As the
lemma describes, on iteration the rangespace shrinks

R(t0) = P2 R(t) = {a + bx
∣∣ a, b ∈ C} R(t2) = {a ∣∣ a ∈ C}

and then stabilizes R(t2) = R(t3) = · · · , while the nullspace grows

N (t0) = {0} N (t) = {cx ∣∣ c ∈ C} N (t2) = {cx + d
∣∣ c, d ∈ C}

and then stabilizes N (t2) = N (t3) = · · · .
This graph illustrates Lemma 1.3. The horizontal axis gives the power j

of a transformation. The vertical axis gives the dimension of the rangespace
of tj as the distance above zero— and thus also shows the dimension of the
nullspace as the distance below the gray horizontal line, because the two add to
the dimension n of the domain.

0 1 2 j n

n

rank(tj)

Power j of the transformation

As sketched, on iteration the rank falls and with it the nullity grows until the
two reach a steady state. This state must be reached by the n-th iterate. The
steady state’s distance above zero is the dimension of the generalized rangespace
and its distance below n is the dimension of the generalized nullspace.

1.7 Definition Let t be a transformation on an n-dimensional space. The
generalized rangespace (or the closure of the rangespace) is R∞(t) = R(tn)
The generalized nullspace (or the closure of the nullspace) is N∞(t) = N (tn).
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Exercises
1.8 Give the chains of rangespaces and nullspaces for the zero and identity trans-
formations.

1.9 For each map, give the chain of rangespaces and the chain of nullspaces, and
the generalized rangespace and the generalized nullspace.
(a) t0 : P2 → P2, a + bx + cx2 7→ b + cx2

(b) t1 : R2 → R2, (
a
b

)
7→

(
0
a

)

(c) t2 : P2 → P2, a + bx + cx2 7→ b + cx + ax2

(d) t3 : R3 → R3, (
a
b
c

)
7→

(
a
a
b

)

1.10 Prove that function composition is associative (t ◦ t) ◦ t = t ◦ (t ◦ t) and so we
can write t3 without specifying a grouping.

1.11 Check that a subspace must be of dimension less than or equal to the dimen-
sion of its superspace. Check that if the subspace is proper (the subspace does not
equal the superspace) then the dimension is strictly less. (This is used in the proof
of Lemma 1.3.)

1.12 Prove that the generalized rangespace R∞(t) is the entire space, and the
generalized nullspace N∞(t) is trivial, if the transformation t is nonsingular. Is
this ‘only if’ also?

1.13 Verify the nullspace half of Lemma 1.3.

1.14 Give an example of a transformation on a three dimensional space whose
range has dimension two. What is its nullspace? Iterate your example until the
rangespace and nullspace stabilize.

1.15 Show that the rangespace and nullspace of a linear transformation need not
be disjoint. Are they ever disjoint?

III.2 Strings

This subsection is optional, and requires material from the optional Direct Sum
subsection.

The prior subsection shows that as j increases, the dimensions of the R(tj)’s
fall while the dimensions of the N (tj)’s rise, in such a way that this rank and
nullity split the dimension of V . Can we say more; do the two split a basis — is
V = R(tj)⊕N (tj)?

The answer is yes for the smallest power j = 0 since V = R(t0)⊕N (t0) =
V ⊕ {~0}. The answer is also yes at the other extreme.

2.1 Lemma Where t : V → V is a linear transformation, the space is the direct
sum V = R∞(t)⊕N∞(t). That is, both dim(V ) = dim(R∞(t)) + dim(N∞(t))
and R∞(t) ∩N∞(t) = {~0 }.
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Proof. We will verify the second sentence, which is equivalent to the first. The
first clause, that the dimension n of the domain of tn equals the rank of tn plus
the nullity of tn, holds for any transformation and so we need only verify the
second clause.

Assume that ~v ∈ R∞(t) ∩ N∞(t) = R(tn) ∩ N (tn), to prove that ~v is ~0.
Because ~v is in the nullspace, tn(~v) = ~0. On the other hand, because R(tn) =
R(tn+1), the map t : R∞(t) → R∞(t) is a dimension-preserving homomorphism
and therefore is one-to-one. A composition of one-to-one maps is one-to-one,
and so tn : R∞(t) → R∞(t) is one-to-one. But now—because only ~0 is sent by
a one-to-one linear map to ~0 —the fact that tn(~v) = ~0 implies that ~v = ~0. QED

2.2 Note Technically we should distinguish the map t : V → V from the map
t : R∞(t) → R∞(t) because the domains or codomains might differ. The second
one is said to be the restriction∗ of t to R(tk). We shall use later a point from
that proof about the restriction map, namely that it is nonsingular.

In contrast to the j = 0 and j = n cases, for intermediate powers the space
V might not be the direct sum of R(tj) and N (tj). The next example shows
that the two can have a nontrivial intersection.

2.3 Example Consider the transformation of C2 defined by this action on the
elements of the standard basis.

(
1
0

)
n7−→

(
0
1

) (
0
1

)
n7−→

(
0
0

)
N = RepE2,E2(n) =

(
0 0
1 0

)

The vector

~e2 =
(

0
1

)

is in both the rangespace and nullspace. Another way to depict this map’s
action is with a string.

~e1 7→ ~e2 7→ ~0

2.4 Example A map n̂ : C4 → C4 whose action on E4 is given by the string

~e1 7→ ~e2 7→ ~e3 7→ ~e4 7→ ~0

has R(n̂)∩N (n̂) equal to the span [{~e4}], has R(n̂2)∩N (n̂2) = [{~e3, ~e4}], and
has R(n̂3) ∩N (n̂3) = [{~e4}]. The matrix representation is all zeros except for
some subdiagonal ones.

N̂ = RepE4,E4(n̂) =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




∗ More information on map restrictions is in the appendix.
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2.5 Example Transformations can act via more than one string. A transfor-
mation t acting on a basis B = 〈~β1, . . . , ~β5〉 by

~β1 7→ ~β2 7→ ~β3 7→ ~0
~β4 7→ ~β5 7→ ~0

is represented by a matrix that is all zeros except for blocks of subdiagonal ones

RepB,B(t) =




0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0




(the lines just visually organize the blocks).

In those three examples all vectors are eventually transformed to zero.

2.6 Definition A nilpotent transformation is one with a power that is the
zero map. A nilpotent matrix is one with a power that is the zero matrix. In
either case, the least such power is the index of nilpotency.

2.7 Example In Example 2.3 the index of nilpotency is two. In Example 2.4
it is four. In Example 2.5 it is three.

2.8 Example The differentiation map d/dx : P2 → P2 is nilpotent of index
three since the third derivative of any quadratic polynomial is zero. This map’s
action is described by the string x2 7→ 2x 7→ 2 7→ 0 and taking the basis
B = 〈x2, 2x, 2〉 gives this representation.

RepB,B(d/dx) =




0 0 0
1 0 0
0 1 0




Not all nilpotent matrices are all zeros except for blocks of subdiagonal ones.

2.9 Example With the matrix N̂ from Example 2.4, and this four-vector basis

D = 〈




1
0
1
0


 ,




0
2
1
0


 ,




1
1
1
0


 ,




0
0
0
1


〉

a change of basis operation produces this representation with respect to D, D.



1 0 1 0
0 2 1 0
1 1 1 0
0 0 0 1







0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0







1 0 1 0
0 2 1 0
1 1 1 0
0 0 0 1




−1

=




−1 0 1 0
−3 −2 5 0
−2 −1 3 0
2 1 −2 0
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The new matrix is nilpotent; it’s fourth power is the zero matrix since

(PN̂P−1)4 = PN̂P−1 · PN̂P−1 · PN̂P−1 · PN̂P−1 = PN̂4P−1

and N̂4 is the zero matrix.

The goal of this subsection is Theorem 2.13, which shows that the prior
example is prototypical in that every nilpotent matrix is similar to one that is
all zeros except for blocks of subdiagonal ones.

2.10 Definition Let t be a nilpotent transformation on V . A t-string gener-
ated by ~v ∈ V is a sequence 〈~v, t(~v), . . . , tk−1(~v)〉. This sequence has length k.
A t-string basis is a basis that is a concatenation of t-strings.

2.11 Example In Example 2.5, the t-strings 〈~β1, ~β2, ~β3〉 and 〈~β4, ~β5〉, of length
three and two, can be concatenated to make a basis for the domain of t.

2.12 Lemma If a space has a t-string basis then the longest string in it has
length equal to the index of nilpotency of t.

Proof. Suppose not. Those strings cannot be longer; if the index is k then
tk sends any vector— including those starting the string —to ~0. So suppose
instead that there is a transformation t of index k on some space, such that
the space has a t-string basis where all of the strings are shorter than length
k. Because t has index k, there is a vector ~v such that tk−1(~v) 6= ~0. Represent
~v as a linear combination of basis elements and apply tk−1. We are supposing
that tk−1 sends each basis element to ~0 but that it does not send ~v to ~0. That
is impossible. QED

We shall show that every nilpotent map has an associated string basis. Then
our goal theorem, that every nilpotent matrix is similar to one that is all zeros
except for blocks of subdiagonal ones, is immediate, as in Example 2.5.

Looking for a counterexample, a nilpotent map without an associated string
basis that is disjoint, will suggest the idea for the proof. Consider the map
t : C5 → C5 with this action.

~e1

~e2

7→
7→ ~e3 7→ ~0

~e4 7→ ~e5 7→ ~0

RepE5,E5(t) =




0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 0




Even after ommitting the zero vector, these three strings aren’t disjoint, but
that doesn’t end hope of finding a t-string basis. It only means that E5 will not
do for the string basis.

To find a basis that will do, we first find the number and lengths of its
strings. Since t’s index of nilpotency is two, Lemma 2.12 says that at least one
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string in the basis has length two. Thus the map must act on a string basis in
one of these two ways.

~β1 7→ ~β2 7→ ~0
~β3 7→ ~β4 7→ ~0
~β5 7→ ~0

~β1 7→ ~β2 7→ ~0
~β3 7→ ~0
~β4 7→ ~0
~β5 7→ ~0

Now, the key point. A transformation with the left-hand action has a nullspace
of dimension three since that’s how many basis vectors are sent to zero. A
transformation with the right-hand action has a nullspace of dimension four.
Using the matrix representation above, calculation of t’s nullspace

N (t) = {




x
−x
z
0
r




∣∣ x, z, r ∈ C}

shows that it is three-dimensional, meaning that we want the left-hand action.
To produce a string basis, first pick ~β2 and ~β4 from R(t) ∩N (t)

~β2 =




0
0
1
0
0




~β4 =




0
0
0
0
1




(other choices are possible, just be sure that {~β2, ~β4} is linearly independent).
For ~β5 pick a vector from N (t) that is not in the span of {~β2, ~β4}.

~β5 =




1
−1
0
0
0




Finally, take ~β1 and ~β3 such that t(~β1) = ~β2 and t(~β3) = ~β4.

~β1 =




0
1
0
0
0




~β3 =




0
0
0
1
0
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Now, with respect to B = 〈~β1, . . . , ~β5〉, the matrix of t is as desired.

RepB,B(t) =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0




2.13 Theorem Any nilpotent transformation t is associated with a t-string
basis. While the basis is not unique, the number and the length of the strings
is determined by t.

This illustrates the proof. Basis vectors are categorized into kind 1, kind 2, and
kind 3. They are also shown as squares or circles, according to whether they
are in the nullspace or not.

k3 7→ k1 7→ · · · · · · 7→ k1 7→ 1 7→ ~0
k3 7→ k1 7→ · · · · · · 7→ k1 7→ 1 7→ ~0

...
k3 7→ k1 7→ · · · 7→ k1 7→ 1 7→ ~0

2 7→ ~0...
2 7→ ~0

Proof. Fix a vector space V ; we will argue by induction on the index of nilpo-
tency of t : V → V . If that index is 1 then t is the zero map and any basis is
a string basis ~β1 7→ ~0, . . . , ~βn 7→ ~0. For the inductive step, assume that the
theorem holds for any transformation with an index of nilpotency between 1
and k − 1 and consider the index k case.

First observe that the restriction to the rangespace t : R(t) → R(t) is also
nilpotent, of index k − 1. Apply the inductive hypothesis to get a string basis
for R(t), where the number and length of the strings is determined by t.

B = 〈~β1, t(~β1), . . . , th1(~β1)〉_〈~β2, . . . , t
h2(~β2)〉_ · · ·_〈~βi, . . . , t

hi(~βi)〉
(In the illustration these are the basis vectors of kind 1, so there are i strings
shown with this kind of basis vector.)

Second, note that taking the final nonzero vector in each string gives a basis
C = 〈th1(~β1), . . . , thi(~βi)〉 for R(t) ∩ N (t). (These are illustrated with 1’s in
squares.) For, a member of R(t) is mapped to zero if and only if it is a linear
combination of those basis vectors that are mapped to zero. Extend C to a
basis for all of N (t).

Ĉ = C
_〈~ξ1, . . . , ~ξp〉

(The ~ξ’s are the vectors of kind 2 so that Ĉ is the set of squares.) While many
choices are possible for the ~ξ’s, their number p is determined by the map t as it
is the dimension of N (t) minus the dimension of R(t) ∩N (t).
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Finally, B
_

Ĉ is a basis for R(t)+N (t) because any sum of something in the
rangespace with something in the nullspace can be represented using elements
of B for the rangespace part and elements of Ĉ for the part from the nullspace.
Note that

dim
(
R(t) + N (t)

)
= dim(R(t)) + dim(N (t))− dim(R(t) ∩N (t))
= rank(t) + nullity(t)− i

= dim(V )− i

and so B
_

Ĉ can be extended to a basis for all of V by the addition of i more
vectors. Specifically, remember that each of ~β1, . . . , ~βi is in R(t), and extend
B

_
Ĉ with vectors ~v1, . . . , ~vi such that t(~v1) = ~β1, . . . , t(~vi) = ~βi. (In the

illustration, these are the 3’s.) The check that linear independence is preserved
by this extension is Exercise 29. QED

2.14 Corollary Every nilpotent matrix is similar to a matrix that is all zeros
except for blocks of subdiagonal ones. That is, every nilpotent map is repre-
sented with respect to some basis by such a matrix.

This form is unique in the sense that if a nilpotent matrix is similar to two
such matrices then those two simply have their blocks ordered differently. Thus
this is a canonical form for the similarity classes of nilpotent matrices provided
that we order the blocks, say, from longest to shortest.

2.15 Example The matrix

M =
(

1 −1
1 −1

)

has an index of nilpotency of two, as this calculation shows.

p Mp N (Mp)

1 M =
(

1 −1
1 −1

)
{
(

x
x

) ∣∣ x ∈ C}

2 M2 =
(

0 0
0 0

)
C2

The calculation also describes how a map m represented by M must act on any
string basis. With one map application the nullspace has dimension one and so
one vector of the basis is sent to zero. On a second application, the nullspace
has dimension two and so the other basis vector is sent to zero. Thus, the action
of the map is ~β1 7→ ~β2 7→ ~0 and the canonical form of the matrix is this.

(
0 0
1 0

)

We can exhibit such a m-string basis and the change of basis matrices wit-
nessing the matrix similarity. For the basis, take M to represent m with respect
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to the standard bases, pick a ~β2 ∈ N (m) and also pick a ~β1 so that m(~β1) = ~β2.

~β2 =
(

1
1

)
~β1 =

(
1
0

)

(If we take M to be a representative with respect to some nonstandard bases
then this picking step is just more messy.) Recall the similarity diagram.

C2
w.r.t. E2

m−−−−→
M

C2
w.r.t. E2

id
yP id

yP

C2
w.r.t. B

m−−−−→ C2
w.r.t. B

The canonical form equals RepB,B(m) = PMP−1, where

P−1 = RepB,E2(id) =
(

1 1
0 1

)
P = (P−1)−1 =

(
1 −1
0 1

)

and the verification of the matrix calculation is routine.
(

1 −1
0 1

)(
1 −1
1 −1

)(
1 1
0 1

)
=

(
0 0
1 0

)

2.16 Example The matrix



0 0 0 0 0
1 0 0 0 0
−1 1 1 −1 1
0 1 0 0 0
1 0 −1 1 −1




is nilpotent. These calculations show the nullspaces growing.

p Np N (Np)

1




0 0 0 0 0
1 0 0 0 0
−1 1 1 −1 1
0 1 0 0 0
1 0 −1 1 −1




{




0
0

u− v
u
v




∣∣ u, v ∈ C}

2




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0




{




0
y
z
u
v




∣∣ y, z, u, v ∈ C}

3 –zero matrix– C5

That table shows that any string basis must satisfy: the nullspace after one map
application has dimension two so two basis vectors are sent directly to zero,
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the nullspace after the second application has dimension four so two additional
basis vectors are sent to zero by the second iteration, and the nullspace after
three applications is of dimension five so the final basis vector is sent to zero in
three hops.

~β1 7→ ~β2 7→ ~β3 7→ ~0
~β4 7→ ~β5 7→ ~0

To produce such a basis, first pick two independent vectors from N (n)

~β3 =




0
0
1
1
0




~β5 =




0
0
0
1
1




then add ~β2, ~β4 ∈ N (n2) such that n(~β2) = ~β3 and n(~β4) = ~β5

~β2 =




0
1
0
0
0




~β4 =




0
1
0
1
0




and finish by adding ~β1 ∈ N (n3) = C5) such that n(~β1) = ~β2.

~β1 =




1
0
1
0
0




Exercises
X 2.17 What is the index of nilpotency of the left-shift operator, here acting on the

space of triples of reals?

(x, y, z) 7→ (0, x, y)

X 2.18 For each string basis state the index of nilpotency and give the dimension of
the rangespace and nullspace of each iteration of the nilpotent map.
(a) ~β1 7→ ~β2 7→ ~0

~β3 7→ ~β4 7→ ~0

(b) ~β1 7→ ~β2 7→ ~β3 7→ ~0
~β4 7→ ~0
~β5 7→ ~0
~β6 7→ ~0

(c) ~β1 7→ ~β2 7→ ~β3 7→ ~0

Also give the canonical form of the matrix.

2.19 Decide which of these matrices are nilpotent.
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(a)

(
−2 4
−1 2

)
(b)

(
3 1
1 3

)
(c)

(−3 2 1
−3 2 1
−3 2 1

)
(d)

(
1 1 4
3 0 −1
5 2 7

)

(e)

(
45 −22 −19
33 −16 −14
69 −34 −29

)

X 2.20 Find the canonical form of this matrix.


0 1 1 0 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




X 2.21 Consider the matrix from Example 2.16.
(a) Use the action of the map on the string basis to give the canonical form.
(b) Find the change of basis matrices that bring the matrix to canonical form.
(c) Use the answer in the prior item to check the answer in the first item.

X 2.22 Each of these matrices is nilpotent.

(a)

(
1/2 −1/2
1/2 −1/2

)
(b)

(
0 0 0
0 −1 1
0 −1 1

)
(c)

(−1 1 −1
1 0 1
1 −1 1

)

Put each in canonical form.

2.23 Describe the effect of left or right multiplication by a matrix that is in the
canonical form for nilpotent matrices.

2.24 Is nilpotence invariant under similarity? That is, must a matrix similar to a
nilpotent matrix also be nilpotent? If so, with the same index?

X 2.25 Show that the only eigenvalue of a nilpotent matrix is zero.

2.26 Is there a nilpotent transformation of index three on a two-dimensional space?

2.27 In the proof of Theorem 2.13, why isn’t the proof’s base case that the index
of nilpotency is zero?

X 2.28 Let t : V → V be a linear transformation and suppose ~v ∈ V is such that
tk(~v) = ~0 but tk−1(~v) 6= ~0. Consider the t-string 〈~v, t(~v), . . . , tk−1(~v)〉.
(a) Prove that t is a transformation on the span of the set of vectors in the string,
that is, prove that t restricted to the span has a range that is a subset of the
span. We say that the span is a t-invariant subspace.

(b) Prove that the restriction is nilpotent.
(c) Prove that the t-string is linearly independent and so is a basis for its span.
(d) Represent the restriction map with respect to the t-string basis.

2.29 Finish the proof of Theorem 2.13.

2.30 Show that the terms ‘nilpotent transformation’ and ‘nilpotent matrix’, as
given in Definition 2.6, fit with each other: a map is nilpotent if and only if it is
represented by a nilpotent matrix. (Is it that a transformation is nilpotent if an
only if there is a basis such that the map’s representation with respect to that
basis is a nilpotent matrix, or that any representation is a nilpotent matrix?)

2.31 Let T be nilpotent of index four. How big can the rangespace of T 3 be?

2.32 Recall that similar matrices have the same eigenvalues. Show that the converse
does not hold.

2.33 Prove a nilpotent matrix is similar to one that is all zeros except for blocks of
super-diagonal ones.



376 Chapter Five. Similarity

X 2.34 Prove that if a transformation has the same rangespace as nullspace. then the
dimension of its domain is even.

2.35 Prove that if two nilpotent matrices commute then their product and sum are
also nilpotent.

2.36 Consider the transformation of Mn×n given by tS(T ) = ST − TS where S is
an n×n matrix. Prove that if S is nilpotent then so is tS .

2.37 Show that if N is nilpotent then I −N is invertible. Is that ‘only if’ also?
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IV Jordan Form

This section uses material from three optional subsections: Direct Sum, Deter-
minants Exist, and Other Formulas for the Determinant.

The chapter on linear maps shows that every h : V → W can be represented
by a partial-identity matrix with respect to some bases B ⊂ V and D ⊂ W .
This chapter revisits this issue in the special case that the map is a linear
transformation t : V → V . Of course, the general result still applies but with
the codomain and domain equal we naturally ask about having the two bases
also be equal. That is, we want a canonical form to represent transformations
as RepB,B(t).

After a brief review section, we began by noting that a block partial identity
form matrix is not always obtainable in this B, B case. We therefore considered
the natural generalization, diagonal matrices, and showed that if its eigenvalues
are distinct then a map or matrix can be diagonalized. But we also gave an
example of a matrix that cannot be diagonalized and in the section prior to this
one we developed that example. We showed that a linear map is nilpotent—
if we take higher and higher powers of the map or matrix then we eventually
get the zero map or matrix— if and only if there is a basis on which it acts via
disjoint strings. That led to a canonical form for nilpotent matrices.

Now, this section concludes the chapter. We will show that the two cases
we’ve studied are exhaustive in that for any linear transformation there is a
basis such that the matrix representation RepB,B(t) is the sum of a diagonal
matrix and a nilpotent matrix in its canonical form.

IV.1 Polynomials of Maps and Matrices

Recall that the set of square matrices is a vector space under entry-by-entry
addition and scalar multiplication and that this space Mn×n has dimension n2.
Thus, for any n×n matrix T the n2+1-member set {I, T, T 2, . . . , Tn2} is linearly
dependent and so there are scalars c0, . . . , cn2 such that cn2Tn2

+ · · ·+c1T +c0I
is the zero matrix.

1.1 Remark This observation is small but important. It says that every
transformation exhibits a generalized nilpotency: the powers of a square matrix
cannot climb forever without a “repeat”.

1.2 Example Rotation of plane vectors π/6 radians counterclockwise is rep-
resented with respect to the standard basis by

T =
(√

3/2 −1/2
1/2

√
3/2

)

and verifying that 0T 4 + 0T 3 + 1T 2 − 2T − 1I equals the zero matrix is easy.
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1.3 Definition For any polynomial f(x) = cnxn + · · ·+ c1x+ c0, where t is a
linear transformation then f(t) is the transformation cntn + · · ·+ c1t + c0(id)
on the same space and where T is a square matrix then f(T ) is the matrix
cnTn + · · ·+ c1T + c0I.

1.4 Remark If, for instance, f(x) = x − 3, then most authors write in the
identity matrix: f(T ) = T − 3I. But most authors don’t write in the identity
map: f(t) = t− 3. In this book we shall also observe this convention.

Of course, if T = RepB,B(t) then f(T ) = RepB,B(f(t)), which follows from
the relationships T j = RepB,B(tj), and cT = RepB,B(ct), and T1 + T2 =
RepB,B(t1 + t2).

As Example 1.2 shows, there may be polynomials of degree smaller than n2

that zero the map or matrix.

1.5 Definition The minimal polynomial m(x) of a transformation t or a
square matrix T is the polynomial of least degree and with leading coefficient
1 such that m(t) is the zero map or m(T ) is the zero matrix.

A minimal polynomial always exists by the observation opening this subsec-
tion. A minimal polynomial is unique by the ‘with leading coefficient 1’ clause.
This is because if there are two polynomials m(x) and m̂(x) that are both of the
minimal degree to make the map or matrix zero (and thus are of equal degree),
and both have leading 1’s, then their difference m(x)− m̂(x) has a smaller de-
gree than either and still sends the map or matrix to zero. Thus m(x)− m̂(x) is
the zero polynomial and the two are equal. (The leading coefficient requirement
also prevents a minimal polynomial from being the zero polynomial.)

1.6 Example We can see that m(x) = x2 − 2x− 1 is minimal for the matrix
of Example 1.2 by computing the powers of T up to the power n2 = 4.

T 2 =
(

1/2 −√3/2√
3/2 1/2

)
T 3 =

(
0 −1
1 0

)
T 4 =

(−1/2 −√3/2√
3/2 −1/2

)

Next, put c4T
4 + c3T

3 + c2T
2 + c1T + c0I equal to the zero matrix

−(1/2)c4 + (1/2)c2 + (
√

3/2)c1 + c0 = 0
−(
√

3/2)c4 − c3 − (
√

3/2)c2 − (1/2)c1 = 0
(
√

3/2)c4 + c3 + (
√

3/2)c2 + (1/2)c1 = 0
−(1/2)c4 + (1/2)c2 + (

√
3/2)c1 + c0 = 0

and use Gauss’ method.

c4 − c2 −
√

3c1 − 2c0 = 0
c3 +

√
3c2 + 2c1 +

√
3c0 = 0

Setting c4, c3, and c2 to zero forces c1 and c0 to also come out as zero. To get
a leading one, the most we can do is to set c4 and c3 to zero. Thus the minimal
polynomial is quadratic.
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Using the method of that example to find the minimal polynomial of a 3×3
matrix would mean doing Gaussian reduction on a system with nine equations
in ten unknowns. We shall develop an alternative. To begin, note that we can
break a polynomial of a map or a matrix into its components.

1.7 Lemma Suppose that the polynomial f(x) = cnxn + · · ·+ c1x+ c0 factors
as k(x − λ1)q1 · · · (x − λ`)q` . If t is a linear transformation then these two are
equal maps.

cntn + · · ·+ c1t + c0 = k · (t− λ1)q1 ◦ · · · ◦ (t− λ`)q`

Consequently, if T is a square matrix then f(T ) and k ·(T−λ1I)q1 · · · (T−λ`I)q`

are equal matrices.

Proof. This argument is by induction on the degree of the polynomial. The
cases where the polynomial is of degree 0 and 1 are clear. The full induction
argument is Exercise 1.7 but the degree two case gives its sense.

A quadratic polynomial factors into two linear terms f(x) = k(x−λ1) · (x−
λ2) = k(x2 + (λ1 + λ2)x + λ1λ2) (the roots λ1 and λ2 might be equal). We can
check that substituting t for x in the factored and unfactored versions gives the
same map.

(
k · (t− λ1) ◦ (t− λ2)

)
(~v) =

(
k · (t− λ1)

)
(t(~v)− λ2~v)

= k · (t(t(~v))− t(λ2~v)− λ1t(~v)− λ1λ2~v
)

= k · (t ◦ t (~v)− (λ1 + λ2)t(~v) + λ1λ2~v
)

= k · (t2 − (λ1 + λ2)t + λ1λ2) (~v)

The third equality holds because the scalar λ2 comes out of the second term, as
t is linear. QED

In particular, if a minimial polynomial m(x) for a transformation t factors
as m(x) = (x − λ1)q1 · · · (x − λ`)q` then m(t) = (t − λ1)q1 ◦ · · · ◦ (t − λ`)q` is
the zero map. Since m(t) sends every vector to zero, at least one of the maps
t− λi sends some nonzero vectors to zero. So, too, in the matrix case — if m is
minimal for T then m(T ) = (T −λ1I)q1 · · · (T −λ`I)q` is the zero matrix and at
least one of the matrices T −λiI sends some nonzero vectors to zero. Rewording
both cases: at least some of the λi are eigenvalues. (See Exercise 29.)

Recall how we have earlier found eigenvalues. We have looked for λ such that
T~v = λ~v by considering the equation ~0 = T~v−x~v = (T−xI)~v and computing the
determinant of the matrix T − xI. That determinant is a polynomial in x, the
characteristic polynomial, whose roots are the eigenvalues. The major result
of this subsection, the next result, is that there is a connection between this
characteristic polynomial and the minimal polynomial. This results expands
on the prior paragraph’s insight that some roots of the minimal polynomial
are eigenvalues by asserting that every root of the minimal polynomial is an
eigenvalue and further that every eigenvalue is a root of the minimal polynomial
(this is because it says ‘1 ≤ qi’ and not just ‘0 ≤ qi’).
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1.8 Theorem (Cayley-Hamilton) If the characteristic polynomial of a
transformation or square matrix factors into

k · (x− λ1)p1(x− λ2)p2 · · · (x− λ`)p`

then its minimal polynomial factors into

(x− λ1)q1(x− λ2)q2 · · · (x− λ`)q`

where 1 ≤ qi ≤ pi for each i between 1 and `.

The proof takes up the next three lemmas. Although they are stated only in
matrix terms, they apply equally well to maps. We give the matrix version only
because it is convenient for the first proof.

The first result is the key—some authors call it the Cayley-Hamilton Theo-
rem and call Theorem 1.8 above a corollary. For the proof, observe that a matrix
of polynomials can be thought of as a polynomial with matrix coefficients.

(
2x2 + 3x− 1 x2 + 2
3x2 + 4x + 1 4x2 + x + 1

)
=

(
2 1
3 4

)
x2 +

(
3 0
4 1

)
x +

(−1 2
1 1

)

1.9 Lemma If T is a square matrix with characteristic polynomial c(x) then
c(T ) is the zero matrix.

Proof. Let C be T − xI, the matrix whose determinant is the characteristic
polynomial c(x) = cnxn + · · ·+ c1x + c0.

C =




t1,1 − x t1,2 . . .
t2,1 t2,2 − x
...

. . .
tn,n − x




Recall that the product of the adjoint of a matrix with the matrix itself is the
determinant of that matrix times the identity.

c(x) · I = adj(C)C = adj(C)(T − xI) = adj(C)T − adj(C) · x (∗)

The entries of adj(C) are polynomials, each of degree at most n − 1 since the
minors of a matrix drop a row and column. Rewrite it, as suggested above, as
adj(C) = Cn−1x

n−1 + · · ·+ C1x + C0 where each Ci is a matrix of scalars. The
left and right ends of equation (∗) above give this.

cnIxn + cn−1Ixn−1 + · · ·+ c1Ix + c0I = (Cn−1T )xn−1 + · · ·+ (C1T )x + C0T

− Cn−1x
n − Cn−2x

n−1 − · · · − C0x
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Equate the coefficients of xn, the coefficients of xn−1, etc.

cnI = −Cn−1

cn−1I = −Cn−2 + Cn−1T
...

c1I = −C0 + C1T

c0I = C0T

Multiply (from the right) both sides of the first equation by Tn, both sides
of the second equation by Tn−1, etc. Add. The result on the left is cnTn +
cn−1T

n−1 + · · ·+ c0I, and the result on the right is the zero matrix. QED

We sometimes refer to that lemma by saying that a matrix or map satisfies
its characteristic polynomial.

1.10 Lemma Where f(x) is a polynomial, if f(T ) is the zero matrix then f(x)
is divisible by the minimal polynomial of T . That is, any polynomial satisfied
by T is divisable by T ’s minimal polynomial.

Proof. Let m(x) be minimal for T . The Division Theorem for Polynomials
gives f(x) = q(x)m(x) + r(x) where the degree of r is strictly less than the
degree of m. Plugging T in shows that r(T ) is the zero matrix, because T
satisfies both f and m. That contradicts the minimality of m unless r is the
zero polynomial. QED

Combining the prior two lemmas gives that the minimal polynomial divides
the characteristic polynomial. Thus, any root of the minimal polynomial is
also a root of the characteristic polynomial. That is, so far we have that if
m(x) = (x− λ1)q1 . . . (x− λi)qi then c(x) must has the form (x− λ1)p1 . . . (x−
λi)pi(x− λi+1)pi+1 . . . (x− λ`)p` where each qj is less than or equal to pj . The
proof of the Cayley-Hamilton Theorem is finished by showing that in fact the
characteristic polynomial has no extra roots λi+1, etc.

1.11 Lemma Each linear factor of the characteristic polynomial of a square
matrix is also a linear factor of the minimal polynomial.

Proof. Let T be a square matrix with minimal polynomial m(x) and assume
that x−λ is a factor of the characteristic polynomial of T , that is, assume that
λ is an eigenvalue of T . We must show that x− λ is a factor of m, that is, that
m(λ) = 0.

In general, where λ is associated with the eigenvector ~v, for any polyno-
mial function f(x), application of the matrix f(T ) to ~v equals the result of
multiplying ~v by the scalar f(λ). (For instance, if T has eigenvalue λ associ-
ated with the eigenvector ~v and f(x) = x2 + 2x + 3 then (T 2 + 2T + 3) (~v) =
T 2(~v) + 2T (~v) + 3~v = λ2 ·~v + 2λ ·~v + 3 ·~v = (λ2 + 2λ + 3) ·~v.) Now, as m(T ) is
the zero matrix, ~0 = m(T )(~v) = m(λ) · ~v and therefore m(λ) = 0. QED
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1.12 Example We can use the Cayley-Hamilton Theorem to help find the
minimal polynomial of this matrix.

T =




2 0 0 1
1 2 0 2
0 0 2 −1
0 0 0 1




First, its characteristic polynomial c(x) = (x−1)(x−2)3 can be found with the
usual determinant. Now, the Cayley-Hamilton Theorem says that T ’s minimal
polynomial is either (x− 1)(x− 2) or (x− 1)(x− 2)2 or (x− 1)(x− 2)3. We can
decide among the choices just by computing:

(T − 1I)(T − 2I) =




1 0 0 1
1 1 0 2
0 0 1 −1
0 0 0 0







0 0 0 1
1 0 0 2
0 0 0 −1
0 0 0 −1


 =




0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0




and

(T − 1I)(T − 2I)2 =




0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0







0 0 0 1
1 0 0 2
0 0 0 −1
0 0 0 −1


 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




and so m(x) = (x− 1)(x− 2)2.

Exercises
X 1.13 What are the possible minimal polynomials if a matrix has the given charac-

teristic polynomial?
(a) 8 · (x − 3)4 (b) (1/3) · (x + 1)3(x − 4) (c) −1 · (x − 2)2(x − 5)2

(d) 5 · (x + 3)2(x− 1)(x− 2)2

What is the degree of each possibility?

X 1.14 Find the minimal polynomial of each matrix.

(a)

(
3 0 0
1 3 0
0 0 4

)
(b)

(
3 0 0
1 3 0
0 0 3

)
(c)

(
3 0 0
1 3 0
0 1 3

)
(d)

(
2 0 1
0 6 2
0 0 2

)

(e)

(
2 2 1
0 6 2
0 0 2

)
(f)




−1 4 0 0 0
0 3 0 0 0
0 −4 −1 0 0
3 −9 −4 2 −1
1 5 4 1 4




1.15 Find the minimal polynomial of this matrix.
(

0 1 0
0 0 1
1 0 0

)

X 1.16 What is the minimal polynomial of the differentiation operator d/dx on Pn?



Section IV. Jordan Form 383

X 1.17 Find the minimal polynomial of matrices of this form


λ 0 0 . . . 0
1 λ 0 0
0 1 λ

. . .

λ 0
0 0 . . . 1 λ




where the scalar λ is fixed (i.e., is not a variable).

1.18 What is the minimal polynomial of the transformation of Pn that sends p(x)
to p(x + 1)?

1.19 What is the minimal polynomial of the map π : C3 → C3 projecting onto the
first two coordinates?

1.20 Find a 3×3 matrix whose minimal polynomial is x2.

1.21 What is wrong with this claimed proof of Lemma 1.9: “if c(x) = |T −xI| then
c(T ) = |T − TI| = 0”? [Cullen]

1.22 Verify Lemma 1.9 for 2×2 matrices by direct calculation.

X 1.23 Prove that the minimal polynomial of an n×n matrix has degree at most
n (not n2 as might be guessed from this subsection’s opening). Verify that this
maximum, n, can happen.

X 1.24 The only eigenvalue of a nilpotent map is zero. Show that the converse state-
ment holds.

1.25 What is the minimal polynomial of a zero map or matrix? Of an identity map
or matrix?

X 1.26 Interpret the minimal polynomial of Example 1.2 geometrically.

1.27 What is the minimal polynomial of a diagonal matrix?

X 1.28 A projection is any transformation t such that t2 = t. (For instance, the
transformation of the plane R2 projecting each vector onto its first coordinate will,
if done twice, result in the same value as if it is done just once.) What is the
minimal polynomial of a projection?

1.29 The first two items of this question are review.
(a) Prove that the composition of one-to-one maps is one-to-one.
(b) Prove that if a linear map is not one-to-one then at least one nonzero vector
from the domain is sent to the zero vector in the codomain.

(c) Verify the statement, excerpted here, that preceeds Theorem 1.8.

. . . if a minimial polynomial m(x) for a transformation t factors as
m(x) = (x− λ1)

q1 · · · (x− λ`)
q` then m(t) = (t− λ1)

q1 ◦ · · · ◦ (t− λ`)
q`

is the zero map. Since m(t) sends every vector to zero, at least one
of the maps t − λi sends some nonzero vectors to zero. . . . Rewording
. . . : at least some of the λi are eigenvalues.

1.30 True or false: for a transformation on an n dimensional space, if the minimal
polynomial has degree n then the map is diagonalizable.

1.31 Let f(x) be a polynomial. Prove that if A and B are similar matrices then
f(A) is similar to f(B).
(a) Now show that similar matrices have the same characteristic polynomial.
(b) Show that similar matrices have the same minimal polynomial.
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(c) Decide if these are similar.(
1 3
2 3

) (
4 −1
1 1

)

1.32 (a) Show that a matrix is invertible if and only if the constant term in its
minimal polynomial is not 0.

(b) Show that if a square matrix T is not invertible then there is a nonzero
matrix S such that ST and TS both equal the zero matrix.

X 1.33 (a) Finish the proof of Lemma 1.7.
(b) Give an example to show that the result does not hold if t is not linear.

1.34 Any transformation or square matrix has a minimal polynomial. Does the
converse hold?

IV.2 Jordan Canonical Form

This subsection moves from the canonical form for nilpotent matrices to the
one for all matrices.

We have shown that if a map is nilpotent then all of its eigenvalues are zero.
We can now prove the converse.

2.1 Lemma A linear transformation whose only eigenvalue is zero is nilpotent.

Proof. If a transformation t on an n-dimensional space has only the single
eigenvalue of zero then its characteristic polynomial is xn. The Cayley-Hamilton
Theorem says that a map satisfies its characteristic polynimial so tn is the zero
map. Thus t is nilpotent. QED

We have a canonical form for nilpotent matrices, that is, for each matrix
whose single eigenvalue is zero: each such matrix is similar to one that is all
zeroes except for blocks of subdiagonal ones. (To make this representation
unique we can fix some arrangement of the blocks, say, from longest to shortest.)
We next extend this to all single-eigenvalue matrices.

Observe that if t’s only eigenvalue is λ then t − λ’s only eigenvalue is 0
because t(~v) = λ~v if and only if (t − λ) (~v) = 0 · ~v. The natural way to extend
the results for nilpotent matrices is to represent t− λ in the canonical form N ,
and try to use that to get a simple representation T for t. The next result says
that this try works.

2.2 Lemma If the matrices T − λI and N are similar then T and N + λI are
also similar, via the same change of basis matrices.

Proof. With N = P (T − λI)P−1 = PTP−1 − P (λI)P−1 we have N =
PTP−1 − PP−1(λI) since the diagonal matrix λI commutes with anything,
and so N = PTP−1 − λI. Therefore N + λI = PTP−1, as required. QED
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2.3 Example The characteristic polynomial of

T =
(

2 −1
1 4

)

is (x− 3)2 and so T has only the single eigenvalue 3. Thus for

T − 3I =
(−1 −1

1 1

)

the only eigenvalue is 0, and T − 3I is nilpotent. The null spaces are routine
to find; to ease this computation we take T to represent the transformation
t : C2 → C2 with respect to the standard basis (we shall maintain this convention
for the rest of the chapter).

N (t− 3) = {
(−y

y

) ∣∣ y ∈ C} N ((t− 3)2) = C2

The dimensions of these null spaces show that the action of an associated map
t− 3 on a string basis is ~β1 7→ ~β2 7→ ~0. Thus, the canonical form for t− 3 with
one choice for a string basis is

RepB,B(t− 3) = N =
(

0 0
1 0

)
B = 〈

(
1
1

)
,

(−2
2

)
〉

and by Lemma 2.2, T is similar to this matrix.

Rept(B, B) = N + 3I =
(

3 0
1 3

)

We can produce the similarity computation. Recall from the Nilpotence
section how to find the change of basis matrices P and P−1 to express N as
P (T − 3I)P−1. The similarity diagram

C2
w.r.t. E2

t−3−−−−→
T−3I

C2
w.r.t. E2

id
yP id

yP

C2
w.r.t. B

t−3−−−−→
N

C2
w.r.t. B

describes that to move from the lower left to the upper left we multiply by

P−1 =
(
RepE2,B(id)

)−1 = RepB,E2(id) =
(

1 −2
1 2

)

and to move from the upper right to the lower right we multiply by this matrix.

P =
(

1 −2
1 2

)−1

=
(

1/2 1/2
−1/4 1/4

)
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So the similarity is expressed by
(

3 0
1 3

)
=

(
1/2 1/2
−1/4 1/4

)(
2 −1
1 4

)(
1 −2
1 2

)

which is easily checked.

2.4 Example This matrix has characteristic polynomial (x− 4)4

T =




4 1 0 −1
0 3 0 1
0 0 4 0
1 0 0 5




and so has the single eigenvalue 4. The nullities of t− 4 are: the null space of
t− 4 has dimension two, the null space of (t− 4)2 has dimension three, and the
null space of (t− 4)3 has dimension four. Thus, t− 4 has the action on a string
basis of ~β1 7→ ~β2 7→ ~β3 7→ ~0 and ~β4 7→ ~0. This gives the canonical form N for
t− 4, which in turn gives the form for t.

N + 4I =




4 0 0 0
1 4 0 0
0 1 4 0
0 0 0 4




An array that is all zeroes, except for some number λ down the diagonal
and blocks of subdiagonal ones, is a Jordan block. We have shown that Jordan
block matrices are canonical representatives of the similarity classes of single-
eigenvalue matrices.

2.5 Example The 3×3 matrices whose only eigenvalue is 1/2 separate into
three similarity classes. The three classes have these canonical representatives.




1/2 0 0
0 1/2 0
0 0 1/2







1/2 0 0
1 1/2 0
0 0 1/2







1/2 0 0
1 1/2 0
0 1 1/2




In particular, this matrix 


1/2 0 0
0 1/2 0
0 1 1/2




belongs to the similarity class represented by the middle one, because we have
adopted the convention of ordering the blocks of subdiagonal ones from the
longest block to the shortest.

We will now finish the program of this chapter by extending this work to
cover maps and matrices with multiple eigenvalues. The best possibility for
general maps and matrices would be if we could break them into a part involving
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their first eigenvalue λ1 (which we represent using its Jordan block), a part with
λ2, etc.

This ideal is in fact what happens. For any transformation t : V → V , we
shall break the space V into the direct sum of a part on which t−λ1 is nilpotent,
plus a part on which t−λ2 is nilpotent, etc. More precisely, we shall take three
steps to get to this section’s major theorem and the third step shows that
V = N∞(t− λ1)⊕ · · · ⊕N∞(t− λ`) where λ1, . . . , λ` are t’s eigenvalues.

Suppose that t : V → V is a linear transformation. Note that the restriction∗

of t to a subspace M need not be a linear transformation on M because there may
be an ~m ∈ M with t(~m) 6∈ M . To ensure that the restriction of a transformation
to a ‘part’ of a space is a transformation on the partwe need the next condition.

2.6 Definition Let t : V → V be a transformation. A subspace M is t in-
variant if whenever ~m ∈ M then t(~m) ∈ M (shorter: t(M) ⊆ M).

Two examples are that the generalized null space N∞(t) and the generalized
range space R∞(t) of any transformation t are invariant. For the generalized null
space, if ~v ∈ N∞(t) then tn(~v) = ~0 where n is the dimension of the underlying
space and so t(~v) ∈ N∞(t) because tn( t(~v) ) is zero also. For the generalized
range space, if ~v ∈ R∞(t) then ~v = tn(~w) for some ~w and then t(~v) = tn+1(~w) =
tn( t(~w) ) shows that t(~v) is also a member of R∞(t).

Thus the spaces N∞(t − λi) and R∞(t − λi) are t − λi invariant. Observe
also that t−λi is nilpotent on N∞(t−λi) because, simply, if ~v has the property
that some power of t − λi maps it to zero —that is, if it is in the generalized
null space— then some power of t − λi maps it to zero. The generalized null
space N∞(t − λi) is a ‘part’ of the space on which the action of t − λi is easy
to understand.

The next result is the first of our three steps. It establishes that t−λj leaves
t− λi’s part unchanged.

2.7 Lemma A subspace is t invariant if and only if it is t − λ invariant for
any scalar λ. In particular, where λi is an eigenvalue of a linear transformation
t, then for any other eigenvalue λj , the spaces N∞(t− λi) and R∞(t− λi) are
t− λj invariant.

Proof. For the first sentence we check the two implications of the ‘if and only
if’ separately. One of them is easy: if the subspace is t− λ invariant for any λ
then taking λ = 0 shows that it is t invariant. For the other implication suppose
that the subspace is t invariant, so that if ~m ∈ M then t(~m) ∈ M , and let λ
be any scalar. The subspace M is closed under linear combinations and so if
t(~m) ∈ M then t(~m) − λ~m ∈ M . Thus if ~m ∈ M then (t − λ) (~m) ∈ M , as
required.

The second sentence follows straight from the first. Because the two spaces
are t− λi invariant, they are therefore t invariant. From this, applying the first
sentence again, we conclude that they are also t− λj invariant. QED

∗ More information on restrictions of functions is in the appendix.
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The second step of the three that we will take to prove this section’s major
result makes use of an additional property of N∞(t− λi) and R∞(t− λi), that
they are complementary. Recall that if a space is the direct sum of two others
V = N ⊕ R then any vector ~v in the space breaks into two parts ~v = ~n + ~r
where ~n ∈ N and ~r ∈ R, and recall also that if BN and BR are bases for N
and R then the concatenation BN

_
BR is linearly independent (and so the two

parts of ~v do not “overlap”). The next result says that for any subspaces N
and R that are complementary as well as t invariant, the action of t on ~v breaks
into the “non-overlapping” actions of t on ~n and on ~r.

2.8 Lemma Let t : V → V be a transformation and let N and R be t invariant
complementary subspaces of V . Then t can be represented by a matrix with
blocks of square submatrices T1 and T2

(
T1 Z2

Z1 T2

) }dim(N )-many rows
}dim(R)-many rows

where Z1 and Z2 are blocks of zeroes.

Proof. Since the two subspaces are complementary, the concatenation of a basis
for N and a basis for R makes a basis B = 〈~ν1, . . . , ~νp, ~µ1, . . . , ~µq〉 for V . We
shall show that the matrix

RepB,B(t) =




...
...

RepB(t(~ν1)) · · · RepB(t(~µq))
...

...




has the desired form.
Any vector ~v ∈ V is in N if and only if its final q components are zeroes

when it is represented with respect to B. As N is t invariant, each of the
vectors RepB(t(~ν1)), . . . , RepB(t(~νp)) has that form. Hence the lower left of
RepB,B(t) is all zeroes.

The argument for the upper right is similar. QED

To see that t has been decomposed into its action on the parts, observe
that the restrictions of t to the subspaces N and R are represented, with
respect to the obvious bases, by the matrices T1 and T2. So, with subspaces
that are invariant and complementary, we can split the problem of examining a
linear transformation into two lower-dimensional subproblems. The next result
illustrates this decomposition into blocks.

2.9 Lemma If T is a matrices with square submatrices T1 and T2

T =
(

T1 Z2

Z1 T2

)

where the Z’s are blocks of zeroes, then |T | = |T1| · |T2|.
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Proof. Suppose that T is n×n, that T1 is p×p, and that T2 is q×q. In the
permutation formula for the determinant

|T | =
∑

permutations φ

t1,φ(1)t2,φ(2) · · · tn,φ(n) sgn(φ)

each term comes from a rearrangement of the column numbers 1, . . . , n into a
new order φ(1), . . . , φ(n). The upper right block Z2 is all zeroes, so if a φ has at
least one of p + 1, . . . , n among its first p column numbers φ(1), . . . , φ(p) then
the term arising from φ is zero, e.g., if φ(1) = n then t1,φ(1)t2,φ(2) . . . tn,φ(n) =
0 · t2,φ(2) . . . tn,φ(n) = 0.

So the above formula reduces to a sum over all permutations with two
halves: any significant φ is the composition of a φ1 that rearranges only 1, . . . , p
and a φ2 that rearranges only p + 1, . . . , p + q. Now, the distributive law (and
the fact that the signum of a composition is the product of the signums) gives
that this

|T1| · |T2| =
( ∑

perms φ1
of 1,...,p

t1,φ1(1) · · · tp,φ1(p) sgn(φ1)
)

·
( ∑

perms φ2
of p+1,...,p+q

tp+1,φ2(p+1) · · · tp+q,φ2(p+q) sgn(φ2)
)

equals |T | = ∑
significant φ t1,φ(1)t2,φ(2) · · · tn,φ(n) sgn(φ). QED

2.10 Example ∣∣∣∣∣∣∣∣

2 0 0 0
1 2 0 0
0 0 3 0
0 0 0 3

∣∣∣∣∣∣∣∣
=

∣∣∣∣
2 0
1 2

∣∣∣∣ ·
∣∣∣∣
3 0
0 3

∣∣∣∣ = 36

From Lemma 2.9 we conclude that if two subspaces are complementary and
t invariant then t is nonsingular if and only if its restrictions to both subspaces
are nonsingular.

Now for the promised third, final, step to the main result.

2.11 Lemma If a linear transformation t : V → V has the characteristic poly-
nomial (x − λ1)p1 . . . (x − λ`)p` then (1) V = N∞(t − λ1) ⊕ · · · ⊕N∞(t − λ`)
and (2) dim(N∞(t− λi)) = pi.

Proof. Because dim(V ) is the degree p1 + · · · + p` of the characteristic poly-
nomial, to establish statement (1) we need only show that statement (2) holds
and that N∞(t− λi) ∩N∞(t− λj) is trivial whenever i 6= j.

For the latter, by Lemma 2.7, both N∞(t−λi) and N∞(t−λj) are t invariant.
Notice that an intersection of t invariant subspaces is t invariant and so the
restriction of t to N∞(t−λi)∩N∞(t−λj) is a linear transformation. But both
t− λi and t− λj are nilpotent on this subspace and so if t has any eigenvalues
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on the intersection then its “only” eigenvalue is both λi and λj . That cannot
be, so this restriction has no eigenvalues: N∞(t − λi) ∩ N∞(t − λj) is trivial
(Lemma 3.10 shows that the only transformation without any eigenvalues is on
the trivial space).

To prove statement (2), fix the index i. Decompose V as N∞(t − λi) ⊕
R∞(t− λi) and apply Lemma 2.8.

T =
(

T1 Z2

Z1 T2

) }dim(N∞(t− λi) )-many rows
}dim(R∞(t− λi) )-many rows

By Lemma 2.9, |T − xI| = |T1− xI| · |T2− xI|. By the uniqueness clause of the
Fundamental Theorem of Arithmetic, the determinants of the blocks have the
same factors as the characteristic polynomial |T1−xI| = (x−λ1)q1 . . . (x−λ`)q`

and |T2 − xI| = (x − λ1)r1 . . . (x − λ`)r` , and the sum of the powers of these
factors is the power of the factor in the characteristic polynomial: q1 + r1 = p1,
. . . , q` + r` = p`. Statement (2) will be proved if we will show that qi = pi and
that qj = 0 for all j 6= i, because then the degree of the polynomial |T1 − xI|—
which equals the dimension of the generalized null space — is as required.

For that, first, as the restriction of t− λi to N∞(t− λi) is nilpotent on that
space, the only eigenvalue of t on it is λi. Thus the characteristic equation of t
on N∞(t− λi) is |T1 − xI| = (x− λi)qi . And thus qj = 0 for all j 6= i.

Now consider the restriction of t to R∞(t − λi). By Note II.2.2, the map
t− λi is nonsingular on R∞(t− λi) and so λi is not an eigenvalue of t on that
subspace. Therefore, x− λi is not a factor of |T2 − xI|, and so qi = pi. QED

Our major result just translates those steps into matrix terms.

2.12 Theorem Any square matrix is similar to one in Jordan form



Jλ1 –zeroes–
Jλ2

. . .
Jλ`−1

–zeroes– Jλ`




where each Jλ is the Jordan block associated with the eigenvalue λ of the
original matrix (that is, is all zeroes except for λ’s down the diagonal and
some subdiagonal ones).

Proof. Given an n×n matrix T , consider the linear map t : Cn → Cn that it
represents with respect to the standard bases. Use the prior lemma to write
Cn = N∞(t− λ1)⊕ · · · ⊕N∞(t− λ`) where λ1, . . . , λ` are the eigenvalues of t.
Because each N∞(t− λi) is t invariant, Lemma 2.8 and the prior lemma show
that t is represented by a matrix that is all zeroes except for square blocks along
the diagonal. To make those blocks into Jordan blocks, pick each Bλi to be a
string basis for the action of t− λi on N∞(t− λi). QED
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Jordan form is a canonical form for similarity classes of square matrices,
provided that we make it unique by arranging the Jordan blocks from least
eigenvalue to greatest and then arranging the subdiagonal 1 blocks inside each
Jordan block from longest to shortest.

2.13 Example This matrix has the characteristic polynomial (x− 2)2(x− 6).

T =




2 0 1
0 6 2
0 0 2




We will handle the eigenvalues 2 and 6 separately.
Computation of the powers, and the null spaces and nullities, of T − 2I is

routine. (Recall from Example 2.3 the convention of taking T to represent a
transformation, here t : C3 → C3, with respect to the standard basis.)

power p (T − 2I)p N ((t− 2)p) nullity

1




0 0 1
0 4 2
0 0 0


 {




x

0
0




∣∣ x ∈ C} 1

2




0 0 0
0 16 8
0 0 0


 {




x

−z/2
z




∣∣ x, z ∈ C} 2

3




0 0 0
0 64 32
0 0 0


 –same– —

So the generalized null space N∞(t − 2) has dimension two. We’ve noted that
the restriction of t − 2 is nilpotent on this subspace. From the way that the
nullities grow we know that the action of t − 2 on a string basis ~β1 7→ ~β2 7→ ~0.
Thus the restriction can be represented in the canonical form

N2 =
(

0 0
1 0

)
= RepB,B(t− 2) B2 = 〈




1
1
−2


 ,



−2
0
0


〉

where many choices of basis are possible. Consequently, the action of the re-
striction of t to N∞(t− 2) is represented by this matrix.

J2 = N2 + 2I = RepB2,B2
(t) =

(
2 0
1 2

)

The second eigenvalue’s computations are easier. Because the power of x−6
in the characteristic polynomial is one, the restriction of t−6 to N∞(t−6) must
be nilpotent of index one. Its action on a string basis must be ~β3 7→ ~0 and since
it is the zero map, its canonical form N6 is the 1×1 zero matrix. Consequently,
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the canonical form J6 for the action of t on N∞(t−6) is the 1×1 matrix with the
single entry 6. For the basis we can use any nonzero vector from the generalized
null space.

B6 = 〈



0
1
0


〉

Taken together, these two give that the Jordan form of T is

RepB,B(t) =




2 0 0
1 2 0
0 0 6




where B is the concatenation of B2 and B6.

2.14 Example Contrast the prior example with

T =




2 2 1
0 6 2
0 0 2




which has the same characteristic polynomial (x− 2)2(x− 6).
While the characteristic polynomial is the same,

power p (T − 2I)p N ((t− 2)p) nullity

1




0 2 1
0 4 2
0 0 0


 {




x

−z/2
z




∣∣ x, z ∈ C} 2

2




0 8 4
0 16 8
0 0 0


 –same– —

here the action of t−2 is stable after only one application— the restriction of of
t−2 to N∞(t−2) is nilpotent of index only one. (So the contrast with the prior
example is that while the characteristic polynomial tells us to look at the action
of the t− 2 on its generalized null space, the characteristic polynomial does not
describe completely its action and we must do some computations to find, in
this example, that the minimal polynomial is (x− 2)(x− 6).) The restriction of
t− 2 to the generalized null space acts on a string basis as ~β1 7→ ~0 and ~β2 7→ ~0,
and we get this Jordan block associated with the eigenvalue 2.

J2 =
(

2 0
0 2

)

For the other eigenvalue, the arguments for the second eigenvalue of the
prior example apply again. The restriction of t − 6 to N∞(t − 6) is nilpotent
of index one (it can’t be of index less than one, and since x − 6 is a factor of
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the characteristic polynomial to the power one it can’t be of index more than
one either). Thus t − 6’s canonical form N6 is the 1×1 zero matrix, and the
associated Jordan block J6 is the 1×1 matrix with entry 6.

Therefore, T is diagonalizable.

RepB,B(t) =




2 0 0
0 2 0
0 0 6


 B = B2

_
B6 = 〈




1
0
0


 ,




0
1
−2


 ,




3
4
0


〉

(Checking that the third vector in B is in the nullspace of t− 6 is routine.)

2.15 Example A bit of computing with

T =




−1 4 0 0 0
0 3 0 0 0
0 −4 −1 0 0
3 −9 −4 2 −1
1 5 4 1 4




shows that its characteristic polynomial is (x− 3)3(x + 1)2. This table

power p (T − 3I)p N ((t− 3)p) nullity

1




−4 4 0 0 0
0 0 0 0 0
0 −4 −4 0 0
3 −9 −4 −1 −1
1 5 4 1 1



{




−(u + v)/2
−(u + v)/2
(u + v)/2

u

v




∣∣ u, v ∈ C} 2

2




16 −16 0 0 0
0 0 0 0 0
0 16 16 0 0
−16 32 16 0 0
0 −16 −16 0 0




{




−z

−z

z

u

v




∣∣ z, u, v ∈ C} 3

3




−64 64 0 0 0
0 0 0 0 0
0 −64 −64 0 0
64 −128 −64 0 0
0 64 64 0 0




–same– —

shows that the restriction of t − 3 to N∞(t − 3) acts on a string basis via the
two strings ~β1 7→ ~β2 7→ ~0 and ~β3 7→ ~0.

A similar calculation for the other eigenvalue
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power p (T + 1I)p N ((t + 1)p) nullity

1




0 4 0 0 0
0 4 0 0 0
0 −4 0 0 0
3 −9 −4 3 −1
1 5 4 1 5




{




−(u + v)
0
−v

u

v




∣∣ u, v ∈ C} 2

2




0 16 0 0 0
0 16 0 0 0
0 −16 0 0 0
8 −40 −16 8 −8
8 24 16 8 24




–same– —

shows that the restriction of t + 1 to its generalized null space acts on a string
basis via the two separate strings ~β4 7→ ~0 and ~β5 7→ ~0.

Therefore T is similar to this Jordan form matrix.



−1 0 0 0 0
0 −1 0 0 0
0 0 3 0 0
0 0 1 3 0
0 0 0 0 3




We close with the statement that the subjects considered earlier in this
Chpater are indeed, in this sense, exhaustive.

2.16 Corollary Every square matrix is similar to the sum of a diagonal matrix
and a nilpotent matrix.

Exercises
2.17 Do the check for Example 2.3.

2.18 Each matrix is in Jordan form. State its characteristic polynomial and its
minimal polynomial.

(a)

(
3 0
1 3

)
(b)

(
−1 0
0 −1

)
(c)

(
2 0 0
1 2 0
0 0 −1/2

)
(d)

(
3 0 0
1 3 0
0 1 3

)

(e)




3 0 0 0
1 3 0 0
0 0 3 0
0 0 1 3


 (f)




4 0 0 0
1 4 0 0
0 0 −4 0
0 0 1 −4


 (g)

(
5 0 0
0 2 0
0 0 3

)

(h)




5 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3


 (i)




5 0 0 0
0 2 0 0
0 1 2 0
0 0 0 3




X 2.19 Find the Jordan form from the given data.
(a) The matrix T is 5×5 with the single eigenvalue 3. The nullities of the powers
are: T − 3I has nullity two, (T − 3I)2 has nullity three, (T − 3I)3 has nullity
four, and (T − 3I)4 has nullity five.
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(b) The matrix S is 5×5 with two eigenvalues. For the eigenvalue 2 the nullities
are: S − 2I has nullity two, and (S − 2I)2 has nullity four. For the eigenvalue
−1 the nullities are: S + 1I has nullity one.

2.20 Find the change of basis matrices for each example.
(a) Example 2.13 (b) Example 2.14 (c) Example 2.15

X 2.21 Find the Jordan form and a Jordan basis for each matrix.

(a)

(
−10 4
−25 10

)

(b)

(
5 −4
9 −7

)

(c)

(
4 0 0
2 1 3
5 0 4

)

(d)

(
5 4 3
−1 0 −3
1 −2 1

)

(e)

(
9 7 3
−9 −7 −4
4 4 4

)

(f)

(
2 2 −1
−1 −1 1
−1 −2 2

)

(g)




7 1 2 2
1 4 −1 −1
−2 1 5 −1
1 1 2 8




X 2.22 Find all possible Jordan forms of a transformation with characteristic poly-
nomial (x− 1)2(x + 2)2.

2.23 Find all possible Jordan forms of a transformation with characteristic poly-
nomial (x− 1)3(x + 2).

X 2.24 Find all possible Jordan forms of a transformation with characteristic poly-
nomial (x− 2)3(x + 1) and minimal polynomial (x− 2)2(x + 1).

2.25 Find all possible Jordan forms of a transformation with characteristic poly-
nomial (x− 2)4(x + 1) and minimal polynomial (x− 2)2(x + 1).

X 2.26 Diagonalize these.

(a)

(
1 1
0 0

)
(b)

(
0 1
1 0

)

X 2.27 Find the Jordan matrix representing the differentiation operator on P3.

X 2.28 Decide if these two are similar.(
1 −1
4 −3

) (
−1 0
1 −1

)

2.29 Find the Jordan form of this matrix.(
0 −1
1 0

)

Also give a Jordan basis.

2.30 How many similarity classes are there for 3×3 matrices whose only eigenvalues
are −3 and 4?
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X 2.31 Prove that a matrix is diagonalizable if and only if its minimal polynomial
has only linear factors.

2.32 Give an example of a linear transformation on a vector space that has no
non-trivial invariant subspaces.

2.33 Show that a subspace is t− λ1 invariant if and only if it is t− λ2 invariant.

2.34 Prove or disprove: two n×n matrices are similar if and only if they have the
same characteristic and minimal polynomials.

2.35 The trace of a square matrix is the sum of its diagonal entries.
(a) Find the formula for the characteristic polynomial of a 2×2 matrix.
(b) Show that trace is invariant under similarity, and so we can sensibly speak
of the ‘trace of a map’. (Hint: see the prior item.)

(c) Is trace invariant under matrix equivalence?
(d) Show that the trace of a map is the sum of its eigenvalues (counting multi-
plicities).

(e) Show that the trace of a nilpotent map is zero. Does the converse hold?

2.36 To use Definition 2.6 to check whether a subspace is t invariant, we seemingly
have to check all of the infinitely many vectors in a (nontrivial) subspace to see if
they satisfy the condition. Prove that a subspace is t invariant if and only if its
subbasis has the property that for all of its elements, t(~β) is in the subspace.

X 2.37 Is t invariance preserved under intersection? Under union? Complementation?
Sums of subspaces?

2.38 Give a way to order the Jordan blocks if some of the eigenvalues are complex
numbers. That is, suggest a reasonable ordering for the complex numbers.

2.39 Let Pj(R) be the vector space over the reals of degree j polynomials. Show
that if j ≤ k then Pj(R) is an invariant subspace of Pk(R) under the differentiation
operator. In P7(R), does any of P0(R), . . . , P6(R) have an invariant complement?

2.40 In Pn(R), the vector space (over the reals) of degree n polynomials,

E = {p(x) ∈ Pn(R)
∣∣ p(−x) = p(x) for all x}

and
O = {p(x) ∈ Pn(R)

∣∣ p(−x) = −p(x) for all x}
are the even and the odd polynomials; p(x) = x2 is even while p(x) = x3 is odd.
Show that they are subspaces. Are they complementary? Are they invariant under
the differentiation transformation?

2.41 Lemma 2.8 says that if M and N are invariant complements then t has a
representation in the given block form (with respect to the same ending as starting
basis, of course). Does the implication reverse?

2.42 A matrix S is the square root of another T if S2 = T . Show that any nonsin-
gular matrix has a square root.
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Topic: Method of Powers

In practice, calculating eigenvalues and eigenvectors is a difficult problem. Find-
ing, and solving, the characteristic polynomial of the large matrices often en-
countered in applications is too slow and too hard. Other techniques, indirect
ones that avoid the characteristic polynomial, are used. Here we shall see such
a method that is suitable for large matrices that are ‘sparse’ (the great majority
of the entries are zero).

Suppose that the n×n matrix T has the n distinct eigenvalues λ1, λ2, . . . , λn.
Then Rn has a basis that is composed of the associated eigenvectors 〈~ζ1, . . . , ~ζn〉.
For any ~v ∈ Rn, where ~v = c1

~ζ1 + · · ·+ cn
~ζn, iterating T on ~v gives these.

T~v = c1λ1
~ζ1 + c2λ2

~ζ2 + · · ·+ cnλn
~ζn

T 2~v = c1λ
2
1
~ζ1 + c2λ

2
2
~ζ2 + · · ·+ cnλ2

n
~ζn

T 3~v = c1λ
3
1
~ζ1 + c2λ

3
2
~ζ2 + · · ·+ cnλ3

n
~ζn

...

T k~v = c1λ
k
1
~ζ1 + c2λ

k
2
~ζ2 + · · ·+ cnλk

n
~ζn

If one of the eigenvaluse, say, λ1, has a larger absolute value than any of the
other eigenvalues then its term will dominate the above expression. Put another
way, dividing through by λk

1 gives this,

T k~v

λk
1

= c1
~ζ1 + c2

λk
2

λk
1

~ζ2 + · · ·+ cn
λk

n

λk
1

~ζn

and, because λ1 is assumed to have the largest absolute value, as k gets larger
the fractions go to zero. Thus, the entire expression goes to c1

~ζ1.
That is (as long as c1 is not zero), as k increases, the vectors T k~v will

tend toward the direction of the eigenvectors associated with the dominant
eigenvalue, and, consequently, the ratios of the lengths ‖T k~v ‖/‖T k−1~v ‖ will
tend toward that dominant eigenvalue.

For example (sample computer code for this follows the exercises), because
the matrix

T =
(

3 0
8 −1

)

is triangular, its eigenvalues are just the entries on the diagonal, 3 and −1.
Arbitrarily taking ~v to have the components 1 and 1 gives

~v T~v T 2~v · · · T 9~v T 10~v(
1
1

) (
3
7

) (
9
17

)
· · ·

(
19 683
39 367

) (
59 049
118 097

)

and the ratio between the lengths of the last two is 2.999 9.
Two implementation issues must be addressed. The first issue is that, instead

of finding the powers of T and applying them to ~v, we will compute ~v1 as T~v and
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then compute ~v2 as T~v1, etc. (i.e., we never separately calculate T 2, T 3, etc.).
These matrix-vector products can be done quickly even if T is large, provided
that it is sparse. The second issue is that, to avoid generating numbers that are
so large that they overflow our computer’s capability, we can normalize the ~vi’s
at each step. For instance, we can divide each ~vi by its length (other possibilities
are to divide it by its largest component, or simply by its first component). We
thus implement this method by generating

~w0 = ~v0/‖~v0‖
~v1 = T ~w0

~w1 = ~v1/‖~v1‖
~v2 = T ~w2

...
~wk−1 = ~vk−1/‖~vk−1‖

~vk = T ~wk

until we are satisfied. Then the vector ~vk is an approximation of an eigenvector,
and the approximation of the dominant eigenvalue is the ratio ‖~vk‖/‖~wk−1‖ =
‖~vk‖.

One way we could be ‘satisfied’ is to iterate until our approximation of the
eigenvalue settles down. We could decide, for instance, to stop the iteration
process not after some fixed number of steps, but instead when ‖~vk‖ differs
from ‖~vk−1‖ by less than one percent, or when they agree up to the second
significant digit.

The rate of convergence is determined by the rate at which the powers of
‖λ2/λ1‖ go to zero, where λ2 is the eigenvalue of second largest norm. If that
ratio is much less than one then convergence is fast, but if it is only slightly
less than one then convergence can be quite slow. Consequently, the method of
powers is not the most commonly used way of finding eigenvalues (although it
is the simplest one, which is why it is here as the illustration of the possibility of
computing eigenvalues without solving the characteristic polynomial). Instead,
there are a variety of methods that generally work by first replacing the given
matrix T with another that is similar to it and so has the same eigenvalues, but
is in some reduced form such as tridiagonal form: the only nonzero entries are
on the diagonal, or just above or below it. Then special techniques can be used
to find the eigenvalues. Once the eigenvalues are known, the eigenvectors of T
can be easily computed. These other methods are outside of our scope. A good
reference is [Goult, et al.]

Exercises

1 Use ten iterations to estimate the largest eigenvalue of these matrices, starting
from the vector with components 1 and 2. Compare the answer with the one
obtained by solving the characteristic equation.
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(a)

(
1 5
0 4

)
(b)

(
3 2
−1 0

)

2 Redo the prior exercise by iterating until ‖~vk‖ − ‖~vk−1‖ has absolute value less
than 0.01 At each step, normalize by dividing each vector by its length. How many
iterations are required? Are the answers significantly different?

3 Use ten iterations to estimate the largest eigenvalue of these matrices, starting
from the vector with components 1, 2, and 3. Compare the answer with the one
obtained by solving the characteristic equation.

(a)

(
4 0 1
−2 1 0
−2 0 1

)
(b)

(−1 2 2
2 2 2
−3 −6 −6

)

4 Redo the prior exercise by iterating until ‖~vk‖ − ‖~vk−1‖ has absolute value less
than 0.01. At each step, normalize by dividing each vector by its length. How
many iterations does it take? Are the answers significantly different?

5 What happens if c1 = 0? That is, what happens if the initial vector does not to
have any component in the direction of the relevant eigenvector?

6 How can the method of powers be adopted to find the smallest eigenvalue?

Computer Code
This is the code for the computer algebra system Octave that was used to

do the calculation above. (It has been lightly edited to remove blank lines, etc.)

>T=[3, 0;

8, -1]

T=

3 0

8 -1

>v0=[1; 2]

v0=

1

1

>v1=T*v0

v1=

3

7

>v2=T*v1

v2=

9

17

>T9=T**9

T9=

19683 0

39368 -1

>T10=T**10

T10=

59049 0

118096 1

>v9=T9*v0

v9=
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19683

39367

>v10=T10*v0

v10=

59049

118096

>norm(v10)/norm(v9)

ans=2.9999

Remark: we are ignoring the power of Octave here; there are built-in func-
tions to automatically apply quite sophisticated methods to find eigenvalues and
eigenvectors. Instead, we are using just the system as a calculator.
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Topic: Stable Populations

Imagine a reserve park with animals from a species that we are trying to protect.
The park doesn’t have a fence and so animals cross the boundary, both from
the inside out and in the other direction. Every year, 10% of the animals from
inside of the park leave, and 1% of the animals from the outside find their way
in. We can ask if we can find a stable level of population for this park: is there a
population that, once established, will stay constant over time, with the number
of animals leaving equal to the number of animals entering?

To answer that question, we must first establish the equations. Let the year
n population in the park be pn and in the rest of the world be rn.

pn+1 = .90pn + .01rn

rn+1 = .10pn + .99rn

We can set this system up as a matrix equation (see the Markov Chain topic).
(

pn+1

rn+1

)
=

(
.90 .01
.10 .99

)(
pn

rn

)

Now, “stable level” means that pn+1 = pn and rn+1 = rn, so that the matrix
equation ~vn+1 = T~vn becomes ~v = T~v. We are therefore looking for eigenvectors
for T that are associated with the eigenvalue 1. The equation (I − T )~v = ~0 is

(
.10 .01
.10 .01

)(
p
r

)
=

(
0
0

)

which gives the eigenspace: vectors with the restriction that p = .1r. Coupled
with additional information, that the total world population of this species is is
p + r = 110 000, we find that the stable state is p = 10, 000 and r = 100, 000.

If we start with a park population of ten thousand animals, so that the rest of
the world has one hundred thousand, then every year ten percent (a thousand
animals) of those inside will leave the park, and every year one percent (a
thousand) of those from the rest of the world will enter the park. It is stable,
self-sustaining.

Now imagine that we are trying to gradually build up the total world pop-
ulation of this species. We can try, for instance, to have the world population
grow at a rate of 1% per year. In this case, we can take a “stable” state for
the park’s population to be that it also grows at 1% per year. The equation
~vn+1 = 1.01 · ~vn = T~vn leads to ((1.01 · I)− T )~v = ~0, which gives this system.

(
.11 .01
.10 .02

)(
p
r

)
=

(
0
0

)

The matrix is nonsingular, and so the only solution is p = 0 and r = 0. Thus,
there is no (usable) initial population that we can establish at the park and
expect that it will grow at the same rate as the rest of the world.



402 Chapter Five. Similarity

Knowing that an annual world population growth rate of 1% forces an un-
stable park population, we can ask which growth rates there are that would
allow an initial population for the park that will be self-sustaining. We consider
λ~v = T~v and solve for λ.

0 =
∣∣∣∣
λ− .9 .01
.10 λ− .99

∣∣∣∣ = (λ− .9)(λ− .99)− (.10)(.01) = λ2 − 1.89λ + .89

A shortcut to factoring that quadratic is our knowledge that λ = 1 is an eigen-
value of T , so the other eigenvalue is .89. Thus there are two ways to have a
stable park population (a population that grows at the same rate as the popu-
lation of the rest of the world, despite the leaky park boundaries): have a world
population that is does not grow or shrink, and have a world population that
shrinks by 11% every year.

So this is one meaning of eigenvalues and eigenvectors— they give a sta-
ble state for a system. If the eigenvalue is 1 then the system is static. If
the eigenvalue isn’t 1 then the system is either growing or shrinking, but in a
dynamically-stable way.

Exercises
1 What initial population for the park discussed above should be set up in the case
where world populations are allowed to decline by 11% every year?

2 What will happen to the population of the park in the event of a growth in world
population of 1% per year? Will it lag the world growth, or lead it? Assume
that the inital park population is ten thousand, and the world population is one
hunderd thousand, and calculate over a ten year span.

3 The park discussed above is partially fenced so that now, every year, only 5% of
the animals from inside of the park leave (still, about 1% of the animals from the
outside find their way in). Under what conditions can the park maintain a stable
population now?

4 Suppose that a species of bird only lives in Canada, the United States, or in
Mexico. Every year, 4% of the Canadian birds travel to the US, and 1% of them
travel to Mexico. Every year, 6% of the US birds travel to Canada, and 4%
go to Mexico. From Mexico, every year 10% travel to the US, and 0% go to
Canada.
(a) Give the transition matrix.
(b) Is there a way for the three countries to have constant populations?
(c) Find all stable situations.
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Topic: Linear Recurrences

In 1202 Leonardo of Pisa, also known as Fibonacci, posed this problem.

A certain man put a pair of rabbits in a place surrounded on all
sides by a wall. How many pairs of rabbits can be produced from
that pair in a year if it is supposed that every month each pair begets
a new pair which from the second month on becomes productive?

This moves past an elementary exponential growth model for population in-
crease to include the fact that there is an initial period where newborns are not
fertile. However, it retains other simplyfing assumptions, such as that there is
no gestation period and no mortality.

The number of newborn pairs that will appear in the upcoming month is
simply the number of pairs that were alive last month, since those will all be
fertile, having been alive for two months. The number of pairs alive next month
is the sum of the number alive last month and the number of newborns.

f(n + 1) = f(n) + f(n− 1) where f(0) = 1, f(1) = 1

The is an example of a recurrence relation (it is called that because the values
of f are calculated by looking at other, prior, values of f). From it, we can
easily answer Fibonacci’s twelve-month question.

month 0 1 2 3 4 5 6 7 8 9 10 11 12
pairs 1 1 2 3 5 8 13 21 34 55 89 144 233

The sequence of numbers defined by the above equation (of which the first few
are listed) is the Fibonacci sequence. The material of this chapter can be used
to give a formula with which we can can calculate f(n + 1) without having to
first find f(n), f(n− 1), etc.

For that, observe that the recurrence is a linear relationship and so we can
give a suitable matrix formulation of it.

(
1 1
1 0

)(
f(n)

f(n− 1)

)
=

(
f(n + 1)

f(n)

)
where

(
f(1)
f(0)

)
=

(
1
1

)

Then, where we write T for the matrix and ~vn for the vector with components
f(n+1) and f(n), we have that ~vn = Tn~v0. The advantage of this matrix formu-
lation is that by diagonalizing T we get a fast way to compute its powers: where
T = PDP−1 we have Tn = PDnP−1, and the n-th power of the diagonal
matrix D is the diagonal matrix whose entries that are the n-th powers of the
entries of D.

The characteristic equation of T is λ2 − λ− 1. The quadratic formula gives
its roots as (1 +

√
5)/2 and (1−√5)/2. Diagonalizing gives this.

(
1 1
1 0

)
=

(
1+
√

5
2

1−√5
2

1 1

) (
1+
√

5
2 0
0 1−√5

2

)(
1√
5

− 1−√5
2
√

5
−1√

5
1+
√

5
2
√

5

)
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Introducing the vectors and taking the n-th power, we have
(

f(n + 1)
f(n)

)
=

(
1 1
1 0

)n (
f(1)
f(0)

)

=
(

1+
√

5
2

1−√5
2

1 1

) (
1+
√

5
2

n
0

0 1−√5
2

n

)(
1√
5

− 1−√5
2
√

5
−1√

5
1+
√

5
2
√

5

)(
f(1)
f(0)

)

We can compute f(n) from the second component of that equation.

f(n) =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5
2

)n]

Notice that f is dominated by its first term because (1 − √
5)/2 is less than

one, so its powers go to zero. Although we have extended the elementary model
of population growth by adding a delay period before the onset of fertility, we
nonetheless still get an (asmyptotically) exponential function.

In general, a linear recurrence relation has the form

f(n + 1) = anf(n) + an−1f(n− 1) + · · ·+ an−kf(n− k)

(it is also called a difference equation). This recurrence relation is homogeneous
because there is no constant term; i.e, it can be put into the form 0 = −f(n+1)+
anf(n)+an−1f(n−1)+ · · ·+an−kf(n−k). This is said to be a relation of order
k. The relation, along with the initial conditions f(0), . . . , f(k) completely
determine a sequence. For instance, the Fibonacci relation is of order 2 and
it, along with the two initial conditions f(0) = 1 and f(1) = 1, determines the
Fibonacci sequence simply because we can compute any f(n) by first computing
f(2), f(3), etc. In this Topic, we shall see how linear algebra can be used to
solve linear recurrence relations.

First, we define the vector space in which we are working. Let V be the set
of functions f from the natural numbers N = {0, 1, 2, . . .} to the real numbers.
(Below we shall have functions with domain {1, 2, . . .}, that is, without 0, but
it is not an important distinction.)

Putting the initial conditions aside for a moment, for any recurrence, we can
consider the subset S of V of solutions. For example, without initial conditions,
in addition to the function f given above, the Fibonacci relation is also solved by
the function g whose first few values are g(0) = 1, g(1) = 1, g(2) = 3, g(3) = 4,
and g(4) = 7.

The subset S is a subspace of V . It is nonempty because the zero function
is a solution. It is closed under addition since if f1 and f2 are solutions, then

an+1(f1 + f2)(n + 1) + · · ·+ an−k(f1 + f2)(n− k)

= (an+1f1(n + 1) + · · ·+ an−kf1(n− k))
+ (an+1f2(n + 1) + · · ·+ an−kf2(n− k))

= 0.
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And, it is closed under scalar multiplication since

an+1(rf1)(n + 1) + · · ·+ an−k(rf1)(n− k)

= r(an+1f1(n + 1) + · · ·+ an−kf1(n− k))
= r · 0
= 0.

We can give the dimension of S. Consider this map from the set of functions S
to the set of vectors Rk.

f 7→




f(0)
f(1)

...
f(k)




Exercise 3 shows that this map is linear. Because, as noted above, any solution
of the recurrence is uniquely determined by the k initial conditions, this map is
one-to-one and onto. Thus it is an isomorphism, and thus S has dimension k,
the order of the recurrence.

So (again, without any initial conditions), we can describe the set of solu-
tions of any linear homogeneous recurrence relation of degree k by taking linear
combinations of only k linearly independent functions. It remains to produce
those functions.

For that, we express the recurrence f(n + 1) = anf(n) + · · ·+ an−kf(n− k)
with a matrix equation.




an an−1 an−2 . . . an−k+1 an−k

1 0 0 . . . 0 0
0 1 0
0 0 1
...

...
. . .

...
0 0 0 . . . 1 0







f(n)
f(n− 1)

...
f(n− k)


 =




f(n + 1)
f(n)

...
f(n− k + 1)




In trying to find the characteristic function of the matrix, we can see the pattern
in the 2×2 case

(
an − λ an−1

1 −λ

)
= λ2 − anλ− an−1

and 3×3 case.




an − λ an−1 an−2

1 −λ 0
0 1 −λ


 = −λ3 + anλ2 + an−1λ + an−2
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Exercise 4 shows that the characteristic equation is this.

∣∣∣∣∣∣∣∣∣∣∣∣∣

an − λ an−1 an−2 . . . an−k+1 an−k

1 −λ 0 . . . 0 0
0 1 −λ
0 0 1
...

...
. . .

...
0 0 0 . . . 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ±(−λk + anλk−1 + an−1λ

k−2 + · · ·+ an−k+1λ + an−k)

We call that the polynomial ‘associated’ with the recurrence relation. (We will
be finding the roots of this polynomial and so we can drop the ± as irrelevant.)

If −λk + anλk−1 + an−1λ
k−2 + · · ·+ an−k+1λ + an−k has no repeated roots

then the matrix is diagonalizable and we can, in theory, get a formula for f(n)
as in the Fibonacci case. But, because we know that the subspace of solutions
has dimension k, we do not need to do the diagonalization calculation, provided
that we can exhibit k linearly independent functions satisfying the relation.

Where r1, r2, . . . , rk are the distinct roots, consider the functions fr1(n) = rn
1

through frk
(n) = rn

k of powers of those roots. Exercise 5 shows that each is a
solution of the recurrence and that the k of them form a linearly independent
set. So, given the homogeneous linear recurrence f(n + 1) = anf(n) + · · · +
an−kf(n−k) (that is, 0 = −f(n+1)+anf(n)+ · · ·+an−kf(n−k)) we consider
the associated equation 0 = −λk + anλk−1 + · · ·+ an−k+1λ + an−k. We find its
roots r1, . . . , rk, and if those roots are distinct then any solution of the relation
has the form f(n) = c1r

n
1 + c2r

n
2 + · · · + ckrn

k for c1, . . . , cn ∈ R. (The case of
repeated roots is also easily done, but we won’t cover it here — see any text on
Discrete Mathematics.)

Now, given some initial conditions, so that we are interested in a particular
solution, we can solve for c1, . . . , cn. For instance, the polynomial associated
with the Fibonacci relation is −λ2 + λ + 1, whose roots are (1±√5)/2 and so
any solution of the Fibonacci equation has the form f(n) = c1((1 +

√
5)/2)n +

c2((1−
√

5)/2)n. Including the initial conditions for the cases n = 0 and n = 1
gives

c1 + c2 = 1
(1 +

√
5/2)c1 + (1−√5/2)c2 = 1

which yields c1 = 1/
√

5 and c2 = −1/
√

5, as was calculated above.
We close by considering the nonhomogeneous case, where the relation has the

form f(n+1) = anf(n)+an−1f(n−1)+ · · ·+an−kf(n−k)+b for some nonzero
b. As in the first chapter of this book, only a small adjustment is needed to make
the transition from the homogeneous case. This classic example illustrates.

In 1883, Edouard Lucas posed the following problem.

In the great temple at Benares, beneath the dome which marks
the center of the world, rests a brass plate in which are fixed three
diamond needles, each a cubit high and as thick as the body of a
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bee. On one of these needles, at the creation, God placed sixty four
disks of pure gold, the largest disk resting on the brass plate, and
the others getting smaller and smaller up to the top one. This is the
Tower of Bramah. Day and night unceasingly the priests transfer
the disks from one diamond needle to another according to the fixed
and immutable laws of Bramah, which require that the priest on
duty must not move more than one disk at a time and that he must
place this disk on a needle so that there is no smaller disk below
it. When the sixty-four disks shall have been thus transferred from
the needle on which at the creation God placed them to one of the
other needles, tower, temple, and Brahmins alike will crumble into
dusk, and with a thunderclap the world will vanish. (Translation of
[De Parville] from [Ball & Coxeter].)

How many disk moves will it take? Instead of tackling the sixty four disk
problem right away, we will consider the problem for smaller numbers of disks,
starting with three.

To begin, all three disks are on the same needle.

After moving the small disk to the far needle, the mid-sized disk to the middle
needle, and then moving the small disk to the middle needle we have this.

Now we can move the big disk over. Then, to finish, we repeat the process of
moving the smaller disks, this time so that they end up on the third needle, on
top of the big disk.

So the thing to see is that to move the very largest disk, the bottom disk,
at a minimum we must: first move the smaller disks to the middle needle, then
move the big one, and then move all the smaller ones from the middle needle to
the ending needle. Those three steps give us this recurence.

T (n + 1) = T (n) + 1 + T (n) = 2T (n) + 1 where T (1) = 1

We can easily get the first few values of T .
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n 1 2 3 4 5 6 7 8 9 10
T (n) 1 3 7 15 31 63 127 255 511 1023

We recognize those as being simply one less than a power of two.
To derive this equation instead of just guessing at it, we write the original

relation as −1 = −T (n + 1) + 2T (n), consider the homogeneous relation 0 =
−T (n) + 2T (n− 1), get its associated polynomial −λ + 2, which obviously has
the single, unique, root of r1 = 2, and conclude that functions satisfying the
homogeneous relation take the form T (n) = c12n.

That’s the homogeneous solution. Now we need a particular solution.
Because the nonhomogeneous relation −1 = −T (n+1)+2T (n) is so simple,

in a few minutes (or by remembering the table) we can spot the particular
solution T (n) = −1 (there are other particular solutions, but this one is easily
spotted). So we have that— without yet considering the initial condition —any
solution of T (n + 1) = 2T (n) + 1 is the sum of the homogeneous solution and
this particular solution: T (n) = c12n − 1.

The initial condition T (1) = 1 now gives that c1 = 1, and we’ve gotten the
formula that generates the table: the n-disk Tower of Hanoi problem requires a
minimum of 2n − 1 moves.

Finding a particular solution in more complicated cases is, naturally, more
complicated. A delightful and rewarding, but challenging, source on recur-
rence relations is [Graham, Knuth, Patashnik]., For more on the Tower of Hanoi,
[Ball & Coxeter] or [Gardner 1957] are good starting points. So is [Hofstadter].
Some computer code for trying some recurrence relations follows the exercises.

Exercises

1 Solve each homogeneous linear recurrence relations.
(a) f(n + 1) = 5f(n)− 6f(n− 1)
(b) f(n + 1) = 4f(n− 1)
(c) f(n + 1) = 6f(n) + 7f(n− 1) + 6f(n− 2)

2 Give a formula for the relations of the prior exercise, with these initial condi-
tions.
(a) f(0) = 1, f(1) = 1
(b) f(0) = 0, f(1) = 1
(c) f(0) = 1, f(1) = 1, f(2) = 3.

3 Check that the isomorphism given betwween S and Rk is a linear map. It is
argued above that this map is one-to-one. What is its inverse?

4 Show that the characteristic equation of the matrix is as stated, that is, is the
polynomial associated with the relation. (Hint: expanding down the final column,
and using induction will work.)

5 Given a homogeneous linear recurrence relation f(n + 1) = anf(n) + · · · +
an−kf(n−k), let r1, . . . , rk be the roots of the associated polynomial.
(a) Prove that each function fri(n) = rn

k satisfies the recurrence (without initial
conditions).

(b) Prove that no ri is 0.
(c) Prove that the set {fr1 , . . . , frk} is linearly independent.
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6 (This refers to the value T (64) = 18, 446, 744, 073, 709, 551, 615 given in the com-
puter code below.) Transferring one disk per second, how many years would it
take the priests at the Tower of Hanoi to finish the job?

Computer Code
This code allows the generation of the first few values of a function defined

by a recurrence and initial conditions. It is in the Scheme dialect of LISP
(specifically, it was written for A. Jaffer’s free scheme interpreter SCM, although
it should run in any Scheme implementation).

First, the Tower of Hanoi code is a straightforward implementation of the
recurrence.

(define (tower-of-hanoi-moves n)

(if (= n 1)

1

(+ (* (tower-of-hanoi-moves (- n 1))

2)

1) ) )

(Note for readers unused to recursive code: to compute T (64), the computer is
told to compute 2 ∗ T (63)− 1, which requires, of course, computing T (63). The
computer puts the ‘times 2’ and the ‘plus 1’ aside for a moment to do that. It
computes T (63) by using this same piece of code (that’s what ‘recursive’ means),
and to do that is told to compute 2 ∗ T (62) − 1. This keeps up (the next step
is to try to do T (62) while the other arithmetic is held in waiting), until, after
63 steps, the computer tries to compute T (1). It then returns T (1) = 1, which
now means that the computation of T (2) can proceed, etc., up until the original
computation of T (64) finishes.)

The next routine calculates a table of the first few values. (Some language
notes: ’() is the empty list, that is, the empty sequence, and cons pushes
something onto the start of a list. Note that, in the last line, the procedure
proc is called on argument n.)

(define (first-few-outputs proc n)

(first-few-outputs-helper proc n ’()) )

;

(define (first-few-outputs-aux proc n lst)

(if (< n 1)

lst

(first-few-outputs-aux proc (- n 1) (cons (proc n) lst)) ) )

The session at the SCM prompt went like this.

>(first-few-outputs tower-of-hanoi-moves 64)

Evaluation took 120 mSec

(1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767

65535 131071 262143 524287 1048575 2097151 4194303 8388607

16777215 33554431 67108863 134217727 268435455 536870911

1073741823 2147483647 4294967295 8589934591 17179869183

34359738367 68719476735 137438953471 274877906943 549755813887



410 Chapter Five. Similarity

1099511627775 2199023255551 4398046511103 8796093022207

17592186044415 35184372088831 70368744177663 140737488355327

281474976710655 562949953421311 1125899906842623

2251799813685247 4503599627370495 9007199254740991

18014398509481983 36028797018963967 72057594037927935

144115188075855871 288230376151711743 576460752303423487

1152921504606846975 2305843009213693951 4611686018427387903

9223372036854775807 18446744073709551615)

This is a list of T (1) through T (64). (The 120 mSec came on a 50 mHz ’486
running in an XTerm of XWindow under Linux. The session was edited to put
line breaks between numbers.)



Appendix

Mathematics is made of arguments (reasoned discourse that is, not crockery-
throwing). This section is a reference to the most used techniques. A reader
having trouble with, say, proof by contradiction, can turn here for an outline of
that method.

But this section gives only a sketch. For more, these are classics: Methods
of Logic by Quine, Induction and Analogy in Mathematics by Pólya, and Naive
Set Theory by Halmos.

IV.3 Propositions

The point at issue in an argument is the proposition. Mathematicians usually
write the point in full before the proof and label it either Theorem for major
points, Corollary for points that follow immediately from a prior one, or Lemma
for results chiefly used to prove other results.

The statements expressing propositions can be complex, with many subparts.
The truth or falsity of the entire proposition depends both on the truth value
of the parts, and on the words used to assemble the statement from its parts.

Not. For example, where P is a proposition, ‘it is not the case that P ’ is
true provided that P is false. Thus, ‘n is not prime’ is true only when n is the
product of smaller integers.

We can picture the ‘not’ operation with a Venn diagram.

P

Where the box encloses all natural numbers, and inside the circle are the primes,
the shaded area holds numbers satisfying ‘not P ’.

To prove that a ‘not P ’ statement holds, show that P is false.

A-1



A-2

And. Consider the statement form ‘P and Q’. For the statement to be true
both halves must hold: ‘7 is prime and so is 3’ is true, while ‘7 is prime and 3
is not’ is false.

Here is the Venn diagram for ‘P and Q’.

P Q

To prove ‘P and Q’, prove that each half holds.

Or. A ‘P or Q’ is true when either half holds: ‘7 is prime or 4 is prime’ is
true, while ‘7 is not prime or 4 is prime’ is false. We take ‘or’ inclusively so that
if both halves are true ‘7 is prime or 4 is not’ then the statement as a whole is
true. (In everyday speech, sometimes ‘or’ is meant in an exclusive way—“Eat
your vegetables or no dessert” does not intend both halves to hold — but we
will not use ‘or’ in that way.)

The Venn diagram for ‘or’ includes all of both circles.

P Q

To prove ‘P or Q’, show that in all cases at least one half holds (perhaps
sometimes one half and sometimes the other, but always at least one).

If-then. An ‘if P then Q’ statement (sometimes written ‘P materially implies
Q’ or just ‘P implies Q’ or ‘P =⇒ Q’) is true unless P is true while Q is false.
Thus ‘if 7 is prime then 4 is not’ is true while ‘if 7 is prime then 4 is also prime’
is false. (Contrary to its use in casual speech, in mathematics ‘if P then Q’ does
not connote that P precedes Q or causes Q.)

More subtly, in mathematics ‘if P then Q’ is true when P is false: ‘if 4 is
prime then 7 is prime’ and ‘if 4 is prime then 7 is not’ are both true statements,
sometimes said to be vacuously true. We adopt this convention because we want
statements like ‘if a number is a perfect square then it is not prime’ to be true,
for instance when the number is 5 or when the number is 6.

The diagram

P Q
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shows that Q holds whenever P does (another phrasing is ‘P is sufficient to give
Q’). Notice again that if P does not hold, Q may or may not be in force.

There are two main ways to establish an implication. The first way is direct:
assume that P is true and, using that assumption, prove Q. For instance, to
show ‘if a number is divisible by 5 then twice that number is divisible by 10’,
assume that the number is 5n and deduce that 2(5n) = 10n. The second way
is indirect: prove the contrapositive statement: ‘if Q is false then P is false’
(rephrased, ‘Q can only be false when P is also false’). As an example, to show
‘if a number is prime then it is not a perfect square’, argue that if it were a
square p = n2 then it could be factored p = n · n where n < p and so wouldn’t
be prime (of course p = 0 or p = 1 don’t give n < p but they are nonprime by
definition).

Note two things about this statement form.
First, an ‘if P then Q’ result can sometimes be improved by weakening P

or strengthening Q. Thus, ‘if a number is divisible by p2 then its square is
also divisible by p2’ could be upgraded either by relaxing its hypothesis: ‘if a
number is divisible by p then its square is divisible by p2’, or by tightening its
conclusion: ‘if a number is divisible by p2 then its square is divisible by p4’.

Second, after showing ‘if P then Q’, a good next step is to look into whether
there are cases where Q holds but P does not. The idea is to better under-
stand the relationship between P and Q, with an eye toward strengthening the
proposition.

Equivalence. An if-then statement cannot be improved when not only does
P imply Q, but also Q implies P . Some ways to say this are: ‘P if and only if
Q’, ‘P iff Q’, ‘P and Q are logically equivalent’, ‘P is necessary and sufficient
to give Q’, ‘P ⇐⇒ Q’. For example, ‘a number is divisible by a prime if and
only if that number squared is divisible by the prime squared’.

The picture here shows that P and Q hold in exactly the same cases.

P Q

Although in simple arguments a chain like “P if and only if R, which holds if
and only if S . . . ” may be practical, typically we show equivalence by showing
the ‘if P then Q’ and ‘if Q then P ’ halves separately.

IV.4 Quantifiers

Compare these two statements about natural numbers: ‘there is an x such
that x is divisible by x2’ is true, while ‘for all numbers x, that x is divisible by
x2’ is false. We call the ‘there is’ and ‘for all’ prefixes quantifiers.
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For all. The ‘for all’ prefix is the universal quantifier, symbolized ∀.
Venn diagrams aren’t very helpful with quantifiers, but in a sense the box

we draw to border the diagram shows the universal quantifier since it dilineates
the universe of possible members.

To prove that a statement holds in all cases, we must show that it holds in
each case. Thus, to prove ‘every number divisible by p has its square divisible
by p2’, take a single number of the form pn and square it (pn)2 = p2n2. This is
a “typical element” or “generic element” proof.

This kind of argument requires that we are careful to not assume properties
for that element other than those in the hypothesis — for instance, this type of
wrong argument is a common mistake: “if n is divisible by a prime, say 2, so
that n = 2k then n2 = (2k)2 = 4k2 and the square of the number is divisible
by the square of the prime”. That is an argument about the case p = 2, but it
isn’t a proof for general p.

There exists. We will also use the existential quantifier, symbolized ∃ and
read ‘there exists’.

As noted above, Venn diagrams are not much help with quantifiers, but a
picture of ‘there is a number such that P ’ would show both that there can be
more than one and that not all numbers need satisfy P .

P

An existence proposition can be proved by producing something satisfying
the property: once, to settle the question of primality of 225

+1, Euler produced
its divisor 641. But there are proofs showing that something exists without say-
ing how to find it; Euclid’s argument given in the next subsection shows there
are infinitely many primes without naming them. In general, while demon-
strating existence is better than nothing, giving an example is better, and an
exhaustive list of all instances is great. Still, mathematicians take what they
can get.

Finally, along with “Are there any?” we often ask “How many?” That
is why the issue of uniqueness often arises in conjunction with questions of
existence. Many times the two arguments are simpler if separated, so note that
just as proving something exists does not show it is unique, neither does proving
something is unique show that it exists. (Obviously ‘the natural number with
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more factors than any other’ would be unique, but in fact no such number
exists.)

IV.5 Techniques of Proof

Induction. Many proofs are iterative, “Here’s why the statement is true for
for the case of the number 1, it then follows for 2, and from there to 3, and so
on . . . ”. These are called proofs by induction. Such a proof has two steps. In
the base step the proposition is established for some first number, often 0 or 1.
Then in the inductive step we assume that the proposition holds for numbers
up to some k and deduce that it then holds for the next number k + 1.

Here is an example.

We will prove that 1 + 2 + 3 + · · ·+ n = n(n + 1)/2.

For the base step we must show that the formula holds when n = 1.
That’s easy, the sum of the first 1 number does indeed equal 1(1 + 1)/2.

For the inductive step, assume that the formula holds for the numbers
1, 2, . . . , k. That is, assume all of these instances of the formula.

1 = 1(1 + 1)/2

and 1 + 2 = 2(2 + 1)/2

and 1 + 2 + 3 = 3(3 + 1)/2

...

and 1 + · · ·+ k = k(k + 1)/2

From this assumption we will deduce that the formula therefore also holds
in the k + 1 next case. The deduction is straightforward algebra.

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

(k + 1)(k + 2)

2

We’ve shown in the base case that the above proposition holds for 1. We’ve
shown in the inductive step that if it holds for the case of 1 then it also holds
for 2; therefore it does hold for 2. We’ve also shown in the inductive step that
if the statement holds for the cases of 1 and 2 then it also holds for the next
case 3, etc. Thus it holds for any natural number greater than or equal to 1.

Here is another example.

We will prove that every integer greater than 1 is a product of primes.

The base step is easy: 2 is the product of a single prime.

For the inductive step assume that each of 2, 3, . . . , k is a product of
primes, aiming to show k + 1 is also a product of primes. There are two



A-6

possibilities: (i) if k + 1 is not divisible by a number smaller than itself
then it is a prime and so is the product of primes, and (ii) if k + 1 is
divisible then its factors can be written as a product of primes (by the
inductive hypothesis) and so k+1 can be rewritten as a product of primes.
That ends the proof.

(Remark. The Prime Factorization Theorem of Number Theory says that
not only does a factorization exist, but that it is unique. We’ve shown the
easy half.)

There are two things to note about the ‘next number’ in an induction argu-
ment.

For one thing, while induction works on the integers, it’s no good on the
reals. There is no ‘next’ real.

The other thing is that we sometimes use induction to go down, say, from 10
to 9 to 8, etc., down to 0. So ‘next number’ could mean ‘next lowest number’.
Of course, at the end we have not shown the fact for all natural numbers, only
for those less than or equal to 10.

Contradiction. Another technique of proof is to show something is true by
showing it can’t be false.

The classic example is Euclid’s, that there are infinitely many primes.

Suppose there are only finitely many primes p1, . . . , pk. Consider p1 ·
p2 . . . pk +1. None of the primes on this supposedly exhaustive list divides
that number evenly, each leaves a remainder of 1. But every number is
a product of primes so this can’t be. Thus there cannot be only finitely
many primes.

Every proof by contradiction has the same form: assume that the proposition
is false and derive some contradiction to known facts.

Another example is this proof that
√

2 is not a rational number.

Suppose that
√

2 = m/n.

2n2 = m2

Factor out the 2’s: n = 2kn · n̂ and m = 2km · m̂ and rewrite.

2 · (2kn · n̂)2 = (2km · m̂)2

The Prime Factorization Theorem says that there must be the same num-
ber of factors of 2 on both sides, but there are an odd number 1 + 2kn on
the left and an even number 2km on the right. That’s a contradiction, so
a rational with a square of 2 cannot be.

Both of these examples aimed to prove something doesn’t exist. A negative
proposition often suggests a proof by contradiction.
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IV.6 Sets, Functions, and Relations

Sets. Mathematicians work with collections called sets. A set can be given
as a listing between curly braces as in {1, 4, 9, 16}, or, if that’s unwieldy, by
using set-builder notation as in {x

∣∣ x5 − 3x3 + 2 = 0} (read “the set of all x
such that . . . ”). We name sets with capital roman letters as with the primes
P = {2, 3, 5, 7, 11, . . . }, except for a few special sets such as the real numbers
R, and the complex numbers C. To denote that something is an element (or
member) of a set we use ‘ ∈ ’, so that 7 ∈ {3, 5, 7} while 8 6∈ {3, 5, 7}.

What distinguishes a set from any other type of collection is the Principle
of Extensionality, that two sets with the same elements are equal. Because of
this principle, in a set repeats collapse {7, 7} = {7} and order doesn’t matter
{2, π} = {π, 2}.

We use ‘⊂’ for the subset relationship: {2, π} ⊂ {2, π, 7} and ‘⊆’ for subset
or equality (if A is a subset of B but A 6= B then A is a proper subset of B).
These symbols may be flipped, for instance {2, π, 5} ⊃ {2, 5}.

Because of Extensionality, to prove that two sets are equal A = B, just show
that they have the same members. Usually we show mutual inclusion, that both
A ⊆ B and A ⊇ B.

Set operations. Venn diagrams are handy here. For instance, x ∈ P can be
pictured

P

x

and ‘P ⊆ Q’ looks like this.

P Q

Note that this is a repeat of the diagram for ‘if . . . then . . . ’ propositions. That’s
because ‘P ⊆ Q’ means ‘if x ∈ P then x ∈ Q’.

In general, for every propositional logic operator there is an associated set
operator. For instance, the complement of P is P comp = {x

∣∣ not(x ∈ P )}

P
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the union is P ∪Q = {x
∣∣ (x ∈ P ) or (x ∈ Q)}

P Q

and the intersection is P ∩Q = {x ∣∣ (x ∈ P ) and (x ∈ Q)}.

P Q

When two sets share no members their intersection is the empty set {},
symbolized ∅. Any set has the empty set for a subset, by the ‘vacuously true’
property of the definition of implication.

Sequences. We shall also use collections where order does matter and where
repeats do not collapse. These are sequences, denoted with angle brackets:
〈2, 3, 7〉 6= 〈2, 7, 3〉. A sequence of length 2 is sometimes called an ordered pair
and written with parentheses: (π, 3). We also sometimes say ‘ordered triple’,
‘ordered 4-tuple’, etc. The set of ordered n-tuples of elements of a set A is
denoted An. Thus the set of pairs of reals is R2.

Functions. We first see functions in elementary Algebra, where they are pre-
sented as formulas (e.g., f(x) = 16x2 − 100), but progressing to more advanced
Mathematics reveals more general functions — trigonometric ones, exponential
and logarithmic ones, and even constructs like absolute value that involve piec-
ing together parts —and we see that functions aren’t formulas, instead the key
idea is that a function associates with its input x a single output f(x).

Consequently, a function or map is defined to be a set of ordered pairs
(x, f(x) ) such that x suffices to determine f(x), that is: if x1 = x2 then f(x1) =
f(x2) (this requirement is referred to by saying a function is well-defined).∗

Each input x is one of the function’s arguments and each output f(x) is a
value. The set of all arguments is f ’s domain and the set of output values is
its range. Usually we don’t need know what is and is not in the range and we
instead work with a superset of the range, the codomain. The notation for a
function f with domain X and codomain Y is f : X → Y .

∗More on this is in the section on isomorphisms



A-9

We sometimes instead use the notation x
f7−→ 16x2 − 100, read ‘x maps under

f to 16x2 − 100’, or ‘16x2 − 100 is the image of x’.
Some maps, like x 7→ sin(1/x), can be thought of as combinations of simple

maps, here, g(y) = sin(y) applied to the image of f(x) = 1/x. The composition
of g : Y → Z with f : X → Y , is the map sending x ∈ X to g( f(x) ) ∈ Z. It is
denoted g ◦ f : X → Z. This definition only makes sense if the range of f is a
subset of the domain of g.

Observe that the identity map id : Y → Y defined by id(y) = y has the
property that for any f : X → Y , the composition id ◦ f is equal to f . So an
identity map plays the same role with respect to function composition that
the number 0 plays in real number addition, or that the number 1 plays in
multiplication.

In line with that analogy, define a left inverse of a map f : X → Y to be a
function g : range(f) → X such that g ◦ f is the identity map on X. Of course,
a right inverse of f is a h : Y → X such that f ◦ h is the identity.

A map that is both a left and right inverse of f is called simply an inverse.
An inverse, if one exists, is unique because if both g1 and g2 are inverses of f
then g1(x) = g1 ◦ (f ◦ g2)(x) = (g1 ◦ f) ◦ g2(x) = g2(x) (the middle equality
comes from the associativity of function composition), so we often call it “the”
inverse, written f−1. For instance, the inverse of the function f : R→ R given
by f(x) = 2x− 3 is the function f−1 : R→ R given by f−1(x) = (x + 3)/2.

The superscript ‘f−1’ notation for function inverse can be confusing— it
doesn’t mean 1/f(x). It is used because it fits into a larger scheme. Func-
tions that have the same codomain as domain can be iterated, so that where
f : X → X, we can consider the composition of f with itself: f ◦f , and f ◦f ◦f ,
etc. Naturally enough, we write f ◦ f as f2 and f ◦ f ◦ f as f3, etc. Note
that the familiar exponent rules for real numbers obviously hold: f i ◦ f j = f i+j

and (f i)j = f i·j . The relationship with the prior paragraph is that, where f is
invertible, writing f−1 for the inverse and f−2 for the inverse of f2, etc., gives
that these familiar exponent rules continue to hold, once f0 is defined to be the
identity map.

If the codomain Y equals the range of f then we say that the function is onto.
A function has a right inverse if and only if it is onto (this is not hard to check).
If no two arguments share an image, if x1 6= x2 implies that f(x1) 6= f(x2),
then the function is one-to-one. A function has a left inverse if and only if it is
one-to-one (this is also not hard to check).

By the prior paragraph, a map has an inverse if and only if it is both onto
and one-to-one; such a function is a correspondence. It associates one and only
one element of the domain with each element of the range (for example, finite
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sets must have the same number of elements to be matched up in this way).
Because a composition of one-to-one maps is one-to-one, and a composition of
onto maps is onto, a composition of correspondences is a correspondence.

We sometimes want to shrink the domain of a function. For instance, we
may take the function f : R→ R given by f(x) = x2 and, in order to have an
inverse, limit input arguments to nonnegative reals f̂ : R+ → R. Technically,
f̂ is a different function than f ; we call it the restriction of f to the smaller
domain.

A final point on functions: neither x nor f(x) need be a number. As an
example, we can think of f(x, y) = x + y as a function that takes the ordered
pair (x, y) as its argument.

Relations. Some familiar operations are obviously functions: addition maps
(5, 3) to 8. But what of ‘<’ or ‘=’? We here take the approach of rephrasing
‘3 < 5’ to ‘(3, 5) is in the relation <’. That is, define a binary relation on a set
A to be a set of ordered pairs of elements of A. For example, the < relation is
the set {(a, b)

∣∣ a < b}; some elements of that set are (3, 5), (3, 7), and (1, 100).
Another binary relation on the natural numbers is equality; this relation is

formally written as the set {. . . , (−1,−1), (0, 0), (1, 1), . . .}.
Still another example is ‘closer than 10’, the set {(x, y)

∣∣ |x− y| < 10}. Some
members of that relation are (1, 10), (10, 1), and (42, 44). Neither (11, 1) nor
(1, 11) is a member.

Those examples illustrate the generality of the definition. All kinds of re-
lationships (e.g., ‘both numbers even’ or ‘first number is the second with the
digits reversed’) are covered under the definition.

Equivalence Relations. We shall need to say, formally, that two objects
are alike in some way. While these alike things aren’t identical, they are related
(e.g., two integers that ‘give the same remainder when divided by 2’).

A binary relation {(a, b), . . .} is an equivalence relation when it satisfies

(1) reflexivity : any object is related to itself;

(2) symmetry : if a is related to b then b is related to a;

(3) transitivity : if a is related to b and b is related to c then a is related to c.

(To see that these conditions formalize being the same, read them again, replac-
ing ‘is related to’ with ‘is like’.)

Some examples (on the integers): ‘=’ is an equivalence relation, ‘<’ does
not satisfy symmetry, ‘same sign’ is a equivalence, while ‘nearer than 10’ fails
transitivity.

Partitions. In ‘same sign’ {(1, 3), (−5,−7), (−1,−1), . . .} there are two kinds
of pairs, the first with both numbers positive and the second with both negative.
So integers fall into exactly one of two classes, positive or negative.

A partition of a set S is a collection of subsets {S1, S2, . . .} such that every
element of S is in one and only one Si: S1 ∪ S2 ∪ . . . = S, and if i is not equal
to j then Si ∩ Sj = ∅. Picture S being decomposed into distinct parts.
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. . .
S0

S1 S2

S3

Thus, the first paragraph says ‘same sign’ partitions the integers into the pos-
itives and the negatives. Similarly, the equivalence relation ‘=’ partitions the
integers into one-element sets.

Another example is the fractions. Of course, 2/3 and 4/6 are equivalent
fractions. That is, for the set S = {n/d

∣∣ n, d ∈ Z and d 6= 0}, we define two
elements n1/d1 and n2/d2 to be equivalent if n1d2 = n2d1. We can check that
this is an equivalence relation, that is, that it satisfies the above three conditions.
With that, S is divided up into parts.

. . .

.0/1
.0/3

.1/1
.2/2

.2/4
.−2/−4

.4/3
.8/6

Before we show that equivalence relations always give rise to partitions,
we first illustrate the argument. Consider the relationship between two in-
tegers of ‘same parity’, the set {(−1, 3), (2, 4), (0, 0), . . .} (i.e., ‘give the same
remainder when divided by 2’). We want to say that the natural numbers
split into two pieces, the evens and the odds, and inside a piece each mem-
ber has the same parity as each other. So for each x we define the set of
numbers associated with it: Sx = {y

∣∣ (x, y) ∈ ‘same parity’}. Some exam-
ples are S1 = {. . . ,−3,−1, 1, 3, . . .}, and S4 = {. . . ,−2, 0, 2, 4, . . .}, and S−1 =
{. . . ,−3,−1, 1, 3, . . .}. These are the parts, e.g., S1 is the odds.

Theorem. An equivalence relation induces a partition on the underlying set.

Proof. Call the set S and the relation R. In line with the illustration in the
paragraph above, for each x ∈ S define Sx = {y

∣∣ (x, y) ∈ R}.
Observe that, as x is a member if Sx, the union of all these sets is S. So

we will be done if we show that distinct parts are disjoint: if Sx 6= Sy then
Sx ∩ Sy = ∅. We will verify this through the contrapositive, that is, we wlll
assume that Sx ∩ Sy 6= ∅ in order to deduce that Sx = Sy.

Let p be an element of the intersection. Then by definition of Sx and Sy, the
two (x, p) and (y, p) are members of R, and by symmetry of this relation (p, x)
and (p, y) are also members of R. To show that Sx = Sy we will show each is a
subset of the other.

Assume that q ∈ Sx so that (q, x) ∈ R. Use transitivity along with (x, p) ∈ R
to conclude that (q, p) is also an element of R. But (p, y) ∈ R so another use
of transitivity gives that (q, y) ∈ R. Thus q ∈ Sy. Therefore q ∈ Sx implies
q ∈ Sy, and so Sx ⊆ Sy.

The same argument in the other direction gives the other inclusion, and so
the two sets are equal, completing the contrapositive argument. QED
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We call each part of a partition an equivalence class (or informally, ‘part’).
We somtimes pick a single element of each equivalence class to be the class

representative.

. . .
?

? ?

?

Usually when we pick representatives we have some natural scheme in mind. In
that case we call them the canonical representatives.

An example is the simplest form of a fraction. We’ve defined 3/5 and 9/15
to be equivalent fractions. In everyday work we often use the ‘simplest form’ or
‘reduced form’ fraction as the class representatives.

. . .
?0/1

?1/1 ?1/2

?4/3
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elementary reduction, 223, 271
entry, 13
equivalent, 240
identity, 217, 221
incidence, 225
inverse, 325
main diagonal, 221
Markov, 226, 281
matrix-vector product, 194
minimal polynomial, 217, 378
minor, 323
multiplication, 212
nilpotent, 368
nonsingular, 27, 204
orthogonal, 285
orthonormal, 283–288
permutation, 222
rank, 203
representation, 193
row, 13
row equivalence, 50
row rank, 124
row space, 124
scalar multiple, 209



similar, 320
similarity, 349
singular, 27
skew-symmetric, 307
submatrix, 299
sum, 209
symmetric, 118, 139, 210, 217, 225,

264
trace, 210, 226, 396
transition, 277
transpose, 19, 126, 210
triangular, 200, 226, 326
unit, 219
Vandermonde, 307

matrix equivalence, 238–245
canonical form, 241
definition, 240

matrix:form, 56
mean

arithmetic, 44
geometric, 44

member, A-7
method of powers, 397–400
minimal polynomial, 217, 378
minor, 323
morphism, 157
multilinear, 300
multiplication

matrix-matrix, 212
matrix-vector, 194

MuPAD, 62
mutual inclusion, A-7

natural representative, A-12
networks, 72–77

Kirchhoff’s Laws, 73
nilpotent, 366–376

canonical form for, 372
definition, 368
matrix, 368
transformation, 368

nilpotentcy
index, 368

nonsingular, 204, 228
homomorphism, 186
matrix, 27

normalize, 254
nullity, 184
nullspace, 184

closure of, 365

generalized, 365

Octave, 62
odd functions, 99, 137
one-to-one function, A-9
onto function, A-9
opposite map, 286
order

of a recurrence, 404
ordered pair, A-8
orientation, 317, 320
orthogonal, 42

basis, 252
complement, 259
mutually, 251
projection, 259

orthogonal matrix, 285
orthogonalization, 253
orthonormal basis, 254
orthonormal matrix, 283–288

pair
ordered, A-8

parallelepiped, 317
parallelogram rule, 34
parameter, 13
partial pivoting, 70
partition, A-10–A-12

matrix equivalence classes, 240, 242
row equivalence classes, 51

partitions
into isomorphism classes, 166

permutation, 303
inversions, 309
matrix, 222
signum, 310

permutation expansion, 304, 308, 330
perp, 259
perpendicular, 42
perspective

triangles, 339
Physics problem, 1
pivoting

full, 70
partial

scaled, 70
pivoting on rows, 4
plane figure, 283

congruence, 283
point



at infinity, 339
in projective plane, 336

polynomial
even, 396
minimal, 378
of map, matrix, 377

polynomials
division theorem, 346

populations, stable, 401–402
potential, 72
powers, method of, 397–400
preserves structure, 172
probability vector, 277
projection, 172, 181, 246, 264, 383

along a subspace, 256
central, 333

vanishing point, 333
into a line, 247
into a subspace, 256
orthogonal, 247, 259

Projective Geometry, 333–343
projective geometry

Duality Principle, 338
projective plane

ideal line, 339
ideal point, 339
lines, 337

proof techniques
induction, 23

proper
subset, A-7

proper subspace, 92
proposition, A-1
propositions

equivalent, A-3

quantifier, A-3
existential, A-4
universal, A-4

quantifiers, A-3

range, A-8
rangespace, 180

closure of, 365
generalized, 365

rank, 128, 203
column, 126
of a homomorphism, 180, 185

recurrence, 323, 404
homogeneous, 404

initial conditions, 404
reduced echelon form, 47
reflection, 286

glide, 286
reflection (or flip) about a line, 159
reflexivity, A-10
relation, A-10

equivalence, A-10
reflexive, A-10
symmetric, A-10
transitive, A-10

relationship
linear, 103

representation
of a matrix, 193
of a vector, 116

representative, A-12
canonical, A-12
for row equivalence classes, 58
of matrix equivalence classes, 241
of similarity classes, 391

rescaling rows, 4
resistance, 72
resistance:equivalent, 76
resistor, 72
restriction, A-10
rigid motion, 283
rotation, 270, 286
rotation (or turning), 159

represented, 196
row, 13

rank, 124
vector, 15

row equivalence, 50
row rank

full, 131
row space, 124

scalar, 80
scalar multiple

matrix, 209
vector, 15, 34, 80

scalar product, 40
scaled partial pivoting, 70
Schwartz Inequality, 41
SciLab, 62
self composition

of maps, 363
sense, 317
sequence, A-8



concatenation, 134
set, A-7

complement, A-7
element, A-7
empty, A-8
intersection, A-8
member, A-7
union, A-8

sets, A-7
dependent, independent, 103
empty, 105
mutual inclusion, A-7
proper subset, A-7
span of, 95
subset, A-7

sgn
seesignum, 310

signum, 310
similar, 294, 320

canonical form, 390
similar matrices, 349
similar triangles, 286
similarity, 349–362
similarity transformation, 362
single precision, 68
singular

matrix, 27
size, 315, 317
skew, 273
skew-symmetric, 307
span, 95

of a singleton, 99
square root, 396
stable populations, 401–402
standard basis, 114
state, 277

absorbtive, 277
Statics problem, 5
string, 369

basis, 369
of basis vectors, 367

structure
preservation, 172

submatrix, 299
subspace, 91–101

closed, 93
complementary, 136
definition, 91
direct sum, 135
improper, 92

independence, 135
invariant, 387
orthocomplement, 139
proper, 92
sum, 132

sum
of matrices, 209
of subspaces, 132
vector, 15, 34, 80

summation notation
for permutation expansion, 304

swapping rows, 4
symmetric matrix, 118, 139, 210, 217
symmetry, A-10
system of linear equations, 2

Gauss’ method, 2
solving, 2

theorem, A-1
trace, 210, 226, 396
transformation

characteristic polynomial, 358
composed with itself, 363
diagonalizable, 352
eigenspace, 358
eigenvalue, eigenvector, 355
Jordan form for, 390
minimal polynomial, 378
nilpotent, 368

canonical representative, 372
projection, 383
size change, 317

transition matrix, 277
transitivity, A-10
translation, 283
transpose, 19, 126

determinant, 305, 313
interaction with sum and scalar

multiplication, 210
Triangle Inequality, 40
triangles

similar, 286
triangular matrix, 226
Triangularization, 200
trivial space, 84, 114
turning map, 159

union, A-8
unit matrix, 219



vacuously true, A-2
value, A-8
Vandermonde matrix, 307
vanishing point, 333
vector, 15, 33

angle, 42
canonical position, 34
column, 15
component, 15
cross product, 294
direction, 35
dot product, 40
free, 33
homogeneous coordinate, 336
length, 39
orthogonal, 42
probability, 277
representation of, 116, 234
row, 15
satisfies an equation, 15
scalar multiple, 15, 34, 80
sum, 15, 34, 80
unit, 44
zero, 22, 80

vector space, 80–101
basis, 113
closure, 80
complex scalars, 90
definition, 80
dimension, 121
dual, 190
finite dimensional, 119
homomorphism, 172
isomorphism, 157
map, 172
over complex numbers, 345
subspace, 91
trivial, 84, 114

Venn diagram, A-1
voltage drop, 73
volume, 317

well-defined, A-8
Wheatstone bridge, 74

zero
divisor, 217

zero divison, 233
zero divisor, 217
zero homomorphism, 173

zero vector, 22, 80
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