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Introduction
Determining the sample size “n” required in testing and con-
fidence interval (CI) derivation is of importance for practi-
tioners, as evidenced by the many related queries that we
receive at the RAC in this area.  Therefore, we have
addressed this topic in a number of START sheets.  For exam-
ple, we discussed the problem of calculating the sample size
for deriving a general CI in Reference 1, and for the case of
acceptance testing, in Reference 2.  The problem of censored
sampling has been treated in Reference 3.  These cases, how-
ever, only treat the situation where fixed samples of pre-
determined sizes are taken, all at one time.

But sampling is both expensive and time consuming.  Hence,
there are situations where it is more efficient to take samples
sequentially, as opposed to all at one time, and to define a
stopping rule to terminate the sampling process.  The case
where the entire sample is drawn at one instance is known as
“single sampling.”  The case where samples are taken in suc-
cessive stages, according to the results obtained from the pre-
vious samplings, is known as “multiple sampling.”

Taking samples sequentially and assessing their results at each
stage allows the possibility of stopping the process and reach-
ing an early decision.  If the situation is clearly favorable or
unfavorable (for example, if the sample shows that a widget’s
quality is definitely good or poor), then terminating the
process early saves time and resources.  Only in the case where
the data is ambiguous do we continue sampling.  Only then, do
we require additional information to take a better decision. 

The preceding discussion justifies the need to overview
multi-stage sampling plans, and we will do so in a sequence

of two START sheets.  In this first START Sheet, we start by
exploring double sampling plans.  From there, we proceed to
higher dimension sampling plans, namely sequential tests.
We illustrate their discussion via numerical and practical
examples of sequential tests for attributes (pass/fail) data that
follow the Binomial distribution.  Such plans can be used for
Quality Control as well as for Life Testing problems.  We
conclude with a discussion of the ASN or “expected sample
number,” a performance measure widely used to assess such
multi-stage sampling plans.  In the second START Sheet, we
will discuss sequential testing plans for continuous data (vari-
ables), following the same scheme used herein.

Double Sampling (Two Stage) Testing
Procedures
In hypothesis testing, we often define a Null (H0) that
expresses the desired value for the parameter under test (e.g.,
acceptable quality).  Then, we define the Alternative (H1) as
the unacceptable value for such parameter.  We take a sample
of pre-determined size “n” and, based upon the result
obtained from drawing such a single fixed-size sample, we
make a decision regarding these two hypotheses.  This
process is a single stage sampling procedure.

In a two-stage testing procedure (double sampling) one first
draws a sample of size n1 and compares the number “X” of
items “of interest” (e.g., “non compliant”) with two integers: c1,
c2.  If X < c1, we accept the null hypotheses (H0) that the batch
is of acceptable quality; and if X > c2, we accept the alternative
hypotheses (H1) that the batch quality is unacceptable.
However, if c1 < X < c2, we draw a second sample of size n2

and compare the total number X’ (of items “of interest” found
in the combined sample of size n1 + n2) with a third integer c3

(which may be the same as c2).  We take the final decision
based upon whether such combined X’ is greater than, or equal
to c3.  We thus describe double sampling plans via the integers
n1, n2, c1, c2, and c3, and denote them S (n1, n2, c1, c2, c3).

The logic behind double sampling schemes is that, if things are
clearly good or bad (X < c1 or X > c2) then we make a decision
based on the first sample only.  If there are some doubts (c1 <
X < c2), then we draw a second sample, collecting additional
information before reaching a decision.  This method lowers
the risk of making the wrong decision, when initially things do
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not appear to be so clear, at the cost of a longer and more expen-
sive process (i.e., drawing the second sample).

Consider the following example.  Assume that we have a device
with mission time “T” (say, 20 hours), which requires (H0) a reli-
ability of say, 0.9, with confidence 0.95.  To test this hypothesis,
we place “n” (say 20) items on test for the “T” hours, and then
count how many items survive.  The number of survivals “X” is
distributed as a Binomial (n = 20, p), where “p” is the reliability
of the device; that is, the probability that such device survives
beyond mission time “T.”  We then express such a Binomial
probability model as:

Now, assume that a reliability of 0.8 or less is unacceptable (H1)
and define the double sampling plan S (n1 = 20, n2 = 20, c1 = 14,
c2 = 15, c3 = 33), as described.  We draw a first sample of size n1

= 20 and count the number of survivals “X.”  If X > 15, we don’t
reject H0.  If X < 14 we reject H0 (reliability is unacceptable).  If
X is 14 or 15, we draw a second sample of size n2 = 20 and count
the number of survivals (Y).  Then, only if X + Y < 33 we reject
H0 (and decide that the device reliability is unacceptable).

Plan S is constructed in the following way.  For the first sample (n1)
we selected, from the Binomial (n = 20, p = 0.9) tables, number “c2”
= 15, because the probability of acceptance (survivals X > 15) of a
“good” batch (reliability > 0.9) is P0.9 {X > 16} = 0.957.  We then
selected number “c1” = 14 because the probability of rejecting a
“good” batch P0.9 {X < 13} = 0.002.  Then, from the Binomial (n=
20, p = 0.8) table, the probability of “accepting a bad batch” (relia-
bility 0.8 and X > 16) is 1- P0.8 {X < 15} = 1-0.3704 = 0.630, and
that of “rejecting a bad batch” is P0.8{X < 13} = 0.087.  If the num-
ber of survivals is X = 14 or 15, results are considered inconclusive.
The probability of an inconclusive result, when the batch is good is
0.041, and when the batch is bad is 0.284.  If so, we take a second
sample of n2 = 20 and define number c3 = 33.  We accept the batch
if the total survivals are 33 or more; and reject it if the survivals are
less than 33.  We don’t claim that plan S is optimal; but it provides
a good illustration of the construction approach.

The probability of acceptance for such double sampling plan S,
for any p, is given by the following equation.

P{Accepting Batch} = P{Accepting Initially}
+ P{Initially Inconclusive Then Accept at 2nd}

= P{First Successes > 16} + P{First Successes = 14
or 15 and Combined Successes > 33}

Table 1.  Individual and Cum. Probs. for Binomial (n = 20; p =
0.9 and 0.8)

x [Bin(x = 19; n = 20, p) + Bin(x = 20; n = 20, p)]
+ Bin(x = 15; n = 20, p) x [Bin(x = 18; n = 20, p)
+ Bin(x = 19; n = 20, p) + Bin(x = 20; n = 20, p)]

Notice that, to obtain a result of 33 survivals or more, in the com-
bined first and second samples, we have to obtain 14 or 15 suc-
cesses (inconclusive results) in the first sample and then, enough
successes in the second (say 18, 19 or 20) to add up to 33 or
more.  For the case where reliability p = 0.9, the double sampling
plan acceptance is 0.982, instead of just 0.957 for a fixed sample
test with n = 20 and c = 16:

P{Accepting Batch} = P(Accepting Initially}
+ P{Initially Inconclusive Then Accept at 2nd}
= 0.957 + 0.0089 x (0.2701 + 0.1215) + 0.0319

x (0.2851 + 0.2701 + 0.1215) = 0.982

The probability of rejection of our double sampling plan S is
obtained just by substituting “acceptance” for “rejection,” in the
equations.  For a true reliability p = 0.09, the probability of incor-
rect rejection is 0.018, instead of just P{X < 16} = 1 - 0.957 =
0.043, which is the corresponding probability for a fixed sample
plan with n = 20 and c = 16:

P{Rejecting Batch} = P{Rejecting Initially}
+ P{Initially Inconclusive Then Reject at 2nd}
= P{First Successes < 13} + P{First Successes

= 14 or 15 and Combined Successes < 33}

x {1 - [Bin(x = 19; n = 20, p) + Bin(x = 20; n = 20, p)]}
+ Bin(x = 15; n = 20, p) x {1 - [Bin(x = 18; n = 20, p)

+ Bin(x = 19; n = 20, p) + Bin(x = 20; n = 20, p)]}
= 0.0024 + 0.0089 x (1 - (0.2701 + 0.1215))

+ 0.0319 x (1 - (0.2851 + 0.2701 + 0.1215)) = 0.018

x-nc

1x

xn
x p) - (1 p C - 1  c}  P{X - 1  c}  P{X ∑=≤=>

=

Surv. P = 0.9 P = 0.8
Cum. For

P = 9
Cum. For

P = 8
10 0.000006 0.002031 0.00001 0.00259
11 0.000053 0.007387 0.00006 0.00998
12 0.000356 0.022161 0.00042 0.03214
13 0.001970 0.054550 0.00239 0.08669
14 0.008867 0.109100 0.01125 0.19579
15 0.031921 0.174560 0.04317 0.37035
16 0.089779 0.218199 0.13295 0.58855
17 0.190120 0.205364 0.32307 0.79392
18 0.285180 0.136909 0.60825 0.93082
19 0.270170 0.057646 0.87842 0.98847
20 0.121577 0.011529 1.00000 1.00000
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The preceding shows how the double sampling scheme, when
compared with a single sample test, not only increases the prob-
ability of accepting a good batch but also reduces the probabili-
ty of rejecting a good one, even if the initial test results are
inconclusive.  This characteristic is their strongest advantage
that, in many cases, far outweighs the extra cost and effort
involved in implementing such double sampling schemes. 

The Sequential Probability Ratio Test (SPRT)
Assume now that we want to test that the acceptable mean life of
a device (MTTF) is 200 hours or more (null hypothesis H0) ver-
sus that it is 100 hours or less (H1).  If the device lives are dis-
tributed Exponential (with mean µ) the distribution (CDF) and
density (pdf) of the random variable (r.v.) “life of a device,”
denoted “X,” under Hi:  µi, for i = 0,1 are:

Assume that we place such devices, sequentially on test, one at a
time, for a test duration of T = 20 hours, after which we assess
whether each device is still working (Pass) or not (Fail).  The
probabilities of such results, under the two above hypotheses Hi,
for i = 0, 1 are:

We can transform these relationships into the respective equiva-
lent hypotheses: H0:  p0 = 0.905 and H1:  p1 = 0.819.  In such a
setting, the test of each device for 20 hours is assumed to be an
independent trial, with identical probability of success pi.

Therefore “y,” the cumulative number of successes, out of “n”
trials, is distributed as a Binomial (n, pi), for i = 0, 1.

Define the Probability Ratio (PR) as that of the Binomial distri-
butions, under H0 and H1: 

K is the number of “SPRT-feasible” ways that one can obtain “y”
successes out of “n” trials.  Now, define the two hypothesis test
errors:  α (producer’s risk, or probability of rejecting a device
with acceptable life) and β (consumer’s risk, or probability of
accepting a device with unacceptable life) and let α = β = 0.128.
Then, we can find two values A and B such that, at any stage “n,”
that is having tested “n” devices sequentially (one at a time) and
having obtained “y” cumulative successes, the PR fulfills the
probability:

Thus, we define S (B,A), the “Sequential Probability Ratio Test”
(SPRT), by the preceding equations, as one that compares PR
with values A and B at every stage “n”, and decides: (i) to accept
H0 if PR < B; (ii) accept H1 if PR > A; or (iii) continue testing if
B < PR < A.

For example, at any given stage “n,” say after placing the tenth
(n = 10) device on test, we obtain “y” successes (say y = 6).  We
thus obtain the Binomial SPRT test result:

Then, we compare value 7.23 with adequate values for A and B
and decide: (i) to stop testing and accept (H1) that probability of
success is 0.819, and hence the Exponential mean is 100 hours
or less, if the PR value 7.23 is greater than A; (ii) to stop and
accept (H0) that the probability of success is 0.905, and hence the
Exponential mean is 200 hours or more, if the PR value 7.23 is
smaller than B; or (iii) to take another sample and repeat the the
process, if 7.23 is between the values of B and A.

We can simplify the process and equations, by taking the
Logarithms in the PR inequality below, which defines the region
leading to the continuation of the test: 
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The result produces a linear equation that is a function of the
number of successes “y”, out of a given number of trials (stage)
“n”, and is bounded by the Logarithms of values A and B:

The coefficients “a” and “b” of these equations are, obviously,
functions of pi, i = 0, 1.  It can be shown (References 4, 5, and 6)
that the constants A and B are approximated by:

In our example: p0 = 0.905, p1 = 0.819, n =10, y = 6 and α = β =
0.128.  Hence, the SPRT coefficients “a” and “b” can be calcu-
lated and values “A” and “B” can be approximated:

= 0.0998 - 0.6446 = -0.7444;

For our example, at the SPRT 10th stage (or n = 10 trials), with y
= 6 successes, we get:

ln(B) = -1.919 < 0.6446n - 0.7444y < ln(A) = 1.919
But:  0.64446 x 10 - 0.7444 x 6 = 1.979 > 1.919

Since 1.979 is above bound 1.919 (PR > A) we stop testing and
accept H1 that p1 = 0.819 (hence, that device MTTF < 100 hrs).
Had the equation 0.6446n - 0.7444y  yielded a value below -1.919,
we would have accepted H0 that p0 = 0.905 (and hence, that device
MTTF > 200 hours).  Had the equation results been between
-1.919 and 1.919 (the continuation region), we would have pro-
ceeded with the sampling. Figure 1 represents these choices. 

The described procedure, even when accurate and correct, is dif-
ficult to follow.  To better track the SPRT test values, we need an
equation comparing “y,” the number of “successes,” directly
with stage boundaries that are a function of the number of trials
“n”: 

ln(B) < an + by < ln(A)

For our current example the values are: ln(B) = -1.919; ln(A) =
1.919; b = -0.7444; a = 0.6446.

By letting “n,” the number of “stages,” run from 1, 2, …, we
obtain (an; rn) the SPRT decision “boundaries” (or acceptance
and rejection numbers) for our example are shown in Figure 2.
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Notice how it is impossible to reject the device (accept H1:  p1 =
0.819, or MTTF < 100 hrs.) until having tested at least n = 4
devices, all of which must have failed.  It is also impossible to
accept the device (H0:  p0 = 0.905, or MTTF > 200 hrs.) until
having tested at least n = 20 devices, without observing a single
failure (these critical boundary values are “bolded” in Figure 2).
At any stage, the probability of decision error is α = β = 0.128. 

In addition, notice how the boundary equation parameters (slope
and intercept) depend on SPRT errors α and β, and on probabil-
ities p0, p1, which in turn depend on the device MTTFs:

Notice how, in the preceding equations for the slope (s) and
intercepts (h1, h0), the smaller the errors (α, β), the larger the
intercepts (in absolute value).  This means that, on the average,
it will take the SPRT test longer (more stages) to arrive its final
decision.  This result is intuitive.  Since we are demanding larg-
er assurances (smaller errors) from the SPRT test procedure, the
SPRT will necessarily require more information (more stages) to
be able to provide a decision that fulfills such errors α, β.  Some
examples are shown in Table 2.

Table 2.  Intercepts for the Lower/Upper Increasing Bounds of
SPRT

The slope s, which is common to both boundary lines, depends
on the two hypothesized probabilities p0 and p1, which in turn
depend on the hypothesized MTTF µ0 and µ1 (but not on the
aforementioned test errors α, β).  The “continuation region,”
defined by the slope s and the intercepts h1 and h0, characterize
the speed at which decisions are taken at every step.  So, all other
factors being equal, the further apart the probabilities p0, p1 (and
hence the two MTTFs µ0, µ1), the more comfortably we can dis-
criminate between them as shown in Table 3.

Figure 2.  Representation of SPRT

Trials “n” 

Success “y” 

Reject Device: 
MTTF < 100 hrs 

Accept Device: 
MTTF > 200 hrs 

Continue Testing  

y = 2.57+0.86n 

y = -2.57+0.86n 

Row Stage Reject Accept

1 1 -1.712 3.444
2 2 -0.846 4.310
3 3 0.020 5.176
4 4 0.886 6.042
5 5 1.752 6.908
6 6 2.618 7.774
7 7 3.484 8.640
8 8 4.350 9.506
9 9 5.216 10.372
10 10 6.082 11.238
11 11 6.948 12.104
12 12 7.814 12.970
13 13 8.680 13.836
14 14 9.546 14.702
15 15 10.412 15.568
16 16 11.278 16.434
17 17 12.144 17.300
18 18 13.010 18.166
19 19 13.876 19.032
20 20 14.742 19.898
21 21 15.608 20.764
22 22 16.474 21.630
23 23 17.340 22.496
24 24 18.206 23.362
25 25 19.072 24.228
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Beta/Alpha
Lower Bound Intercept Upper Bound Intercept
0.01 0.05 0.128 0.01 0.05 0.128

0.01 -6.1723 -4.0105 -2.7478 6.1723 6.1169 6.0019
0.05 -6.1169 -3.9551 2.6924 4.0105 3.9551 3.8400
0.128 -6.0019 -3.8400 -2.5773 2.7478 2.6924 2.5773



Table 3.  Discrimination Between Two MTTFs:  Slope of the
Increasing SPRT Boundaries (slopes in italics)

Finally, the preceding can be similarly applied to an SPC/Quality
Control problem.  For example, assume that we are interested in
assessing a batch of incoming material and that the acceptable
level of quality (AQL) is defined by some maximum percent of
defectives, say 10% (p < 0.1).  Also, assume another percent
defective defines an unacceptable quality (LTPD), beyond which
we will not receive the batch (say 20% defectives or more).
Then, define values p0 = 1 - 0.1 = 0.9, and p1 = 1 - 0.2 = 0.8, for
hypotheses H0 and H1. 

Now assume that for procedural ease, cost or other practical rea-
son, it is decided to test the lot by taking each item sequentially,
one at a time, instead of taking a single sample of fixed  and pre-
determined size “n”, all at one time.

Then, for the acceptance sampling problem described, all the
previously described SPRT derivations and results are applica-
ble, with the pertinent modifications.  

The Average Sample Number (ASN)
The main advantage of multiple stage sampling plans is the
reduced “long run” or average sample size, required to arrive to
a good decision.  For now, the random variable “sample size” is
a probabilistic outcome (varies with every case).  Its “Expected
Value,” known as ASN or “Average Sample Number,” depends
on the value of the real parameter under test, be it the percent
defective “p,” reliability, or any other parameter of interest.

The ASN is obtained following the definition of Expected Value.
For double sampling:

In the double sampling scheme, SN (sample number) can be only
n1 or n1+ n2.  P (n1) is the probability of drawing a “first” sample
only, which occurs when arriving at a decision at the first sam-
ple (with probability 1 - P{c1 < Y < c2}).  The probability P{n1 +
n2} of having to draw a second sample, totaling a size of n1 + n2,
occurs when we had an “inconclusive” outcome from the first
sample (i.e., with probability: P {c1 < Y < c2}). 

We illustrate this case using our double sampling example S (n1 =
20, n2 = 20, c1 = 14, c2 = 15, c3 = 33), described earlier.  Let the
true reliability “p,” be p = 0.9, and let Y be the number of sur-
vivals obtained in the first sample of size n1 = 20.  Then, the prob-
ability of taking “no decision” on the first sample, when p = 0.9,
is P (c1 < Y < c2) = P (14 < Y < 15) = 0.0089 + 0.0319.  This yields
ASN = 20.81, barely larger than the exact n = 20 elements that
would be required by a single sample plan, of fixed size n1 = 20:

Table 4 presents the ASN values for the double sampling plan S,
described in the first section, calculated at selected values of the
(reliability) parameter “p.”

Table 4.  Comparison of ASN for Double Sampling, Given “p”

In Figure 3, we show graphically the relationship between the reli-
ability parameter “p” and the corresponding double sample ASN.
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Figure 3.  ASN for Double Sampling
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0.7 4.5686 2.4068 1.5446

∑==
SN

P{SN} x SN  E{SN}  ASN

)n  P(n x )n  (n  )P(n x n 212111 +++=
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In the general case of sequential tests (SPRTs), the ASN is
obtained following the same principles described for the double
sampling scheme.  However, the stages “n” are extended to any
number, not just two.  We multiply each SPRT stage (the samples
taken so far) times the probability of arriving to a decision at that
stage, given the true parameter “p” and that we have not taken a
decision earlier in the sequential test (i.e., that we have followed
a path inside the SPRT “continuation region”, up to the present
stage):

The ASN values for sequential (SPRT) tests, however, are in
general not easy to obtain.  A full treatment of this topic falls
beyond the scope of the present paper.  Those readers interested
in pursuing it further may want to consult References 4, 5, 6, and
7.  In the second START of this two-part series, discussing
SPRTs for continuous variables, we will obtain the ASN for a
reduced number of values of the parameter of interest.

Conclusions
Multiple stage sampling plans can save substantial time and
resources, when the case is clear-cut.  Multiple stage plans pro-
vide an alternative to fixed sample plans that can help diminish
the producer and consumer risks (α, β) of arriving at a wrong
decision.  Sequential (SPRTs) tests constitute a natural extension
of the double sampling plans. 

In this first START Sheet, we have overviewed SPRTs for the
discrete case, via the development of sequential tests for the
Binomial distribution.  Such an approach is useful in life testing,
when devices are sequentially placed on test for a fixed time “T,”
and when only the number “Y” of survivals/failures from such
tests is recorded.  Binomial sequential tests are also useful in
SPC/Quality Control acceptance sampling problems, when batch
items are tested, one at a time, on a pass/fail basis, to assess the
percent of defective items in a lot, instead of by taking a fixed
size sample, one at a time.  We have also discussed the double
sampling plans in detail, and the problem of assessing these
plans via the ASN.

In a second, follow-up START Sheet, we will discuss the use of
SPRT tests with continuous variables, specifically, when testing
Exponential lives.  Such tests are widely used and are included
in the well-known MIL-HDBK-781-D, Reliability Testing for
Engineering Development.  We will use the same example of this
paper and compare, using the corresponding ASN, the efficiency
of the two strategies (1) of letting each device extinguish its life,
versus that of (2) curtailing the test at a fixed time T, used here,
and only observing whether such device passed or failed the test.
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