
A Markov Chain Model for Covid-19 Survival Analysis 

Jorge Luis Romeu, Ph.D. 

https://www.researchgate.net/profile/Jorge_Romeu 

http://web.cortland.edu/romeu/; Email: romeu@cortland.edu  

Copyright. July 17, 2020 

 

1.0 Introduction 

The present Markov Chain analysis is intended to illustrate the power that Markov modeling 

techniques offer to Covid-19 studies. It is part of our pro-bono collaboration to the American 

struggle against Covid-19, whereby retired professionals would provide input, based on our long 

experience. You can read our Proposal for Fighting Covid-19 and its Economic Fallout in: 

https://www.researchgate.net/publication/341282217_A_Proposal_for_Fighting_Covid-

19_and_its_Economic_Fallout 

We have previously written An Example of Survival Analysis Applied to Covid-19 Data, found in 

https://www.researchgate.net/publication/342583500_An_Example_of_Survival_Analysis_Data

_Applied_to_Covid-19, also Multivariate Statistics in the Analysis of Covid-19 Data and More 

on Applying Multivariate Statistics to Covid-19 Data, both of which can also be found in: 

https://www.researchgate.net/publication/341385856_Multivariate_Stats_PC_Discrimination_in

_the_Analysis_of_Covid-19   and, as the already cited, also in our ResearchGate web page:  

https://www.researchgate.net/publication/342154667_More_on_Applying_Principal_Component

s_Discrimination_Analysis_to_Covid-19 These latter statistical methods provide useful tools for 

classification of states, regions, counties etc., according to levels of infection and other metrics. 

In addition, we have written a tutorial on the use of Design of Experiments (DOE) Applied to the 

Assessment Covid-19. It provides an example of a tool for assessing and controlling appropriate 

levels of infection in states and regions. It can also be found in our ResearchGate web page: 

https://www.researchgate.net/publication/341532612_Example_of_a_DOE_Application_to_Cor

onavarius_Data_Analysis We have written an evaluation of the results of 25 years off-shoring 

tens of thousands American jobs, and the impact this has had on US preparedness to fight the 

Coronavarus Pandemic, found in: https://www.researchgate.net/publication/341685776_Off-

Shoring_Taxpayers_and_the_Coronavarus_Pandemic And we have written a short study on the 

use of reliability methods in the design and operation of ICU units, that can be found in: 

https://www.researchgate.net/publication/342449617_Example_of_the_Design_and_Operation_

of_an_ICU_using_Reliability_Principles  

In this article we model the trajectory of Covid-19 infected patients into an ICU, and up to their 

death, using a Markov Chain. We start by considering a simple three-element state space. We 

then include additional states, to account for more complex situations. 
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Then, using such models, we obtain (1) the probability of death of a Patient; and (2) their 

expected time to death, using their sojourns in the different states. 

2.0 A Simple Markov Chain  

Let X(T) a Markov Chain over a three-element state space: (0) Non-infected, (1) Infected and (2) 

Hospitalized population. Markov equations and a state diagram for this model, are given below: 
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Consider every Markov Chain transition X(T) at time T, as an independent trial corresponding to 

a transition from its current state i into its next state j = 0, 1, 2, having probability of success pij 

The Transition Probability Matrix P for this Markov Chain model is given below: 
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Rows must add to one (probability is unit because the system is always in one of its three states). 

And, if we want to find the probability 
)(n

ijp  of ending in some state j after ‘n’ steps, given that 

we started in some state i of the system, we raise matrix P to the power ‘n’ and look at entry pij 

of the resulting matrix P
n
. In our present analysis we will model two settings as Markov Chains: 

Matrix MatSimpGood  This is an efficient system because transition probability  

N.I.  Inf.  Hosp  From States 0 to 1 (infection) is 0.05, and probability of 

0.95  0.05  0.0  remaining in the Hospital (State 3) is 0.70; both smaller. 

0.10  0.70  0.2  As a result, X(T) will have the steady state probabilities: 

0.00  0.30  0.7  π = (π0, π1, π2) = (0.545455  0.272727  0.181818) 

  

Matrix MatSimpBad  This is an inefficient system as the transition probability  

N.I.  Inf.  Hosp  From States 0 to 1 (infection) is 0.1, and probability of  

0.90  0.1  0.00  remaining in the Hospital (State 3) is 0.80, both larger. 

0.12  0.7  0.18  As a result, X(T) will have the steady state probabilities: 

0.00  0.2  0.80  π = (π0, π1, π2) = (0.387097  0.322581  0.290323) 

 

Steady state distribution π represents the Long-run percent of cases in each of the system states, 

as well as the rates at which said Markov Chain X enters such states.  
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The corresponding Long-run Times Ti for each state i, can be interpreted as the average time 

between two successive visits to said state i. They are computed as: Ti = 1/ πi; i = 0,1,2 

For Efficient System:  T0 =1/ π0 =1/0.545= 1.834; T1 = 1/ π1 = 3.667;  T2 = 1/ π2 = 5.50; 

One of the most important uses of modeling activity is to compare performances for different 

states of affairs and courses of action, by using system steady state performance measurements. 

George Box, an eminent statistician, said that all models are wrong, but some models are useful. 

In the inefficient case, when infection rates are 10% instead of CDC suggested 5%, there is a 

higher percent of patients hospitalized, or having a higher rate of entering the Hospital (29% 

instead of 18%). This shows how, letting the infection rate increase above the suggested upper 

bound of 5%, results in saturating the Health Care system with too many patients. 

A similar situation occurs with Times between two successive visits to a state i. In the efficient 

case above, when the infection rates are small, the Long-run Times between two successive visits 

to the Hospital are longer, than when said infection rates are large. 

Table #1: comparisons of the (above) systems performance measures: 

Case (Rates) Long-run Not Infected Infected Home Hospitalized 

Efficient (5%) Probabilities 0.545 0.273 0.182 

Efficient (5%) Times Between 1.834 3.667 5.50 

Inefficient (10%) Probabilities 0.387 0.322 0.290 

Inefficient (10%) Times Between 2.583 3.099 3.444 

 

Verify above how, when infection rates are kept at levels suggested by the Health Authorities 

(i.e. below 5%) the performance measures for the Efficient System are significantly better than 

the same performance measures for the Inefficient System, when infection rates increase to 10%.  

In the next section we analyze the Covid-19 situation using a more complex Markov Chain. This 

new Chain is defined (1) over a larger (five element) state space, (2) includes an Absorbing state, 

and (3) patients will die (in the previous, simple model, every patient improves; no patient dies). 

These three features will also introduce several technical differences. 

   



3.0 A More Complex Markov Chain 

Define now a Markov Chain over five states: (1) Non Infected (in the General Population); (2) 

Infected (isolated at home); (3) Hospitalized (after becoming ill); (4) in the ICU (or ventilators); 

and (5) Dead (absorbing state; no possible return). Its Transition Matrix P is given below: 

Pop; Infect Hosp  ICU   Dead 

0.93  0.07  0.00  0.00  0.00  (1); Non-Infected population 

0.05  0.80  0.10  0.05  0.00  (2): Infected (isolated at home or hospital) 

0.00  0.15  0.80  0.05  0.00  (3): Hospitalized (after becoming ill); 

0.00  0.00  0.05  0.80  0.15  (4): In the hospital ICU (or ventilators); 

0.00  0.00  0.00  0.00  1.00  (5) Dead (absorbing state; no return) 

 

The unit time is, as before, a day. Transitions refer to changes observed from say one morning to 

the following morning. The daily probability of a person becoming infected is 7% (93% remain 

uninfected). No other transition is possible from this state. Daily recover probability of Infected 

persons, without hospitalization, is 5%; 10% get sick enough to need hospitalization (5% are so 

sick that they are placed directly in the ICU); and 80% remain infected at home. A 15% of those 

hospitalized, improve, and are sent home for further cure; 80% remain hospitalized, 5% become 

so sick that need to be interned in the ICU unit. A 5% of those in the ICU improve and are again 

returned to the general ward; 80 % remain for another day in the ICU; 15% die. 

 

This is a more realistic model (also, more somber) and closer to situations in Italy or NYC at the 

height of their Covid-19 crisis. It provides more flexibility in the modeling activity. It also has a 

significant difference with the previous section Markov Chain. That one, modeled a recurrent 

process, where every state could, directly or indirectly, reach any other state (i.e. nobody died, 

but was able to recover). The present Markov Chain models a non-recurrent process that through 

a number of Transient states, eventually leads to an Absorbing State (Death) of no return. 

Because the state space contains both transient and recurring (absorbing) states, there is no point 

in obtaining a steady state solution. Instead, we obtain (1) the long run probabilities of dying, as 

well as (2) the expected times to die, both of these starting at states 2, 3 and 4, respectively. 

To achieve this, we obtain from P the sub-matrix of all transient states, by deleting the row and 

column corresponding to absorbing state. The remaining matrix, denoted “Q”, is given below: 

Matrix Q of Transient States 

Pop; Infect Hosp   ICU    

0.93  0.07  0.00  0.00  (1) Non Infected (in the General Population); 

0.05  0.80  0.10  0.05  (2) Infected (isolated at home); 

0.00  0.15  0.80  0.05  (3) Hospitalized (after becoming ill); 

0.00  0.00  0.05  0.80  (4) in the hospital ICU (or ventilators); 



 

We then subtract matrix Q from the Identity Matrix, yielding (I-Q), and invert this latter one: 

Matrix inverse (I-Q)-1 of Transient States: Pop; Infect.; Hosp.; ICU; 

 

Populat  Infectd  Hospital   ICU 

26.1905  16.6667  10.0000  6.66667 

11.9048  16.6667  10.0000  6.66667 

 9.5238  13.3333  13.3333  6.66667 

 2.3810   3.3333   3.3333  6.66667 

 

The Potential matrix contains the Long-Run Sojourns (average number of visits) to each of the 

states of said matrix columns, when starting from the states of the matrix rows. For example, the 

average number of days an uninfected person spends isolated and Infected at home, when they 

were initially infected, is 16.67 days. The number of days spent in the hospital after being sent, is 

10 days. The number of days a person spends in an ICU/Ventilator unit, before passing away or 

dying is 6.67 days. Adding these numbers up, we obtain the average number of days it takes for a 

person, initially infected, to be isolated at home, then hospitalized, and finally in the ICU and/or 

Ventilator, before passing away (dying). This average is: 16.67+10+6.67 = 33.34 days. We can 

do likewise with all other rows, and obtain the average times to death, from all transient states: 

Table #2: average times to death from all transient states 

Starting State for any Individual Average Time to Pass Away (Die) 

From Initial Time of Consideration 26.19 + 16.66 + 10.00 + 6.66 = 59.52 days 

From the Time of Infection/Isolation 16.67 +10 + 6.67 = 33.34 days 

From the Time of Hospitalization =10.00 + 6.66 = 16.66 days 

From the Time of entering ICU/Ventilator = 6.66 days 

Average Time, before becoming infected 26.19 days 

 

We now calculate the probabilities of a patient dying, starting from any of the transient states. 

We calculate these probabilities for a horizon of two, four, eight or sixteen days (considering that 

the death has occurred after said person started from the considered transient state).  

 

Results are obtained using the Markov Chain property:  

 

P
m

 = P*P … P  (m times, once for each day considered) 

 

 



Table #3: probabilities of a patient dying, starting from any of the transient states 

Starting State Two Days Four Days Eight Days Sixteen Days 

From Initial  (Healthy)  0.000 0.002 0.018 0.098 

From Time  of Infection 0.007 0.036 0.118 0.282 

From Time  Hospitalization 0.007 0.038 0.127 0.307 

From Time  ICU/Ventilator 0.270 0.444 0.636 0.780 

 

We can see how the probability of dying in sixteen days or less, except for those in an ICU or in 

a Ventilator, is relatively low. It is worth mentioning that, using our model, in the long-run (in a 

very large number of days) the entire population is wiped out by Covid-19 (see matrix F below). 

 

We now calculate matrix F, yielding the probability of a person ever reaching any Markov Chain 

state, especially the absorbing state of dying, given that such person starts in any of the previous 

transient states (healthy, infected, hospitalized, ICU). Notice that it is impossible to reach any of 

the transient states (probability zero) after having reached the Absorbing State of Death. 

Table #4: Matrix F yields the probability of a person ever reaching any state from another 

 Healthy Infected Hospitalized ICU/Vent. Death 

Healthy 0.96 1.0 0.75 1.0 1.0 

Infected 0.45 0.94 0.75 1.0 1.0 

Hospitalized 0.36 0.8 0.92 1.0 1.0 

ICU/Vent. 0.09 0.2 0.25 0.85 1.0 

Death 0.0 0.0 0.0 0.0 1.0 

 

For example, the probability of eventually becoming Infected, or going into an ICU/Ventilator, or 

Dying, when starting Healthy, is Unit (e.g. a sure event). On the other hand, the probability of 

going back to the Hospital ward, or going back home to isolation, or becoming Healthy again, 

when starting from an ICU/Ventilator Unit, is very low (at most 0.25); while the probability of 

staying on the ICU/Ventilator is 0.85, and that of eventually Dying is Unit (e.g. the sure event).  

Matrix F shows the importance of avoiding a Long term evolution of a High Infection rate. 



4.0 Mathematics 

Markov Chains is an advanced statistical topic, with involved mathematical background. In 

addition, its calculations are not generally included in statistical packages, as it occurs with 

regression, principal components, etc. We need software that handles matrix algebra, including 

transposing, inverting, adding and multiplying matrices. We next give a summary explanation, 

and we remit the reader to the textbooks of Cinlar, Taylor, and others, in the Bibliography. 

In Section 2.0 we discussed an irreducible, recurrent Markov Chain {Xn; n >= 0} that illustrates 

a simple Coronavarus model (everyone gets cured; nobody dies). Such model provides the steady 

Steady State distribution π, which allows (1) performance comparison of alternatives, and (2) the 

calculation of the logistic needs of health care units, based upon the number of infected patients. 

Steady state probabilities π can be obtained (1) by raising Transition Matrix P to the power ‘n’:  

0.95  0.05  0.0  0.545455  0.272727  0.181818 

0.10  0.70  0.2   =>    0.545455  0.272727  0.181818 

0.00  0.30  0.7  0.545455  0.272727  0.181818 

 

Or (2) by solving the linear equations: πP = (π0, π1, π2)P = π; with Ʃ πi = π0+π1+π2 = 1 

 

In Section 3.0 we presented a more complex and realistic, (and also pessimistic) Markov Chain 

{Xn; n >= 0}. Said Chain is not irreducible; on the contrary, it has a set of Transient States, 

leading to an absorbing state (Death). We cannot obtain Steady state probabilities for such a 

model. But we can calculate the absorption times (Deaths) and its probabilities by subtracting 

matrix Q from the Identity, then inverting. The important section of Potential Matrix R is (I-Q)
-1

 

= S,  which provides the Sojourns, or average number of times that different Transient states are 

visited. Adding them up we get the average time to Death, starting at different Transient states.  

Matrix S in turn provides the relevant part of Matrix F, of the probabilities of ever reaching the 

absorption state (Death) from every Transient state. Such probabilities are defined as Zero, if 

between Recurrent and Transient states (e.g. impossible, to leave the absorbing state of Death). 

They are defined as Unit, the sure event, if between Transient and Recurrent states, meaning that 

everyone will eventually die, independently of their initial state. Finally, we obtain probabilities 

between all Transient states (i,j), which are obtained through formulas based on Matrix S, of R:  

F(i, j) =  R(i,j) / R(j,j);   F(j,j) = 1 – 1 / R(j,j); 

All above-mentioned performance measures help calculate Logistics required for the health care 

facilities. Sometimes we forget that, as important as the care for sick patients may be, the basic 

Logistics that enable such care to take place are also very important, and need to be established.  

For example, health care professionals require Protective Personal Equipment. How many of 

each? Where will we get them from? How will we store and distribute them? When will there be 



a vaccine, a treatment, or enough testing kits? Who will produce and distribute them? What is the 

supply chain? Where are the funds to support all these operations, coming from?  

Stats and math models help us answer such questions, and evaluate different alternatives. 

5.0 Discussion 

Results from the present Markov Chain models complement those results obtained in previous 

Survival Analysis ones. Different models address different aspects of the Covid-19 problem. 

Notice how, for the simple model in Section 2.0, keeping the infection rate below 5% was key to 

avoiding an overload of healthcare facilities. Thence, the importance of wearing masks, of social 

distancing, testing, and contact tracing, all of which contribute to keep infection rates down. 

For the more complex model of Section 3.0 we obtained a crucial finding: prolonged and high 

infection rates will eventually get most everybody sick. The more vulnerable population will die, 

and we will reach heard immunization at a very high human cost. Sweden tried this approach, at 

the start of the Pandemic, but later changed it because of the large number of deaths it produced. 

Probabilities of becoming infected and eventually dying, starting from different states, are very 

pessimistic, as shown in Table #3 (unit probability is the sure event). Section 3 model reflects the 

terrible situations arisen in Europe (and in New York City) at the height of Covid-19 infections. 

Had these cities not implemented the drastic measures they put forth, which were able to reduce 

their infection rates, the Covid-19 results would have been catastrophic. 

Probabilities of dying, starting from different states and considering different time horizons (in 

Table 4), as well as times to absorption (Death) starting from different states, help estimate the 

usage of critical equipment (e.g. ventilators) by patients, thus helping estimate the quantities 

required to provide adequate patient care, as well as, in the ultimate instance, triage rules. 

Again, stats and math models help answer such questions, and compare different alternatives. 

6.0 Conclusions 

The Markov Chain models developed in this paper, as well as its Transient and Recurrent states, 

transition rates, etc. were all based on our readings about Covid-19. This author is not a public 

health specialist, but a statistician. In spite of our efforts, we were unable to obtain real data from 

any health care organization. The statistical models were built using our professional experience. 

Our intention is to place them in the hands of health specialists, so they can redo them with more 

accurate information. 

In spite of all this, there are several results from our specific Covid-19 Markov Chain models 

that are useful. They have to do with steady state distributions, from the model in Section 2.0, 

and with probabilities and times to absorption, from the model in Section 3.0. 



By changing the transition rates in the recurrent Markov Chain of Section 2.0 we can study how 

they affect the steady state distribution (or the percent population) in each state, and compare the 

efficient and inefficient models. This may help establish the largest acceptable infection rate. 

Times between Sojourns help estimate the required sizes of the facilities that will treat patients. 

The model in Section 3.0 is more realistic. The probabilities of ever reaching every other state, 

and the number of Sojourns in them, may help find logistic parameters to ensure a sufficiently 

large and well-equipped health care facility. 

Finally, combining the results from the present Markov Chain Model with those in our previous 

Survival Model, may provide doctors with more objective rules to establish Triage procedures, 

may such procedures ever become necessary. 
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